Advances in 2D Photodetectors: Materials, Mechanisms, and Applications
Abstract
1. Introduction
2. Mechanisms of Photodetection in 2D Materials
3. 2D Materials for Photodetection
3.1. Graphene-Based Photodetectors
3.2. Transition Metal Dichalcogenides Photodetectors
3.3. Black Phosphorus (BP) Photodetectors
3.4. MXenes Photodetectors
3.5. Carbide Photodetectors
3.6. Chalcogenide Photodetectors
4. Performance Metrics of Different 2D-Based Photodetectors
5. Applications of 2D Photodetectors
6. Challenges and Future Perspectives
- Graphene’s exceptional carrier mobility and broadband absorption make it a promising candidate for photodetectors. However, its zero bandgap leads to low responsivity and high dark currents. Enhancing light–matter interactions through integration with plasmonic structures, optical cavities, or hybridization with semiconductors like perovskites can mitigate these issues [120]. For instance, integrating graphene with perovskite materials has shown significant improvements in photodetector performance. Additionally, developing large-area, uniform chemical vapor deposition (CVD) growth and transfer-free integration techniques is crucial for scalability and compatibility with complementary metal oxide semiconductor (CMOS) technology [120].
- TMDCs, such as MoS2 and WSe2, offer direct bandgaps and strong light–matter interactions, making them suitable for photodetection applications. Challenges include achieving wafer-scale synthesis with minimal defects and integrating these materials into existing electronic platforms [121]. Future research should focus on strain and phase engineering to tailor electronic properties and on developing heterostructures with other 2D materials to enhance performance. Recent studies have highlighted the potential of TMDCs in self-powered photodetectors, emphasizing the need for innovative approaches to overcome current limitations [121].
- BP exhibits a thickness-dependent direct bandgap, making it ideal for mid-infrared photodetection. However, its instability in ambient conditions poses significant challenges. Encapsulation strategies using materials like hexagonal boron nitride (h-BN) or aluminum oxide (Al2O3) are essential to enhance stability [66]. Moreover, integrating BP with photonic structures can lead to polarization-sensitive and broadband photodetectors. Advancements in understanding BP’s photophysics are paving the way for its application in mid-infrared optoelectronics.
- MXenes, a family of 2D transition metal carbides and nitrides, exhibit high conductivity and tunable surface chemistry, making them attractive for photodetector applications. The primary challenge lies in their metallic nature, which can limit photoresponse [122]. Surface functionalization and hybridization with semiconducting materials can induce semiconducting behavior, enhancing photodetection capabilities. Recent reviews have discussed materials engineering strategies to optimize MXene-based photodetectors [122].
- Carbide materials, such as silicon carbide (SiC), are known for their wide bandgaps and thermal stability, making them suitable for ultraviolet and high-temperature photodetection. Challenges include controlling doping levels and improving interface quality to enhance device performance. Future research should explore hybrid structures combining carbides with other 2D materials to leverage their complementary properties [123].
- Chalcogenide materials, including bismuth telluride (Bi2Te3) and tin telluride (SnTe), offer high optical absorption and are promising for infrared photodetection. However, issues related to material stability and integration need to be addressed. Developing solution-processable fabrication methods and exploring heterostructures with other 2D materials can enhance device performance [124].
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
List of Acronyms | |
2D | Two-dimensional |
A/W | Ampere per watt |
APTES | Aminopropyltriethoxysilane |
APS | Active pixel sensor |
BP | Black phosphorus |
CMOS | Complementary metaloxide semiconductor |
CVD | Chemical vapor deposition |
dB | Decibel |
DLP | Dember-like photocurrent |
ECM | Electrochemical metallization |
FET | Field-effect transistor |
FIR | Far-infrared |
GHz | Gigahertz |
HMM | Hyperbolic metamaterial |
III–V | Group III–V compound semiconductors |
InGaAs | Indium gallium arsenide |
IoT | Internet of Things |
IR | Infrared |
Jones | Unit of specific detectivity |
MEMS | Micro-electro-mechanical systems |
MeV | Milli electron volt |
MHz | Megahertz |
MIR | Mid-infrared |
MoS2 | Molybdenum disulfide |
MoSe2 | Molybdenum diselenide |
MoTe2 | Molybdenum ditelluride |
MWIR | Mid-wave infrared |
MXene | Transition metal carbide/nitride |
NEP | Noise equivalent power |
NIR | Near-infrared |
OTS | Octadecyltrichlorosilane |
