Modulation of Voltage-Gated Na+ Channel Currents by Small Molecules: Effects on Amplitude and Gating During High-Frequency Stimulation
Abstract
1. Introduction
2. Effects of Small-Molecule Modulators on INa During High-Frequency Stimulation (20 or 40 Hz)
2.1. Carbamazepine (CBZ, Tegretol®)
2.2. GV-58 ((2R)-2[[6-[(5-Methylthiophen-2-yl)methylamino]-9-propylpurin-2-yl]amino]butan-1-ol)
2.3. Lacosamide (LCS, Vimpat®, (2R)-2-Acetamido-N-benzyl-3-methoxypropanamide)
2.4. Mirogabalin (MGB, Tarlige®, IUPAC Name: 2-[(1R,5S,6S)-6-(Aminomethyl)-3-ethyl-6-bicyclo [3.2.0]hept-3-enyl]acetic Acid)
2.5. Phenobarbital (PHB, Luminal Sodium®, Phenobarbitone)
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AP | action potential |
CaV channel | voltage-gated Ca2+ channel |
GABA | γ-aminobutyric acid; |
GABAA receptor | γ-aminobutyric acid type A receptor |
IK(DR) | delayed-rectifier K+ current |
IK(erg) | erg-mediated K+ current |
IK(M) | M-type K+ current |
INa | voltage-gated Na+ channel current |
INa(L) | late Na+ current |
INa(P) | persistent Na+ current |
INa(T) | Transient or peak Na+ current |
NaV channel | voltage-gated Na+ channel |
References
- Catterall, W.A.; Lenaeus, M.J.; Gamal El-Din, T.M. Structure and Pharmacology of Voltage-Gated Sodium and Calcium Channels. Annu. Rev. Pharmacol. Toxicol. 2020, 60, 133–154. [Google Scholar] [CrossRef] [PubMed]
- Navarro, M.A.; Salari, A.; Lin, J.L.; Cowan, L.M.; Penington, N.J.; Milescu, M.; Milescu, L.S. Sodium channels implement a molecular leaky integrator that detects action potentials and regulates neuronal firing. Elife 2020, 9, e54940. [Google Scholar] [CrossRef] [PubMed]
- Upchurch, C.M.; Combe, C.L.; Knowlton, C.J.; Rousseau, V.G.; Gasparini, S.; Canavier, C.C. Long-Term Inactivation of Sodium Channels as a Mechanism of Adaptation in CA1 Pyramidal Neurons. J. Neurosci. 2022, 42, 3768–3782. [Google Scholar] [CrossRef] [PubMed]
- Taddese, A.; Bean, B.P. Subthreshold sodium current from rapidly inactivating sodium channels drives spontaneous firing of tuberomammillary neurons. Neuron 2002, 33, 587–600. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Xia, Z.; Dong, J.; Huang, B.; Zhang, J.; Zhou, F.; Yan, R.; Shi, Y.; Gong, J.; Jiang, J.; et al. Structural mechanism of voltage-gated sodium channel slow inactivation. Nat. Commun. 2024, 15, 3691. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.M.; Cho, H.Y.; Chiang, C.W.; Chuang, T.H.; Wu, S.N.; Tu, Y.F. Characterization in Inhibitory Effectiveness of Carbamazepine in Voltage-Gated Na(+) and Erg-Mediated K(+) Currents in a Mouse Neural Crest-Derived (Neuro-2a) Cell Line. Int. J. Mol. Sci. 2022, 23, 7892. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.Y.; Chen, P.C.; Chuang, T.H.; Yu, M.C.; Wu, S.N. Activation of Voltage-Gated Na+ Current by GV-58, a Known Activator of CaV Channels. Biomedicines 2022, 10, 721. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.M.; Lin, Y.C.; Chiang, C.W.; Cho, H.Y.; Chuang, T.H.; Yu, M.C.; Wu, S.N.; Tu, Y.F. Effective Modulation by Lacosamide on Cumulative Inhibition of I(Na) during High-Frequency Stimulation and Recovery of I(Na) Block during Conditioning Pulse Train. Int. J. Mol. Sci. 2022, 23, 11966. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.N.; Wu, C.L.; Cho, H.Y.; Chiang, C.W. Effective Perturbations by Small-Molecule Modulators on Voltage-Dependent Hysteresis of Transmembrane Ionic Currents. Int. J. Mol. Sci. 2022, 23, 9453. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.M.; Lai, P.C.; Cho, H.Y.; Chuang, T.H.; Wu, S.N.; Tu, Y.F. Effective Perturbations by Phenobarbital on I(Na), I(K(erg)), I(K(M)) and I(K(DR)) during Pulse Train Stimulation in Neuroblastoma Neuro-2a Cells. Biomedicines. 2022, 10, 1968. [Google Scholar] [CrossRef] [PubMed]
