Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,630)

Search Parameters:
Keywords = transient voltage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2076 KiB  
Article
Detection and Classification of Power Quality Disturbances Based on Improved Adaptive S-Transform and Random Forest
by Dongdong Yang, Shixuan Lü, Junming Wei, Lijun Zheng and Yunguang Gao
Energies 2025, 18(15), 4088; https://doi.org/10.3390/en18154088 (registering DOI) - 1 Aug 2025
Abstract
The increasing penetration of renewable energy into power systems has intensified transient power quality (PQ) disturbances, demanding efficient detection and classification methods to enable timely operational decisions. This paper introduces a hybrid framework combining an Improved Adaptive S-Transform (IAST) with a Random Forest [...] Read more.
The increasing penetration of renewable energy into power systems has intensified transient power quality (PQ) disturbances, demanding efficient detection and classification methods to enable timely operational decisions. This paper introduces a hybrid framework combining an Improved Adaptive S-Transform (IAST) with a Random Forest (RF) classifier to address these challenges. The IAST employs a globally adaptive Gaussian window as its kernel function, which automatically adjusts window length and spectral resolution based on real-time frequency characteristics, thereby enhancing time–frequency localization accuracy while reducing algorithmic complexity. To optimize computational efficiency, window parameters are determined through an energy concentration maximization criterion, enabling rapid extraction of discriminative features from diverse PQ disturbances (e.g., voltage sags and transient interruptions). These features are then fed into an RF classifier, which simultaneously mitigates model variance and bias, achieving robust classification. Experimental results show that the proposed IAST–RF method achieves a classification accuracy of 99.73%, demonstrating its potential for real-time PQ monitoring in modern grids with high renewable energy penetration. Full article
Show Figures

Figure 1

12 pages, 5365 KiB  
Article
A 100 MHz 3 dB Bandwidth, 30 V Rail-to-Rail Class-AB Buffer Amplifier for Base Station ET-PA Hybrid Supply Modulator
by Min-Ju Kim, Donghwi Kang, Gyujin Choi, Seong-Jun Youn and Ji-Seon Paek
Electronics 2025, 14(15), 3036; https://doi.org/10.3390/electronics14153036 - 30 Jul 2025
Abstract
This paper presents the first hybrid supply modulator (HSM) designed for envelope tracking power amplifiers (ET-PAs) in base station applications. The focus is on a rail-to-rail Class-AB linear amplifier (LA) optimized for high-voltage and wide-bandwidth operation. The LA is designed using 130 nm [...] Read more.
This paper presents the first hybrid supply modulator (HSM) designed for envelope tracking power amplifiers (ET-PAs) in base station applications. The focus is on a rail-to-rail Class-AB linear amplifier (LA) optimized for high-voltage and wide-bandwidth operation. The LA is designed using 130 nm BCD technology, utilizing Laterally Diffused Metal-Oxide Semiconductor (LDMOS) transistors for high-voltage operation and incorporating shielding MOSFETs to protect the low-voltage devices. The circuit utilizes dual power supply domains (5 V and 30 V) to improve power efficiency. The proposed LA achieves a bandwidth of 100 MHz and a slew rate of +1003/−852 V/μs, with a quiescent power consumption of 0.89 W. Transient simulations using a 50 MHz bandwidth 5G NR envelope input demonstrate that the proposed HSM achieves a power efficiency of 83%. Consequently, the proposed HSM supports high-output (100 W) wideband 5G NR transmission with enhanced efficiency. Full article
(This article belongs to the Special Issue Analog/Mixed Signal Integrated Circuit Design)
Show Figures