PD | Photodetector |
pJ | Picojoule |
PL | Photoluminescence |
QE | Quantum efficiency |
RGO | Reduced graphene oxide |
SAM | Self-assembled monolayer |
Si | Silicon |
SiN | Silicon nitride |
SnS | Tin sulfide |
SnSe | Tin selenide |
SnTe | Tin telluride |
SNR | Signal-to-noise ratio |
SWIR | Short-wave infrared |
Te | Tellurium |
TMDC | Transition metal dichalcogenide |
UV | Ultraviolet |
VCM | Valence change memory |
vdW | van der Waals |
WSe2 | Tungsten diselenide |
WS2 | Tungsten disulfide |
References
- Li, D.; Lan, C.; Manikandan, A.; Yip, S.; Zhou, Z.; Liang, X.; Shu, L.; Chueh, Y.L.; Han, N.; Ho, J.C. Ultra-fast photodetectors based on high-mobility indium gallium antimonide nanowires. Nat. Commun. 2019, 10, 1664. [Google Scholar] [CrossRef]
- Abdo, S.; As’ham, K.; Odebowale, A.A.; Akter, S.; Abdulghani, A.; Al-Ani, I.; Hattori, H.T.; Miroshnichenko, A.E. A Near-Ultraviolet Photodetector Based on the TaC:Cu/4H Silicon Carbide Heterostructure. Appl. Sci. 2025, 15, 970. [Google Scholar] [CrossRef]
- Akter, S.; Alaloul, M.; Odebowale, A.A.; Ani, I.A.; As’Ham, K.; Abdo, S.; Hattori, H.T. Near-ultraviolet photodetector using cerium hexaboride alloy. J. Mod. Opt. 2024, 71, 25–33. [Google Scholar] [CrossRef]
- Akter, S.; Somaweera, D.; As’ham, K.; Abdo, S.; Miroshnichenko, A.E.; Hattori, H.T. High-performance near-ultraviolet photodetector using Mo2C/SiC heterostructure. Adv. Photonics Res. 2025, 6, 2400210. [Google Scholar] [CrossRef]
- Hattori, H.T.; Akter, S.; Al-Ani, I.A.M.; Li, Z. Near ultraviolet photoresponse of a silicon carbide and tantalum boride heterostructure. IEEE Photonics J. 2023, 15, 5500607. [Google Scholar] [CrossRef]
- Hattori, H.T.; Abdulghani, A.; Akter, S.; Somaweera, D.; As’ham, K. Hybrid organic carbazole and 4H silicon carbide photodetectors. ACS Appl. Opt. Mater. 2024, 2, 2165–2174. [Google Scholar] [CrossRef]
- Akter, S.; Abdo, S.; As’ham, K.; Al-Ani, I.; Hattori, H.T. Deep and near UV photodetector based upon Zirconium diboride and n-doped silicon carbide. IEEE Sens. J. 2024, 24, 6063–6070. [Google Scholar] [CrossRef]
- Malik, M.; Iqbal, M.A.; Choi, J.R.; Pham, P.V. 2D Materials for Efficient Photodetection: Overview, Mechanisms, Performance and UV-IR Range Applications. Front. Chem. 2022, 10, 905404. [Google Scholar] [CrossRef]
- Alaloul, M.; Alani, I.; As’ham, K.; Khurgin, J.; Hattori, H.; Miroshnichenko, A. Mid-Wave Infrared Graphene Photodetectors With High Responsivity for On-Chip Gas Sensors. IEEE Sens. J. 2023, 23, 2040–2046. [Google Scholar] [CrossRef]
- Novoselov, K.; Mishchenko, O.A.; Carvalho, A.; Neto, A.C. 2D Materials and van der Waals Heterostructures. Science 2016, 353, aac9439. [Google Scholar] [CrossRef]
- Huang, L.; Dong, B.; Guo, X.; Chang, Y.; Chen, N.; Huang, X.; Liao, W.; Zhu, C.; Wang, H.; Lee, C.; et al. Waveguide-Integrated Black Phosphorus Photodetector for Mid-Infrared Applications. ACS Nano 2019, 13, 913–921. [Google Scholar] [CrossRef]
- Abate, Y.; Akinwande, D.; Gamage, S.; Wang, H.; Snure, M.; Poudel, N.; Cronin, S.B. Recent Progress on Stability and Passivation of Black Phosphorus. Adv. Mater. 2018, 30, 1704749. [Google Scholar] [CrossRef]
- Guo, J.; Li, J.; Liu, C.; Yin, Y.; Wang, W.; Ni, Z.; Fu, Z.; Yu, H.; Xu, Y.; Shi, Y.; et al. High-Performance Silicon–Graphene Hybrid Plasmonic Waveguide Photodetectors Beyond 1.55 μm. Light. Sci. Appl. 2020, 9, 29. [Google Scholar] [CrossRef]
- Odebowale, A.; Abdulghani, A.; Berhe, A.; Somaweera, D.; Akter, S.; Abdo, S.; As’ham, K.; Saadabad, R.; Tran, T.; Bishop, D.; et al. Emerging Low Detection Limit of Optically Activated Gas Sensors Based on 2D and Hybrid Nanostructures. Nanomaterials 2024, 14, 1521. [Google Scholar] [CrossRef]
- Zou, Y.; Chakravarty, S.; Chung, C.J.; Xu, X.; Chen, R.T. Midinfrared Silicon Photonic Waveguides and Devices. Photonics Res. 2018, 6, 254–276. [Google Scholar] [CrossRef]
- Jung, Y.; Shim, J.; Kwon, K.; You, J.B.; Choi, K.; Yu, K. Hybrid Integration of III–V Semiconductor Lasers on Silicon Waveguides Using Optofluidic Microbubble Manipulation. Sci. Rep. 2016, 6, 25500. [Google Scholar] [CrossRef]
- Koppens, F.; Mueller, T.; Avouris, P.; Ferrari, A.C.; Vitiello, M.S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793. [Google Scholar] [CrossRef]
- Xiao, Z.; Yuan, Y.; Shao, Y.; Wang, Q.; Dong, Q.; Bi, C.; Sharma, P.; Gruverman, A.; Huang, J. Giant Switchable Photovoltaic Effect in Organometal Trihalide Perovskite Devices. Nat. Mater. 2015, 14, 193–198. [Google Scholar] [CrossRef]
- Qiu, Q.; Huang, Z. Photodetectors of 2D Materials From Ultraviolet to Terahertz Waves. Adv. Mater. 2021, 33, 2008126. [Google Scholar] [CrossRef]
- Long, M.; Wang, P.; Fang, H.; Hu, W. Progress, Challenges, and Opportunities for 2D Material-Based Photodetectors. Adv. Funct. Mater. 2019, 29, 1803807. [Google Scholar] [CrossRef]