- Dyong, T.M.; Gess, B.; Dumke, C.; Rolke, R.; Dohrn, M.F. Carbamazepine for Chronic Muscle Pain: A Retrospective Assessment of Indications, Side Effects, and Treatment Response. Brain Sci. 2023, 13, 123. [Google Scholar] [CrossRef] [PubMed]
- So, E.C.; Wu, S.N.; Lo, Y.C.; Su, K. Differential regulation of tefluthrin and telmisartan on the gating charges of I(Na) activation and inactivation as well as on resurgent and persistent I(Na) in a pituitary cell line (GH(3)). Toxicol. Lett. 2018, 285, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Hsiao, C.F.; Chandler, S.H. Membrane Resonance and Subthreshold Membrane Oscillations in Mesencephalic V Neurons: Participants in Burst Generation. J. Neurosci. 2001, 21, 3729–3739. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.N. Ion Channels as a Potential Target in Pharmaceutical Designs. Int. J. Mol. Sci. 2023, 24, 6484. [Google Scholar] [CrossRef] [PubMed]
- Villalba-Galea, C.A.; Chiem, A.T. Hysteretic Behavior in Voltage-Gated Channels. Front. Pharmacol. 2020, 11, 579596. [Google Scholar] [CrossRef] [PubMed]
- Baysal, V.; Saraç, Z.; Yimaz, E. Chaotic resonance in Hodgkin-Huxley neuron. Nonlinear Dyn. 2019, 91, 1275–1285. [Google Scholar] [CrossRef]
- Vega, A.V.; Espinosa, J.L.; Lopez-Dominguez, A.M.; Lopez-Santiago, L.F.; Navarrete, A.; Cota, G. L-type calcium channel activation up-regulates the mRNAs for two different sodium channel alpha subunits (Nav1.1 and Nav1.3) in rat pituitary GH3 cells. Brain Res. Mol. Brain Res. 2003, 116, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Gomez, K.; Stratton, H.J.; Duran, P.; Loya, S.; Tang, C.; Calderon-Rivera, A.; Francois-Moutal, L.; Khanna, M.; Madura, C.L.; Luo, S.; et al. Identification and targeting of a unique Na(V)1.7 domain driving chronic pain. Proc. Natl. Acad. Sci. USA 2023, 120, e2217800120. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.J.; Gharpure, A.; Teng, J.; Zhuang, Y.; Howard, R.J.; Zhu, S.; Noviello, C.M.; Walsh, R.M., Jr.; Lindahl, E.; Hibbs, R.E. Shared structural mechanisms of general anaesthetics and benzodiazepines. Nature 2020, 585, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.H.; Lin, J.F.; Yu, M.C.; Wu, S.N.; Wu, C.L.; Cho, H.Y. Characterization in Potent Modulation on Voltage-Gated Na(+) Current Exerted by Deltamethrin, a Pyrethroid Insecticide. Int. J. Mol. Sci. 2022, 23, 14733. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, D.; Darwish, Y.; Fu, X.; Trussell, L.O.; Huang, H. KCNQ Channels Enable Reliable Presynaptic Spiking and Synaptic Transmission at High Frequency. J. Neurosci. 2022, 42, 3305–3315. [Google Scholar] [CrossRef] [PubMed]
- Foo, N.P.; Liu, Y.F.; Wu, P.C.; Hsing, C.H.; Huang, B.M.; So, E.C. Midazolam’s Effects on Delayed-Rectifier K(+) Current and Intermediate-Conductance Ca(2+)-Activated K(+) Channel in Jurkat T-lymphocytes. Int. J. Mol. Sci. 2021, 22, 7198. [Google Scholar] [CrossRef] [PubMed]