Figure 1

22 pages, 10412 KiB  
Article
Design and Evaluation of Radiation-Tolerant 2:1 CMOS Multiplexers in 32 nm Technology Node: Transistor-Level Mitigation Strategies and Performance Trade-Offs
by Ana Flávia D. Reis, Bernardo B. Sandoval, Cristina Meinhardt and Rafael B. Schvittz
Electronics 2025, 14(15), 3010; https://doi.org/10.3390/electronics14153010 - 28 Jul 2025
Viewed by 222
Abstract
In advanced Complementary Metal-Oxide-Semiconductor (CMOS) technologies, where diminished feature sizes amplify radiation-induced soft errors, the optimization of fault-tolerant circuit designs requires detailed transistor-level analysis of reliability–performance trade-offs. As a fundamental building block in digital systems and critical data paths, the 2:1 multiplexer, widely [...] Read more.
In advanced Complementary Metal-Oxide-Semiconductor (CMOS) technologies, where diminished feature sizes amplify radiation-induced soft errors, the optimization of fault-tolerant circuit designs requires detailed transistor-level analysis of reliability–performance trade-offs. As a fundamental building block in digital systems and critical data paths, the 2:1 multiplexer, widely used in data-path routing, clock networks, and reconfigurable systems, provides a critical benchmark for assessing radiation-hardened design methodologies. In this context, this work aims to analyze the power consumption, area overhead, and delay of 2:1 multiplexer designs under transient fault conditions, employing the CMOS and Differential Cascode Voltage Switch Logic (DCVSL) logic styles and mitigation strategies. Electrical simulations were conducted using 32 nm high-performance predictive technology, evaluating both the original circuit versions and modified variants incorporating three mitigation strategies: transistor sizing, D-Cells, and C-Elements. Key metrics, including power consumption, delay, area, and radiation robustness, were analyzed. The C-Element and transistor sizing techniques ensure satisfactory robustness for all the circuits analyzed, with a significant impact on delay, power consumption, and area. Although the D-Cell technique alone provides significant improvements, it is not enough to achieve adequate levels of robustness. Full article
Show Figures

Figure 1

20 pages, 3844 KiB  
Article
Study on the Fast Transient Process of Primary Equipment Operation in UHV Fixed Series Capacitors Based on PEEC Method
by Baojiang Tian, Kai Xu, Yingying Wang, Pei Guo, Chao Xiao, Wei Han, Yiran Dong and Jingang Wang
Sensors 2025, 25(15), 4662; https://doi.org/10.3390/s25154662 - 27 Jul 2025
Viewed by 294
Abstract
This manuscript proposes a fast transient simulation method based on PEEC to model overvoltage caused by spark gap and disconnecting switch operations in UHV series compensation (FSC). It proposes a simulation method based on the Partial Element Equivalent Circuit (PEEC) for modeling the [...] Read more.
This manuscript proposes a fast transient simulation method based on PEEC to model overvoltage caused by spark gap and disconnecting switch operations in UHV series compensation (FSC). It proposes a simulation method based on the Partial Element Equivalent Circuit (PEEC) for modeling the fast transient processes associated with the operation of primary equipment in UHV FSC. Initially, a multi-conductor system model for both primary and secondary equipment on the cascade platform is developed. Then, the lumped components′ modeling of primary equipment and secondary equipment is added on the basis of multi-conductor model. Through simulation, the rapid transient overvoltage of primary equipment and the electromagnetic disturbance of the secondary system are analyzed. The simulation results provide insights into the distribution of fast transient overvoltage and the transient electromagnetic disturbance along the bus, from the low-voltage bus to the high-potential platform, under various primary equipment operating conditions. These findings provide a basis for theoretical analysis of the layout of sensor devices on platform and the design of electromagnetic shielding for interference-prone systems on platform. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