- Frisenda, R.; Molina-Mendoza, A.J.; Mueller, T.; Castellanos-Gomez, A.; Van Der Zant, H.S.J. Atomically Thin P-N Junctions Based on Two-Dimensional Materials. Chem. Soc. Rev. 2018, 47, 3339–3358. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xie, Z.; Yeow, J.T.W. Two-Dimensional Materials Applied for Room-Temperature Thermoelectric Photodetectors. Mater. Res. Express 2020, 7, 112001. [Google Scholar] [CrossRef]
- Adhikari, K.R. Thermocouple: Facts and Theories. Himal. Phys. 2017, 6, 10–14. [Google Scholar] [CrossRef]
- Kasirga, T.S. Thermal Conductivity Measurements in Atomically Thin Materials and Devices; Springer: Singapore, 2020; pp. 29–50. [Google Scholar] [CrossRef]
- Liu, W.; Wu, Y.; Bao, X.; Sun, L.; Xie, Y.; Chen, Y. High-Performance Infrared Self-Powered Photodetector Based on 2D Van der Waals Heterostructures. Adv. Funct. Mater. 2025, 2421525. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, R.; Liao, L.; Zhou, H.; Bai, J.; Liu, G.; Liu, L.; Huang, Y.; Duan, X. Plasmon resonance enhanced multicolour photodetection by graphene. Nat. Commun. 2011, 2, 579. [Google Scholar] [CrossRef]
- Tong, J.; Muthee, M.; Chen, S.Y.; Yngvesson, S.K.; Yan, J. Antenna Enhanced Graphene THz Emitter and Detector. Nano Lett. 2015, 15, 5295–5301. [Google Scholar] [CrossRef]
- Cheng, Z.; Wang, J.; Xu, K.; Tsang, H.K.; Shu, C. Graphene on Silicon-on-Sapphire Waveguide Photodetectors. In Proceedings of the CLEO: Science and Innovations, Optical Society of America, San Jose, CA, USA, 10–15 May 2015; pp. 2224–2225. [Google Scholar]
- Wang, X.; Cheng, Z.; Xu, K.; Tsang, H.K.; Xu, J.B. High-Responsivity Graphene/Silicon-Heterostructure Waveguide Photodetectors. Nat. Photonics 2013, 7, 888–891. [Google Scholar] [CrossRef]
- Qu, Z.; Nedeljkovic, M.; Wu, Y.; Penades, J.S.; Khokhar, A.Z.; Cao, W.; Osman, A.M.; Qi, Y.; Aspiotis, N.K.; Morgan, K.A.; et al. Waveguide Integrated Graphene Mid-Infrared Photodetector. In Proceedings of the SPIE BiOS, San Francisco, CA, USA, 25 February–1 March 2018; Volume 10537, p. 105371. [Google Scholar] [CrossRef]
- Goldstein, J.; Lin, H.; Deckoff-Jones, S.; Hempel, M.; Lu, A.Y.; Richardson, K.A.; Palacios, T.; Kong, J.; Hu, J.; Englund, D. Waveguide-Integrated Mid-Infrared Photodetection Using Graphene on a Scalable Chalcogenide Glass Platform. arXiv 2021, arXiv:abs/2112.14857. [Google Scholar] [CrossRef]
- Ma, Y.; Chang, Y.; Dong, B.; Wei, J.; Liu, W.; Lee, C. Heterogeneously Integrated Graphene/Silicon/Halide Waveguide Photodetectors Toward Chip-Scale Zero-Bias Long-Wave Infrared Spectroscopic Sensing. ACS Nano 2021, 15, 10084–10094. [Google Scholar] [CrossRef]
- Lin, H.; Song, Y.; Huang, Y.; Kita, D.; Deckoff-Jones, S.; Wang, K.; Li, L.; Li, J.; Zheng, H.; Luo, Z.; et al. Chalcogenide Glass-on-Graphene Photonics. Nat. Photonics 2017, 11, 798–805. [Google Scholar] [CrossRef]
- Urich, A.; Unterrainer, K.; Mueller, T. Intrinsic response time of graphene photodetectors. Nano Lett. 2011, 11, 2804–2808. [Google Scholar] [CrossRef] [PubMed]
- Graham, M.W.; Shi, S.F.; Ralph, D.C.; Park, J.; McEuen, P.L. Photocurrent measurements of supercollision cooling in graphene. Nat. Phys. 2013, 9, 103–108. [Google Scholar] [CrossRef]
- Chen, J.H.; Jang, C.; Adam, S.; Fuhrer, M.S.; Williams, E.D.; Ishigami, M. Charged-impurity scattering in graphene. Nat. Phys. 2008, 4, 377–381. [Google Scholar] [CrossRef]
- Shiue, R.J.; Gao, Y.; Tan, C.; Peng, C.; Robertson, A.D.; Efetov, D.K.; Walker, D.; Moodera, J.S.; Kong, J.; Englund, D. High-responsivity graphene–boron nitride photodetector and autocorrelator in a silicon photonic integrated circuit. Nano Lett. 2015, 15, 7288–7293. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chu, H.S.; Ang, K.W. High-responsivity graphene-on-silicon slot waveguide photodetectors. Nanoscale 2016, 8, 13206–13211. [Google Scholar] [CrossRef]
- Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501. [Google Scholar] [CrossRef]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef]
- Marin, J.G.; Unuchek, D.; Watanabe, K.; Taniguchi, T.; Kis, A. MoS2 photodetectors integrated with photonic circuits. npj 2D Mater. Appl. 2019, 3, 14. [Google Scholar] [CrossRef]
- Wang, W.; Zeng, X.; Warner, J.H.; Guo, Z.; Hu, Y.; Zeng, Y.; Lu, J.; Jin, W.; Wang, S.; Lu, J.; et al. Photoresponse-bias modulation of a high-performance MoS2 photodetector with a unique vertically stacked 2H-MoS2/1T@ 2H-MoS2 structure. ACS Appl. Mater. Interfaces 2020, 12, 33325–33335. [Google Scholar] [CrossRef]
- Gherabli, R.; Indukuri, S.; Zektzer, R.; Frydendahl, C.; Levy, U. MoSe2/WS2 heterojunction photodiode integrated with a silicon nitride waveguide for near infrared light detection with high responsivity. Light. Sci. Appl. 2023, 12, 60. [Google Scholar] [CrossRef]