- Men, S.; Wang, H. Phenobarbital in Nuclear Receptor Activation: An Update. Drug Metab. Dispos. 2023, 51, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Stevens, M.F.; Werdehausen, R.; Gaza, N.; Hermanns, H.; Kremer, D.; Bauer, I.; Küry, P.; Hollmann, M.W.; Braun, S. Midazolam activates the intrinsic pathway of apoptosis independent of benzodiazepine and death receptor signaling. Reg. Anesth. Pain. Med. 2011, 36, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Kagota, S.; Morikawa, K.; Ishida, H.; Chimoto, J.; Maruyama-Fumoto, K.; Yamada, S.; Shinozuka, K. Vasorelaxant effects of benzodiazepines, non-benzodiazepine sedative-hypnotics, and tandospirone on isolated rat arteries. Eur. J. Pharmacol. 2021, 892, 173744. [Google Scholar] [CrossRef] [PubMed]
- So, E.C.; Wu, K.C.; Kao, F.C.; Wu, S.N. Effects of midazolam on ion currents and membrane potential in differentiated motor neuron-like NSC-34 and NG108-15 cells. Eur. J. Pharmacol. 2014, 724, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Niquet, J.; Nguyen, D.; de Araujo Furtado, M.; Lumley, L. Treatment of cholinergic-induced status epilepticus with polytherapy targeting GABA and glutamate receptors. Epilepsia Open 2023, 8 (Suppl. 1), S117–S140. [Google Scholar] [CrossRef] [PubMed]
- Hossain, R.; Al-Khafaji, K.; Khan, R.A.; Sarkar, C.; Islam, M.S.; Dey, D.; Jain, D.; Faria, F.; Akbor, R.; Atolani, O.; et al. Quercetin and/or Ascorbic Acid Modulatory Effect on Phenobarbital-Induced Sleeping Mice Possibly through GABAA and GABAB Receptor Interaction Pathway. Pharmaceuticals 2021, 14, 721. [Google Scholar] [CrossRef] [PubMed]
- Liddiard, G.T.; Suryavanshi, P.S.; Glykys, J. Enhancing GABAergic Tonic Inhibition Reduces Seizure-Like Activity in the Neonatal Mouse Hippocampus and Neocortex. J. Neurosci. 2024, 44, e1342232023. [Google Scholar] [CrossRef] [PubMed]
Compound or Drug (Abbreviated Name) | Chemical Structure | Reference |
---|---|---|
Carbamazepine (CBZ) | [6] | |
GV-58 | [7] | |
Lacosamide (LCS) | [8] | |
Mirogabalin (MGB) | [9] | |
Phenobarbital (PHB) | [10] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Österreichische Pharmazeutische Gesellschaft. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-Y.; Gao, Z.-H.; Cheung, C.-W.; So, E.C.; Wu, S.-N. Modulation of Voltage-Gated Na+ Channel Currents by Small Molecules: Effects on Amplitude and Gating During High-Frequency Stimulation. Sci. Pharm. 2025, 93, 33. https://doi.org/10.3390/scipharm93030033
Lin C-Y, Gao Z-H, Cheung C-W, So EC, Wu S-N. Modulation of Voltage-Gated Na+ Channel Currents by Small Molecules: Effects on Amplitude and Gating During High-Frequency Stimulation. Scientia Pharmaceutica. 2025; 93(3):33. https://doi.org/10.3390/scipharm93030033
Chicago/Turabian StyleLin, Cheng-Yuan, Zi-Han Gao, Chi-Wai Cheung, Edmund Cheung So, and Sheng-Nan Wu. 2025. "Modulation of Voltage-Gated Na+ Channel Currents by Small Molecules: Effects on Amplitude and Gating During High-Frequency Stimulation" Scientia Pharmaceutica 93, no. 3: 33. https://doi.org/10.3390/scipharm93030033
APA StyleLin, C.-Y., Gao, Z.-H., Cheung, C.-W., So, E. C., & Wu, S.-N. (2025). Modulation of Voltage-Gated Na+ Channel Currents by Small Molecules: Effects on Amplitude and Gating During High-Frequency Stimulation. Scientia Pharmaceutica, 93(3), 33. https://doi.org/10.3390/scipharm93030033