21 pages, 3892 KiB  
Article
Quantitative Analysis of the Fault Ride-Through Current and Control Parameters in Hybrid Modular Multilevel Converters
by Yi Xu and Bowen Tang
Appl. Sci. 2025, 15(15), 8331; https://doi.org/10.3390/app15158331 - 26 Jul 2025
Viewed by 206
Abstract
A quantitative analysis of the fault transient is critical for system resilience assessment and protection coordination. Focusing on hybrid modular multilevel converter (MMC)-based HVDC architecture with enhanced fault ride-through (FRT) capability, this study develops a mathematical calculation framework to quantify how controller configurations [...] Read more.
A quantitative analysis of the fault transient is critical for system resilience assessment and protection coordination. Focusing on hybrid modular multilevel converter (MMC)-based HVDC architecture with enhanced fault ride-through (FRT) capability, this study develops a mathematical calculation framework to quantify how controller configurations influence fault current profiles. Unlike conventional static topologies (e.g., RLC or fixed-voltage RL circuits), the proposed model integrates an RL network with a time-variant controlled voltage source, which can emulate closed-loop control response during the FRT transient. Then, the quantitative relationship is established to map the parameters of DC controllers to the fault current across diverse FRT strategies, including scenarios where control saturation dominates the transient response. Simulation studies conducted on a two-terminal MMC-HVDC architecture substantiate the efficacy and precision of the developed methodology. The proposed method enables the evaluation of DC fault behavior for hybrid MMCs, concurrently appraising FRT control strategies. Full article
(This article belongs to the Special Issue Power Electronics: Control and Applications)
Show Figures

Figure 1

20 pages, 5404 KiB  
Article
Adaptive Transient Synchronization Support Strategy for Grid-Forming Energy Storage Facing Inverter Faults
by Chao Xing, Jiajie Xiao, Peiqiang Li, Xinze Xi, Yunhe Chen and Qi Guo
Electronics 2025, 14(15), 2980; https://doi.org/10.3390/electronics14152980 - 26 Jul 2025
Viewed by 220
Abstract
Aiming at the transient synchronization instability problem of grid-forming energy storage under a fault in the grid-connected inverter, this paper proposes an adaptive transient synchronization support strategy for grid-forming energy storage facing inverter faults. First, the equal area rule is employed to analyze [...] Read more.
Aiming at the transient synchronization instability problem of grid-forming energy storage under a fault in the grid-connected inverter, this paper proposes an adaptive transient synchronization support strategy for grid-forming energy storage facing inverter faults. First, the equal area rule is employed to analyze the transient response mechanism of the grid-forming energy storage grid-connected inverter under faults, revealing the negative coupling relationship between active power output and transient stability, as well as the positive coupling relationship between reactive power output and transient stability. Based on this, through the analysis of the dynamic characteristics of the fault overcurrent, the negative correlation between the fault inrush current and impedance and the positive correlations among the fault steady-state current, active power, and voltage at the point of common coupling are identified. Then, a variable proportional–integral controller is designed to adaptively correct the active power reference value command, and the active power during the fault is gradually restored via the frequency feedback mechanism. Meanwhile, the reactive power reference value is dynamically adjusted according to the voltage at the point of common coupling to effectively support the voltage. Finally, the effectiveness of the proposed strategy is verified in MATLAB/Simulink. Full article
(This article belongs to the Special Issue Energy Saving Management Systems: Challenges and Applications)
Show Figures

Figure 1

22 pages, 7102 KiB  
Article
Electrolytic Plasma Hardening of 20GL Steel: Thermal Modeling and Experimental Characterization of Surface Modification
by Bauyrzhan Rakhadilov, Rinat Kurmangaliyev, Yerzhan Shayakhmetov, Rinat Kussainov, Almasbek Maulit and Nurlat Kadyrbolat
Appl. Sci. 2025, 15(15), 8288; https://doi.org/10.3390/app15158288 - 25 Jul 2025
Viewed by 94
Abstract
This study investigates the thermal response and surface modification of low-carbon manganese-alloyed 20GL steel during electrolytic plasma hardening. The objective was to evaluate the feasibility of surface hardening 20GL steel—traditionally considered difficult to quench—by combining high-rate surface heating with rapid cooling in an [...] Read more.
This study investigates the thermal response and surface modification of low-carbon manganese-alloyed 20GL steel during electrolytic plasma hardening. The objective was to evaluate the feasibility of surface hardening 20GL steel—traditionally considered difficult to quench—by combining high-rate surface heating with rapid cooling in an electrolyte medium. To achieve this, a transient two-dimensional heat conduction model was developed to simulate temperature evolution in the steel sample under three voltage regimes. The model accounted for dynamic thermal properties and non-linear boundary conditions, focusing on temperature gradients across the thickness. Experimental temperature measurements were obtained using a K-type thermocouple embedded at a depth of 2 mm, with corrections for sensor inertia based on exponential response behavior. A comparison between simulation and experiment was conducted, focusing on peak temperatures, heating and cooling rates, and the effective thermal penetration depth. Microhardness profiling and metallographic examination confirmed surface strengthening and structural refinement, which intensified with increasing voltage. Importantly, the study identified a critical cooling rate threshold of approximately 50 °C/s required to initiate martensitic transformation in 20GL steel. These findings provide a foundation for future optimization of quenching strategies for low-carbon steels by offering insight into the interplay between thermal fluxes, surface kinetics, and process parameters. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