- Singla, S.; Frydendahl, C.; Joshi, P.; Mazurski, N.; Indukuri, S.C.; Chakraborty, B.; Levy, U. Enhancing Broad Band Photoresponse of 2D Transition-Metal Dichalcogenide Materials Integrated with Hyperbolic Metamaterial Nanocavities. ACS Photonics 2024, 11, 4398–4406. [Google Scholar] [CrossRef]
- Kang, D.H.; Kim, M.S.; Shim, J.; Jeon, J.; Park, H.Y.; Jung, W.S.; Yu, H.Y.; Pang, C.H.; Lee, S.; Park, J.H. High-performance transition metal dichalcogenide photodetectors enhanced by self-assembled monolayer doping. Adv. Funct. Mater. 2015, 25, 4219–4227. [Google Scholar] [CrossRef]
- Nan, H.; Wang, X.; Jiang, J.; Ostrikov, K.K.; Ni, Z.; Gu, X.; Xiao, S. Effect of the surface oxide layer on the stability of black phosphorus. Appl. Surf. Sci. 2021, 537, 147850. [Google Scholar] [CrossRef]
- Dodda, A.; Jayachandran, D.; Pannone, A.; Trainor, N.; Stepanoff, S.P.; Steves, M.A.; Radhakrishnan, S.S.; Bachu, S.; Ordonez, C.W.; Shallenberger, J.R.; et al. Active pixel sensor matrix based on monolayer MoS2 phototransistor array. Nat. Mater. 2022, 21, 1379–1387. [Google Scholar] [CrossRef]
- Hong, S.; Zagni, N.; Choo, S.; Liu, N.; Baek, S.; Bala, A.; Yoo, H.; Kang, B.H.; Kim, H.J.; Yun, H.J.; et al. Highly sensitive active pixel image sensor array driven by large-area bilayer MoS2 transistor circuitry. Nat. Commun. 2021, 12, 3559. [Google Scholar] [CrossRef]
- Park, Y.; Ryu, B.; Ki, S.J.; McCracken, B.; Pennington, A.; Ward, K.R.; Liang, X.; Kurabayashi, K. Few-layer MoS2 photodetector arrays for ultrasensitive on-chip enzymatic colorimetric analysis. Acs Nano 2021, 15, 7722–7734. [Google Scholar] [CrossRef] [PubMed]
- Berhe, A.M.; As’ham, K.; Al-Ani, I.; Hattori, H.T.; Miroshnichenko, A.E. Strong coupling and catenary field enhancement in the hybrid plasmonic metamaterial cavity and TMDC monolayers. Opto-Electron. Adv. 2024, 7, 230181. [Google Scholar] [CrossRef]
- Berhe, A.M.; Odebowale, A.; As’Ham, K.; Hattori, H.T.; Miroshnichenko, A.E. Large Rabi splitting and Purcell factor in coupled Ag metamaterial cavity and MoS2 monolayer. In Proceedings of the 2024 24th International Conference on Transparent Optical Networks (ICTON), Bari, Italy, 14–18 July 2024; pp. 1–4. [Google Scholar]
- Miao, J.; Wang, C. Avalanche photodetectors based on two-dimensional layered materials. Nano Res. 2021, 14, 1878–1888. [Google Scholar] [CrossRef]
- Song, J.; Liang, Y.; Ding, F.; Ke, Y.; Li, Y.; Wang, Y.; Liu, X.; Liu, Z.; Lai, X.; Zhou, J.; et al. Te2-Regulated Black Arsenic Phosphorus Monocrystalline Film with Excellent Uniformity for High Performance Photodetection. J. Phys. Chem. Lett. 2025, 16, 826–834. [Google Scholar] [CrossRef]
- Wan, X.; Yu, Y.; Wang, X.; Liu, T.; Zhang, M.; Chen, E.; Chen, K.; Wang, S.; Shao, F.; Gu, X.; et al. Large-Area Black Phosphorus by Chemical Vapor Transport for Vertical and Lateral Memristor Devices. J. Phys. Chem. C 2024, 129, 526–534. [Google Scholar] [CrossRef]
- Zhang, H.; Shan, C.; Wu, K.; Pang, M.; Kong, Z.; Ye, J.; Li, W.; Yu, L.; Wang, Z.; Pak, Y.L.; et al. Modification Strategies and Prospects for Enhancing the Stability of Black Phosphorus. ChemPlusChem 2025, 90, e202400552. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yang, X.; Wang, N.; Wang, X.; Wang, J.; Zhu, G.; Feng, Q. Solution-Processable Large-Area Black Phosphorus/Reduced Graphene Oxide Schottky Junction for High-Temperature Broadband Photodetectors. Small 2024, 20, 2401289. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Hou, P. An asymmetric Schottky black phosphorus transistor for enhanced broadband photodetection and neuromorphic synaptic functionality. Appl. Phys. Lett. 2024, 125, 242104. [Google Scholar] [CrossRef]
- Chen, S.; Liang, Z.; Miao, J.; Yu, X.L.; Wang, S.; Zhang, Y.; Wang, H.; Wang, Y.; Cheng, C.; Long, G.; et al. Infrared optoelectronics in twisted black phosphorus. Nat. Commun. 2024, 15, 8834. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Chen, W.; Lai, J.; Li, F.; Qiao, H.; Liu, Y.; Huang, Z.; Qi, X. Heterogeneous Interface Engineering of 2D Black Phosphorus-Based Materials for Enhanced Photocatalytic Performance. Small 2025, 21, 2409735. [Google Scholar] [CrossRef]
- Lien, M.R.; Wang, N.; Guadagnini, S.; Wu, J.; Soibel, A.; Gunapala, S.D.; Wang, H.; Povinelli, M.L. Black Phosphorus Molybdenum Disulfide Midwave Infrared Photodiodes with Broadband Absorption-Increasing Metasurfaces. Nano Lett. 2023, 23, 9980–9987. [Google Scholar] [CrossRef]
- Hao, Y.; Hang, T.; Chen, C.; Zhang, C.; Chen, Y.; Yu, C.; Wu, S.; Yang, J.; Yang, Z.; Li, X.; et al. Anisotropic Coupling-Based 2D Material Dember Polarized Photodetectors. Adv. Funct. Mater. 2025, 35, 2416475. [Google Scholar] [CrossRef]
- Li, Q.; Fang, S.; Yang, X.; Yang, Z.; Li, Q.; Zhou, W.; Ren, D.; Sun, X.; Lu, J. Photodetector Based on Elemental Ferroelectric Black Phosphorus-like Bismuth. ACS Appl. Mater. Interfaces 2024, 16, 63786–63794. [Google Scholar] [CrossRef]
- Ogawa, S.; Fukushima, S.; Shimatani, M.; Iwakawa, M. Graphene/black phosphorus-based infrared metasurface absorbers with van der Waals Schottky junctions. J. Appl. Phys. 2024, 136, 193101. [Google Scholar] [CrossRef]
- Wang, S.; Chapman, R.J.; Johnson, B.C.; Krasnokutska, I.; Tambasco, J.L.J.; Messalea, K.; Peruzzo, A.; Bullock, J. Integration of black phosphorus photoconductors with lithium niobate on insulator photonics. Adv. Opt. Mater. 2023, 11, 2201688. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, X.; Li, L.; Wang, N.; Hao, R.; Zhou, Y.; Xu, H.; Li, Y.; Zhu, G.; Zhang, Z.; et al. Large-area black phosphorus/PtSe2 Schottky junction for high operating temperature broadband photodetectors. Small 2023, 19, 2206590. [Google Scholar] [CrossRef]
- Higashitarumizu, N.; Wang, S.; Wang, S.; Kim, H.; Bullock, J.; Javey, A. Black Phosphorus for Mid-Infrared Optoelectronics: Photophysics, Scalable Processing, and Device Applications. Nano Lett. 2024, 24, 13107–13117. [Google Scholar] [CrossRef]
- Zhu, X.; Cai, Z.; Wu, Q.; Wu, J.; Liu, S.; Chen, X.; Zhao, Q. 2D Black Phosphorus Infrared Photodetectors. Laser Photonics Rev. 2025, 19, 2400703. [Google Scholar] [CrossRef]
- Tian, R.; Gan, X.; Li, C.; Chen, X.; Hu, S.; Gu, L.; Van Thourhout, D.; Castellanos-Gomez, A.; Sun, Z.; Zhao, J. Chip-integrated van der Waals PN heterojunction photodetector with low dark current and high responsivity. Light. Sci. Appl. 2022, 11, 101. [Google Scholar] [CrossRef]
- Chen, X.; Lu, X.; Deng, B.; Sinai, O.; Shao, Y.; Li, C.; Yuan, S.; Tran, V.; Watanabe, K.; Taniguchi, T.; et al. Widely tunable black phosphorus mid-infrared photodetector. Nat. Commun. 2017, 8, 1672. [Google Scholar] [CrossRef]
- Zhou, S.; Jiang, C.; Han, J.; Mu, Y.; Gong, J.R.; Zhang, J. High-Performance Self-Powered PEC Photodetectors Based on 2D BiVO4/MXene Schottky Junction. Adv. Funct. Mater. 2025, 35, 2416922. [Google Scholar] [CrossRef]
- Ding, Y.; Xu, X.; Zhuang, Z.; Sang, Y.; Cui, M.; Li, W.; Yan, Y.; Tao, T.; Xu, W.; Ren, F.; et al. Self-powered MXene/GaN van der Waals Schottky ultraviolet photodetectors with exceptional responsivity and stability. Appl. Phys. Rev. 2024, 11, 041413. [Google Scholar] [CrossRef]
- Rhyu, H.; Shin, J.H.; Kang, M.H.; Song, W.; Lee, S.S.; Lim, J.; Myung, S. Rapid and Scalable Synthesis of In2O3-Decorated MXene Nanosheets for High-Performance Flexible Broadband Photodetectors. Adv. Mater. Interfaces 2024, 11, 2400545. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, S.; Zhang, J.; Wei, S.; Chen, Y.; Zhang, Y.; Zheng, W.; Huang, Z.; Du, B.; Xie, Z.; et al. Emerging Application of High-Entropy MXene in Efficient Photoelectrochemical-Type Photodetectors and Wideband Mode Lockers. Laser Photonics Rev. 2024, 18, 2400082. [Google Scholar] [CrossRef]
- Hu, C.; Wei, Z.; Li, L.; Shen, G. Strategy Toward Semiconducting Ti3C2Tx-MXene: Phenylsulfonic Acid Groups Modified Ti3C2Tx as Photosensitive Material for Flexible Visual Sensory-Neuromorphic System. Adv. Funct. Mater. 2023, 33, 2302188. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, J.; Wang, S.; Geng, Y.; Zhang, J.; Liu, D.; Li, M.; Zhang, H.; Geng, H.; Tang, Z. Facile construction of MXene/Ge van der Waals Schottky junction with Al2O3 interfacial layer for high performance photodetection. Diam. Relat. Mater. 2023, 140, 110442. [Google Scholar] [CrossRef]
- Ghosh, K.; Giri, P. Experimental and theoretical study on the role of 2D Ti3C2Tx MXenes on superior charge transport and ultra-broadband photodetection in MXene/Bi2S3 nanorod composite through local Schottky junctions. Carbon 2024, 216, 118515. [Google Scholar] [CrossRef]
- Li, L.; He, Y.; Lin, T.; Jiang, H.; Li, Y.; Lin, T.; Zhou, C.; Li, G.; Wang, W. MXene/AlGaN van der Waals heterojunction self-powered photodetectors for deep ultraviolet communication. Appl. Phys. Lett. 2024, 124, 132105. [Google Scholar] [CrossRef]
- Xiong, G.; Zhang, G.; Yang, X.; Feng, W. MXene-Germanium Schottky Heterostructures for Ultrafast Broadband Self-Driven Photodetectors. Adv. Electron. Mater. 2022, 8, 2200620. [Google Scholar] [CrossRef]
- Zheng, T.; Wang, W.; Du, Q.; Wan, X.; Jiang, Y.; Yu, P. 2D Ti3C2-MXene nanosheets/ZnO nanorods for UV photodetectors. ACS Appl. Nano Mater. 2024, 7, 3050–3058. [Google Scholar] [CrossRef]
- Nandi, S.; Ghosh, K.; Meyyappan, M.; Giri, P. 2D MXene Electrode-Enabled High-Performance Broadband Photodetector Based on a CVD-Grown 2D Bi2Se3 Ultrathin Film on Silicon. ACS Appl. Electron. Mater. 2023, 5, 6985–6995. [Google Scholar] [CrossRef]
- Wang, M.; Chen, J.; Liu, F.; Shi, W.; Xie, Y.; Yang, B.; Zhang, Y. A polarization-sensitive, high on/off ratio and self-powered photodetector based on Nb2CTx and Nd2CTx@ MoS2. Nanotechnology 2024, 35, 155704. [Google Scholar] [CrossRef]
- Li, L.; Shen, G. MXene based flexible photodetectors: Progress, challenges, and opportunities. Mater. Horizons 2023, 10, 5457–5473. [Google Scholar] [CrossRef]