21 pages, 2568 KiB  
Article
Research on the Data-Driven Identification of Control Parameters for Voltage Ride-Through in Energy Storage Systems
by Liming Bo, Jiangtao Wang, Xu Zhang, Yimeng Su, Xueting Cheng, Zhixuan Zhang, Shenbing Ma, Jiyu Wang and Xiaoyu Fang
Appl. Sci. 2025, 15(15), 8249; https://doi.org/10.3390/app15158249 - 24 Jul 2025
Viewed by 200
Abstract
The large-scale integration of wind power, photovoltaic systems, and energy storage systems (ESSs) into power grids has increasingly influenced the transient stability of power systems due to their dynamic response characteristics. Considering the commercial confidentiality of core control parameters from equipment manufacturers, parameter [...] Read more.
The large-scale integration of wind power, photovoltaic systems, and energy storage systems (ESSs) into power grids has increasingly influenced the transient stability of power systems due to their dynamic response characteristics. Considering the commercial confidentiality of core control parameters from equipment manufacturers, parameter identification has become a crucial approach for analyzing ESS dynamic behaviors during high-voltage ride-through (HVRT) and low-voltage ride-through (LVRT) and for optimizing control strategies. In this study, we present a multidimensional feature-integrated parameter identification framework for ESSs, combining a multi-scenario voltage disturbance testing environment built on a real-time laboratory platform with field-measured data and enhanced optimization algorithms. Focusing on the control characteristics of energy storage converters, a non-intrusive identification method for grid-connected control parameters is proposed based on dynamic trajectory feature extraction and a hybrid optimization algorithm that integrates an improved particle swarm optimization (PSO) algorithm with gradient-based coordination. The results demonstrate that the proposed approach effectively captures the dynamic coupling mechanisms of ESSs under dual-mode operation (charging and discharging) and voltage fluctuations. By relying on measured data for parameter inversion, the method circumvents the limitations posed by commercial confidentiality, providing a novel technical pathway to enhance the fault ride-through (FRT) performance of energy storage systems (ESSs). In addition, the developed simulation verification framework serves as a valuable tool for security analysis in power systems with high renewable energy penetration. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

12 pages, 1311 KiB  
Review
Modulation of Voltage-Gated Na+ Channel Currents by Small Molecules: Effects on Amplitude and Gating During High-Frequency Stimulation
by Cheng-Yuan Lin, Zi-Han Gao, Chi-Wai Cheung, Edmund Cheung So and Sheng-Nan Wu
Sci. Pharm. 2025, 93(3), 33; https://doi.org/10.3390/scipharm93030033 - 24 Jul 2025
Viewed by 301
Abstract
Cumulative inhibition of voltage-gated Na+ channel current (INa) caused by high-frequency depolarization plays a critical role in regulating electrical activity in excitable cells. As discussed in this review paper, exposure to certain small-molecule modulators can perturb INa during [...] Read more.
Cumulative inhibition of voltage-gated Na+ channel current (INa) caused by high-frequency depolarization plays a critical role in regulating electrical activity in excitable cells. As discussed in this review paper, exposure to certain small-molecule modulators can perturb INa during high-frequency stimulation, influencing the extent of cumulative inhibition and electrical excitability in excitable cells. Carbamazepine differentially suppressed transient or peak (INa(T)) and late (INa(L)) components of INa. Moreover, the cumulative inhibition of INa(T) during pulse-train stimulation at 40 Hz was enhanced by lacosamide. GV-58 was noted to exert stimulatory effect on INa(T) and INa(L). This stimulated INa was not countered by ω-conotoxin MVIID but was effectively reversed by ranolazine. GV-58′s exposure can slow down INa inactivation elicited during pulse-train stimulation. Lacosamide directly inhibited INa magnitude as well as promoted this cumulative inhibition of INa during pulse-train stimuli. Mirogabalin depressed INa magnitude as well as modulated frequency dependence of the current. Phenobarbital can directly modulate both the magnitude and frequency dependence of ionic currents, including INa. Previous investigations have shown that exposure to small-molecule modulators can perturb INa under conditions of high-frequency stimulation. This ionic mechanism plays a crucial role in modulating membrane excitability, hereby supporting the validity of these findings. Full article
Show Figures