- Hao, Q.; Chen, L.; Wang, W.; Li, G. Modulate the work function of MXene in MXene/InGaN heterojunction for visible light photodetector. Appl. Phys. Lett. 2024, 125, 012106. [Google Scholar] [CrossRef]
- Rhyu, H.; Park, C.; Jo, S.; Kang, M.H.; Song, W.; Lee, S.S.; Lim, J.; Myung, S. Stretchable Ag2S–MXene Photodetector Designed for Enhanced Electrical Durability and High Sensitivity. ACS Appl. Mater. Interfaces 2025, 17, 6568–6576. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.C.; Wang, L.; Zhu, L.; Wang, Z.L. Highly Sensitive Photoelectric Detection and Imaging Enhanced by the Pyro-Phototronic Effect Based on a Photoinduced Dynamic Schottky Effect in 4H–SiC. Adv. Mater. 2022, 34, 2204363. [Google Scholar] [CrossRef]
- Ali, A.; Wang, C.; Cai, J.; Karki, K.J. Probing Silicon Carbide with Phase-Modulated Femtosecond Laser Pulses. arXiv 2023, arXiv:abs/2310.16315. [Google Scholar]
- Koller, P.; Astner, T.; Tissot, B.; Burkard, G.; Trupke, M. Strain-enabled control of the vanadium qudit in silicon carbide. arXiv 2025, arXiv:abs/2501.05896. [Google Scholar] [CrossRef]
- Altaleb, S.; Patil, C.; Jahannia, B.; Asadizanjani, N.; Heidari, E.; Dalir, H. Photodetector for mid-infrared applications using few-layer vanadium carbide MXene. In Proceedings of the SPIE OPTO, San Francisco, CA, USA., 27 January–1 February 2024. [Google Scholar] [CrossRef]
- Roy, A.; Mondal, D.; Jana, D. First-Principles Calculations of Group-IV Carbide Quantum Dots and Single-Layer Heterojunctions with Optical Activity and Short-Wave Infrared Emission for Efficient Gas Sensing. ACS Appl. Nano Mater. 2025, 8, 1852–1864. [Google Scholar] [CrossRef]
- Remeš, Z.; Stuchlík, J.; Kupčík, J.; Babčenko, O. Thin Hydrogenated Amorphous Silicon Carbide Layers with Embedded Ge Nanocrystals. Nanomaterials 2025, 15, 176. [Google Scholar] [CrossRef]
- Yang, Q.; Hu, J.; Li, H.e.a. Yang, Q.; Hu, J.; Li, H.; Du, Q.; Feng, S.; Yang, D.; Zhang, Y.; Shen, J. All-Optical Modulation Photodetectors Based on the CdS/Graphene/Ge Sandwich Structures. Adv. Sci. 2025, 12, 2413662. [Google Scholar] [CrossRef]
- Zhang, X.; Li, M.; Wang, H.; Liu, S.; Zeng, L. Recent advances in two-dimensional graphitic carbon nitride based photodetectors. Mater. Des. 2023, 242, 112405. [Google Scholar] [CrossRef]
- Li, Y.; Du, H. Engineering graphitic carbon nitride for next-generation photodetectors. RSC Adv. 2023, 13, 19763–19772. [Google Scholar] [CrossRef]
- Lionas, V.; Velessiotis, D.; Pilatos, G.; Speliotis, T.; Giannakopoulos, K.; Kyriakis, A.; Skarlatos, D.; Glezos, N. Photodetectors based on chemical vapor deposition or liquid processed multi-wall carbon nanotubes. Opt. Mater. 2023, 143, 114283. [Google Scholar] [CrossRef]
- Woo, S.; Yeon, E.; Ryu, H.a.; Han, J.a.; Jang, H.W.; Jung, D.; Choi, W.J. High Detectivity Dual-Band Infrared Photodetectors with Dislocation-Assisted Photoconductive Gain via Hetero-Epitaxial Growth. Adv. Funct. Mater. 2025, 35, 2419329. [Google Scholar] [CrossRef]
- Liu, J.; Wang, H.; Li, X.; Chen, H.; Zhang, Z.; Pan, W.; Luo, G.; Yuan, C.; Ren, Y.; Lei, W. High performance visible photodetectors based on thin two-dimensional Bi2Te3 nanoplates. J. Alloys Compd. 2019, 798, 656–664. [Google Scholar] [CrossRef]
- Liu, J.; Chen, H.; Li, X.; Wang, H.; Zhang, Z.; Pan, W.; Yuan, G.; Yuan, C.; Ren, Y.; Lei, W. Ultra-fast and high flexibility near-infrared photodetectors based on Bi2Se3 nanobelts grown via catalyst-free van der Waals epitaxy. J. Alloys Compd. 2020, 818, 152819. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, S.; Wu, X.; Luo, H.; Liu, J.; Mu, Z.; Liu, R.; Yuan, G.; Liang, Y.; Tan, J.; et al. Bi2O2Se nanoplates for broadband photodetector and full-color imaging applications. Nano Res. 2023, 16, 7638–7645. [Google Scholar] [CrossRef]
- Dun, C.; Hewitt, C.A.; Li, Q.; Guo, Y.; Jiang, Q.; Xu, J.; Marcus, G.; Schall, D.C.; Carrol, D.L. Self-Assembled Heterostructures: Selective Growth of Metallic Nanoparticles on V-2-VI3 Nanoplates. Adv. Mater. 2017, 29, 1702968. [Google Scholar] [CrossRef]
- Zhang, S.; Luo, H.; Wang, H.; Liu, J.; Suvorova, A.; Ren, Y.; Yuan, C.; Lei, W. Controlled growth of Sb2Te3 nanoplates and their applications in ultrafast near-infrared photodetection. Opt. Mater. 2024, 150, 115220. [Google Scholar] [CrossRef]
- Singh, S.; Kim, S.; Jeon, W.; Dhakal, K.P.; Kim, J.; Baik, S. Graphene grain size-dependent synthesis of single-crystalline Sb2Te3 nanoplates and the interfacial thermal transport analysis by Raman thermometry. Carbon 2019, 153, 164–172. [Google Scholar] [CrossRef]
- Dong, G.; Zhu, Y.; Chen, L. Microwave-assisted rapid synthesis of Sb2Te3 nanosheets and thermoelectric properties of bulk samples prepared by spark plasma sintering. J. Mater. Chem. 2010, 20, 1976–1981. [Google Scholar] [CrossRef]