Figure 1

19 pages, 3051 KiB  
Article
Design of a Current-Mode OTA-Based Memristor Emulator for Neuromorphic Medical Application
by Amel Neifar, Imen Barraj, Hassen Mestiri and Mohamed Masmoudi
Micromachines 2025, 16(8), 848; https://doi.org/10.3390/mi16080848 - 24 Jul 2025
Viewed by 257
Abstract
This study presents transistor-level simulation results for a novel memristor emulator circuit. The design incorporates an inverter and a current-mode-controlled operational transconductance amplifier to stabilize the output voltage. Transient performance is evaluated across a 20 MHz to 100 MHz frequency range. Simulations using [...] Read more.
This study presents transistor-level simulation results for a novel memristor emulator circuit. The design incorporates an inverter and a current-mode-controlled operational transconductance amplifier to stabilize the output voltage. Transient performance is evaluated across a 20 MHz to 100 MHz frequency range. Simulations using 0.18 μm TSMC technology confirm the circuit’s functionality, demonstrating a power consumption of 0.1 mW at a 1.2 V supply. The memristor model’s reliability is verified through corner simulations, along with Monte Carlo and temperature variation tests. Furthermore, the emulator is applied in a Memristive Integrate-and-Fire neuron circuit, a CMOS-based system that replicates biological neuron behavior for spike generation, enabling ultra-low-power computing and advanced processing in retinal prosthesis applications. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

16 pages, 4730 KiB  
Article
Power Transformer Short-Circuit Force Calculation Using Three and Two-Dimensional Finite-Element Analysis
by Jian Wang, Junchi He, Xiaohan Chen, Tian Tian, Chenguo Yao and Ahmed Abu-Siada
Energies 2025, 18(15), 3898; https://doi.org/10.3390/en18153898 - 22 Jul 2025
Viewed by 246
Abstract
In a power transformer short-circuit, transient current and magnetic flux interactions create strong electromagnetic forces that can deform windings and the core, risking failure. Accurate calculation of these forces during design is critical to prevent such outcomes. This paper employs two-dimensional (2D) and [...] Read more.
In a power transformer short-circuit, transient current and magnetic flux interactions create strong electromagnetic forces that can deform windings and the core, risking failure. Accurate calculation of these forces during design is critical to prevent such outcomes. This paper employs two-dimensional (2D) and three-dimensional (3D) finite-element analysis (FEA) to model a 110 kV, 40 MVA three-phase transformer, calculating magnetic flux density, short-circuit current, and electromagnetic forces. The difference in force values at inner and outer core window positions, reaching up to 40%, is analyzed. The impact of physical winding displacement on axial forces is also studied. Simulation results, validated against analytical calculations, show peak short-circuit currents of 6963 A on the high-voltage (HV) winding and 70,411 A on the low-voltage (LV) winding. Average radial forces were 136 kN on the HV winding and 89 kN on the LV winding, while average axial forces were 8 kN on the HV and 9 kN on the LV. This agreement verifies the FEA models’ reliability. The results provide insights into winding behavior under severe faults and enhance transformer design reliability. Full article
Show Figures