- Yang, H.; Wang, X.; Wu, H.; Zhang, B.; Xie, D.; Chen, Y.; Lu, X.; Han, X.; Miao, L.; Zhou, X. Sn vacancy engineering for enhancing the thermoelectric performance of two-dimensional SnS. J. Mater. Chem. C 2019, 7, 3351–3359. [Google Scholar] [CrossRef]
- Parenteau, M.; Carlone, C. Influence of Temperature and Pressure on the Electronic-Transitions in SnS and SnSe Semiconductors. Phys. Rev. B 1990, 41, 5227–5234. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, S.; Zhang, T.; Liu, J.; Zhang, Z.; Yuan, G.; Liang, Y.; Tan, J.; Ren, Y.; Lei, W. SnSe Nanoplates for Photodetectors with a High Signal/Noise Ratio. ACS Appl. Nano Mater. 2021, 4, 13071–13078. [Google Scholar] [CrossRef]
- Li, Z.; Shao, S.; Li, N.; McCall, K.; Wang, J.; Zhang, S.X. Single Crystalline Nanostructures of Topological Crystalline Insulator SnTe with Distinct Facets and Morphologies. Nano Lett. 2013, 13, 5443–5448. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yu, W.; Pan, Z.; Yu, Q.; Yin, Q.; Guo, L.; Zhao, Y.; Sun, T.; Bao, Q.; Zhang, K. Ultra-Broadband Flexible Photodetector Based on Topological Crystalline Insulator SnTe with High Responsivity. Small 2018, 14, 1802598. [Google Scholar] [CrossRef]
- Liu, J.; Li, X.; Wang, H.; Yuan, G.; Suvorova, A.; Gain, S.; Ren, Y.; Lei, W. Ultrathin High-Quality SnTe Nanoplates for Fabricating Flexible Near-Infrared Photodetectors. ACS Appl. Mater. Interfaces 2020, 12, 31810–31822. [Google Scholar] [CrossRef] [PubMed]
- Xia, F.; Mueller, T.; Lin, Y.M.; Valdes-Garcia, A.; Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 2009, 4, 839–843. [Google Scholar] [CrossRef]
- Pospischil, A.; Furchi, M.M.; Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nat. Nanotechnol. 2014, 9, 257–261. [Google Scholar] [CrossRef]
- Youngblood, N.; Chen, C.; Koester, S.J.; Li, M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photonics 2015, 9, 247–252. [Google Scholar] [CrossRef]
- Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T.P.; Ramalingam, G.; Raghavan, S.; Ghosh, A. Graphene–MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 2013, 8, 826–830. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Liu, C.; Tan, H.; Yuan, J.; Fan, Z.; Wan, J.; Yu, W.W. Hybrid graphene–perovskite phototransistors with ultrahigh responsivity and gain. Adv. Mater. 2017, 29, 1700007. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, C.; Li, L.; Zhang, X.; Jiang, Y.; Cai, Z.; Lin, L.; Ni, Z.; Gu, X.; Ostrikov, K.K.; et al. Fast and broadband MoS2 photodetectors by coupling WO3--x semi-metal nanoparticles underneath. J. Mater. Sci. Technol. 2024, 193, 217–225. [Google Scholar] [CrossRef]
- Aleithan, S.H.; Younis, U.; Alhashem, Z.; Ahmad, W. Graphene electrode-enhanced InSe/WSe2 van der Waals heterostructure for high-performance broadband photodetector with imaging capabilities. J. Alloys Compd. 2024, 1006, 176356. [Google Scholar] [CrossRef]
- Zheng, Y.; Xu, Z.; Shi, K.; Li, J.; Fang, X.; Jiang, Z.; Chu, X. A high-performance WS2/ZnO QD heterojunction photodetector with charge and energy transfer. J. Mater. Chem. C 2024, 12, 18291–18299. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, X.; Jia, R.; Lin, Y.; Guo, T.; Wu, L.; Hu, X.; Zhao, T.; Yan, D.; Chen, Z.; et al. High-sensitivity hybrid MoSe 2/AgInGaS quantum dot heterojunction photodetector. RSC Adv. 2024, 14, 1962–1969. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, S.; Zhu, L.; Zheng, T.; Li, L.; Deng, Q.; Pan, Z.; Jiang, M.; Yang, Y.; Lin, Y.; et al. Ultrafast, broadband and polarization-sensitive photodetector enabled by MoTe2/Ta2NiSe5/MoTe2 van der Waals dual heterojunction. Sci. China Mater. 2024, 67, 2182–2192. [Google Scholar] [CrossRef]
- Mueller, F.X.T.; Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics 2010, 4, 297–301. [CrossRef]
- Abbas, K.; Ji, P.; Ullah, N.; Shafique, S.; Zhang, Z.; Ameer, M.F.; Qin, S.; Yang, S. Graphene photodetectors integrated with silicon and perovskite quantum dots. Microsyst. Nanoeng. 2024, 10, 81. [Google Scholar] [CrossRef] [PubMed]
- Rani, A.; Verma, A.; Yadav, B.C. Advancements in transition metal dichalcogenides (TMDCs) for self-powered photodetectors: Challenges, properties, and functionalization strategies. Mater. Adv. 2024, 5, 3535–3562. [Google Scholar] [CrossRef]
- Aleithan, S.H.; Ahmad, W. MXene Photodetectors: From Materials Engineering to Versatile Optoelectronic Applications. Mater. Today Energy 2025, 51, 101906. [Google Scholar] [CrossRef]
- Maity, S.; Sarkar, K.; Kumar, P. A progressive journey into 2D-chalcogenide/carbide/nitride-based broadband photodetectors: Recent developments and future perspectives. J. Mater. Chem. C 2021, 9, 14532–14572. [Google Scholar] [CrossRef]
- Hao, Q.; Ma, H.; Xing, X.; Tang, X.; Wei, Z.; Zhao, X.; Chen, M. Mercury chalcogenide colloidal quantum dots for infrared photodetectors. Materials 2023, 16, 7321. [Google Scholar] [CrossRef]