Figure 1

23 pages, 6645 KiB  
Article
Encapsulation Process and Dynamic Characterization of SiC Half-Bridge Power Module: Electro-Thermal Co-Design and Experimental Validation
by Kaida Cai, Jing Xiao, Xingwei Su, Qiuhui Tang and Huayuan Deng
Micromachines 2025, 16(7), 824; https://doi.org/10.3390/mi16070824 - 19 Jul 2025
Viewed by 412
Abstract
Silicon carbide (SiC) half-bridge power modules are widely utilized in new energy power generation, electric vehicles, and industrial power supplies. To address the research gap in collaborative validation between electro-thermal coupling models and process reliability, this paper proposes a closed-loop methodology of “design-simulation-process-validation”. [...] Read more.
Silicon carbide (SiC) half-bridge power modules are widely utilized in new energy power generation, electric vehicles, and industrial power supplies. To address the research gap in collaborative validation between electro-thermal coupling models and process reliability, this paper proposes a closed-loop methodology of “design-simulation-process-validation”. This approach integrates in-depth electro-thermal simulation (LTspice XVII/COMSOL Multiphysics 6.3) with micro/nano-packaging processes (sintering/bonding). Firstly, a multifunctional double-pulse test board was designed for the dynamic characterization of SiC devices. LTspice simulations revealed the switching characteristics under an 800 V operating condition. Subsequently, a thermal simulation model was constructed in COMSOL to quantify the module junction temperature gradient (25 °C → 80 °C). Key process parameters affecting reliability were then quantified, including conductive adhesive sintering (S820-F680, 39.3 W/m·K), high-temperature baking at 175 °C, and aluminum wire bonding (15 mil wire diameter and 500 mW ultrasonic power/500 g bonding force). Finally, a double-pulse dynamic test platform was established to capture switching transient characteristics. Experimental results demonstrated the following: (1) The packaged module successfully passed the 800 V high-voltage validation. Measured drain current (4.62 A) exhibited an error of <0.65% compared to the simulated value (4.65 A). (2) The simulated junction temperature (80 °C) was significantly below the safety threshold (175 °C). (3) Microscopic examination using a Leica IVesta 3 microscope (55× magnification) confirmed the absence of voids at the sintering and bonding interfaces. (4) Frequency-dependent dynamic characterization revealed a 6 nH parasitic inductance via Ansys Q3D 2025 R1 simulation, with experimental validation at 8.3 nH through double-pulse testing. Thermal evaluations up to 200 kHz indicated 109 °C peak temperature (below 175 °C datasheet limit) and low switching losses. This work provides a critical process benchmark for the micro/nano-manufacturing of high-density SiC modules. Full article
(This article belongs to the Special Issue Recent Advances in Micro/Nanofabrication, 2nd Edition)
Show Figures

Figure 1

20 pages, 4119 KiB  
Article
Research on Pole-to-Ground Fault Ride-Through Strategy for Hybrid Half-Wave Alternating MMC
by Yanru Ding, Yi Wang, Yuhua Gao, Zimeng Su, Xiaoyu Song, Xiaoyin Wu and Yilei Gu
Electronics 2025, 14(14), 2893; https://doi.org/10.3390/electronics14142893 - 19 Jul 2025
Viewed by 243
Abstract
Considering the lightweight requirement of modular multilevel converter (MMC), the implementation of arm multiplexing significantly improves submodule utilization and achieves remarkable lightweight performance. However, the challenges of overvoltage and energy imbalance during pole-to-ground fault still exist. To address these issues, this paper proposes [...] Read more.
Considering the lightweight requirement of modular multilevel converter (MMC), the implementation of arm multiplexing significantly improves submodule utilization and achieves remarkable lightweight performance. However, the challenges of overvoltage and energy imbalance during pole-to-ground fault still exist. To address these issues, this paper proposes a hybrid half-wave alternating MMC (HHA-MMC) and presents its fault ride-through strategy. First, a transient equivalent model based on topology and operation principles is established to analyze fault characteristics. Depending on the arm’s alternative multiplexing feature, the half-wave shift non-blocking fault ride-through strategy is proposed to eliminate system overvoltage and fault current. Furthermore, to eliminate energy imbalance caused by asymmetric operation during non-blocking transients, dual-modulation energy balancing control based on the third-harmonic current and the phase-shifted angle is introduced. This strategy ensures capacitor voltage balance while maintaining 50% rated power transmission during the fault period. Finally, simulations and experiments demonstrate that the lightweight HHA-MMC successfully accomplishes non-blocking pole-to-ground fault ride-through with balanced arm energy distribution, effectively enhancing power supply reliability. Full article
Show Figures

Figure 1

15 pages, 2113 KiB  
Article
Improved Segmented Control Strategy for Continuous Fault Ride-Through of Doubly-Fed Wind Turbines
by Tie Chen, Yifan Xu, Yue Liu, Junlin Ren and Youyuan Fan
Energies 2025, 18(14), 3845; https://doi.org/10.3390/en18143845 - 19 Jul 2025
Viewed by 208
Abstract
Aiming at the transient overcurrent problem faced by doubly-fed induction generators (DFIGs) during continuous voltage fault ride-through, a segmented control strategy based on the rotor side converter (RSC) is proposed. First, through theoretical analysis of the relationship between stator current and transient induced [...] Read more.
Aiming at the transient overcurrent problem faced by doubly-fed induction generators (DFIGs) during continuous voltage fault ride-through, a segmented control strategy based on the rotor side converter (RSC) is proposed. First, through theoretical analysis of the relationship between stator current and transient induced electromotive force (EMF) in each stage of continuous faults, a feedforward control strategy based on the transient component of stator current is proposed. The observable stator current is extracted for its transient component, which is used as a rotor voltage compensation term to effectively counteract the influence of transient EMF. Meanwhile, a fuzzy control algorithm is introduced during the low voltage ride-through (LVRT) stage to dynamically adjust the virtual resistance value, enhancing the system’s damping characteristics. Studies show that this strategy significantly suppresses rotor current spikes in all stages of voltage ride-through. Finally, simulation results verify that the proposed method improves the ride-through performance of DFIG under continuous voltage faults. Full article
Show Figures

Figure 1

24 pages, 6475 KiB  
Review
Short-Circuit Detection and Protection Strategies for GaN E-HEMTs in High-Power Applications: A Review
by Haitz Gezala Rodero, David Garrido Díez, Iosu Aizpuru Larrañaga and Igor Baraia-Etxaburu
Electronics 2025, 14(14), 2875; https://doi.org/10.3390/electronics14142875 - 18 Jul 2025
Viewed by 357
Abstract
Gallium nitride (GaN) enhancement-mode high-electron-mobility transistors ( E-HEMTs) deliver superior performance compared to traditional silicon (Si) and silicon carbide (SiC) counterparts. Their faster switching speeds, lower on-state resistances, and higher operating frequencies enable more efficient and compact power converters. However, their integration into [...] Read more.
Gallium nitride (GaN) enhancement-mode high-electron-mobility transistors ( E-HEMTs) deliver superior performance compared to traditional silicon (Si) and silicon carbide (SiC) counterparts. Their faster switching speeds, lower on-state resistances, and higher operating frequencies enable more efficient and compact power converters. However, their integration into high-power applications is limited by critical reliability concerns, particularly regarding their short-circuit (SC) withstand capability and overvoltage (OV) resilience. GaN devices typically exhibit SC withstand times of only a few hundred nanoseconds, needing ultrafast protection circuits, which conventional desaturation (DESAT) methods cannot adequately provide. Furthermore, their high switching transients increase the risk of false activation events. The lack of avalanche capability and the dynamic nature of GaN breakdown voltage exacerbate issues related to OV stress during fault conditions. Although SC-related behaviour in GaN devices has been previously studied, a focused and comprehensive review of protection strategies tailored to GaN technology remains lacking. This paper fills that gap by providing an in-depth analysis of SC and OV failure phenomena, coupled with a critical evaluation of current and next-generation protection schemes suitable for GaN-based high-power converters. Full article
(This article belongs to the Special Issue Advances in Semiconductor GaN and Applications)
Show Figures

Figure 1

Back to TopTop