Mechanism | Driving Principle | Required Bias? | Key Advantage | Limitation | Typical Application |
---|---|---|---|---|---|
Photovoltaic Effect | Internal electric field | No | Low power, fast response | Limited to built-in field zones | PN junction devices |
Photothermoelectric Effect | Temperature gradient (Seebeck) | No | Thermopower-based detection | Requires asymmetry, slower | THz/MIR sensors |
Photoconductive Mechanism | Light-induced carrier generation | Yes | High gain, tunable | Requires bias, more noise | Visible/NIR photodetectors |
Bolometric Effect | Resistance change due to heating | Yes | Sensitive in IR | Slow response | IR thermal detectors |
Carrier Trapping/Photogating | Long-lived trapped carriers | Yes | Very high responsivity | Slow switching speed | Low-light imaging |
Heterostructures Effect | Built-in fields at interfaces | Depends | Efficient separation, tunability | Complex fabrication | Broadband sensors |
Plasmon-Enhanced Effect | Local field enhancement | Depends | Boosted absorption/sensitivity | Complexity, limited bandwidth | Ultra-sensitive detectors |
Material | Spectral Range | Responsivity (A/W) | Detectivity (Jones) | Response Time (ms) | Reference |
---|---|---|---|---|---|
Graphene on SOS slot waveguide | MWIR (3–5 m) | 0.21–0.26 | − | − | [9] |
Graphene with ChG waveguide | 2.0–2.55 m | − | [33] | ||
MoS2 | Visible (660 nm) | 880 | 50 | [39] | |
Te2-regulated black AsP | 2–8 m | 0.1–10 | – | [53] | |
BP and Reduced GO | 532–2200 nm | 12 | – | [56] | |
BP with asymmetric AU | 405–1064 nm | 34 | – | [57] | |
BP with asymmetric AU | 2200 nm | 20 | – | [57] | |
BP and MoS2 | 3–5 m | – | – | [60] | |
BP in nanowire | – | 802.42 | – | [61] | |
Monolayer BP-Bi | Visible–NIR | 0.133 (ferroelectric direction) | – | – | [62] |
Monolayer BP-Bi | Visible–NIR | 0.0047 (Zigzag direction) | – | – | [62] |
BP with lithium niobate | 1550 nm | 0.148 | – | – | [64] |
BP and PtSe2 | 532–2200 nm | 25 at 1850 nm | at 1850 nm | – | [65] |
p-type BP and n-type MoTe2 | 1500–1630 nm | 0.577 (intrinsic), 0.709 (electrostatically tuned) | – | [68] | |
BP | 3.7–7.7 m | 0.518–0.0022 | – | – | [69] |
2D BiVO4/MXene (Ti3C2Tx) | 447 nm | 0.79 | – | 8 (rise) and 14 (fall) | [70] |
MXene/GaN | UV | 0.6816 at 360 nm | – | [71] | |
In2O3-decorated MXene nanosheets | UV–NIR | 121.6 | – | [72] | |
Phenylsulfonic acid groups modified MXene | 1064 nm | 850 | – | [74] | |
MXene/Ge with Al2O3 interfacial layer | – | 0.665 | 0.0735 (rise) and 0.0815 (fall) | [75] | |
MXene/Bi2S3 nanorod composite | 300–1550 nm | 36.7 at 300 nm and 26.2 at 780 nm | – | 0.3 | [76] |
Nb2CTx MXene/AlGaN | 254 nm | 0.101 | – | 21 (rise) and 22 (fall) | [77] |
MXene/n-type Ge | UV–NIR | 3.14 | 0.0014 (rise) and 0.0041 (fall) | [78] | |
MXene nanosheets/ZnO nanorods | 368 nm | 0.1422 | 12200 (rise) and 3900 (fall) | [79] | |
MXene/CVD-grown Bi2Se3 | 300–1550 nm | 6.96 at 808 nm and 7.56 at 980 nm | at 808 nm and at 980 nm | 0.0197 (rise) and 0.0352 (fall) | [80] |
Nb2CTx and Nd2CT X at MoS2 | Vis–NIR | – | – | [81] | |
MXene/InGaN | Visible | 0.133 | 0.03749 (rise) and 0.11 (fall) | [83] | |
N-doped 4H–SiC | UV | – | 270 | [85] | |
TaC:Cu alloy on 4H-SiC substrate | 405 nm | 1.66 | – | [2] | |
MoS2/W-MoS2 | Visible–NIR | [114] | |||
InSe/WSe2 vdW | 532–1100 nm | [115] | |||
WS2/ZnO-QD | UV–visible | [116] | |||
MoSe2/AIGS-QDs | Visible–NIR | − | [117] | ||
MoTe2/Ta2NiSe5 dual HJ | 400–1550 nm | [118] | |||
Bi2Te3 nanoplates | 850 nm | − | [96] | ||
Bi2Se3 nanobelts | 735 nm | [97] | |||
Bi2O2Se nanoplates | 400 nm | 523 | − | [98] | |
Sb2Te3 nanoplates | 400–980 nm (max at 850 nm) | [100] | |||
SnSe nanoplates | 400 nm | − | − | [105] | |
SnTe nanoplates | 980 nm | − | − | [108] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Odebowale, A.A.; Berhe, A.M.; Somaweera, D.; Wang, H.; Lei, W.; Miroshnichenko, A.E.; Hattori, H.T. Advances in 2D Photodetectors: Materials, Mechanisms, and Applications. Micromachines 2025, 16, 776. https://doi.org/10.3390/mi16070776
Odebowale AA, Berhe AM, Somaweera D, Wang H, Lei W, Miroshnichenko AE, Hattori HT. Advances in 2D Photodetectors: Materials, Mechanisms, and Applications. Micromachines. 2025; 16(7):776. https://doi.org/10.3390/mi16070776
Chicago/Turabian StyleOdebowale, Ambali Alade, Andergachew Mekonnen Berhe, Dinelka Somaweera, Han Wang, Wen Lei, Andrey E. Miroshnichenko, and Haroldo T. Hattori. 2025. "Advances in 2D Photodetectors: Materials, Mechanisms, and Applications" Micromachines 16, no. 7: 776. https://doi.org/10.3390/mi16070776
APA StyleOdebowale, A. A., Berhe, A. M., Somaweera, D., Wang, H., Lei, W., Miroshnichenko, A. E., & Hattori, H. T. (2025). Advances in 2D Photodetectors: Materials, Mechanisms, and Applications. Micromachines, 16(7), 776. https://doi.org/10.3390/mi16070776