Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (701)

Search Parameters:
Keywords = transformer characteristic resistance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 6988 KiB  
Article
Effect of Substrate Temperature on the Structural, Morphological, and Infrared Optical Properties of KBr Thin Films
by Teng Xu, Qingyuan Cai, Weibo Duan, Kaixuan Wang, Bojie Jia, Haihan Luo and Dingquan Liu
Materials 2025, 18(15), 3644; https://doi.org/10.3390/ma18153644 - 3 Aug 2025
Viewed by 141
Abstract
Potassium bromide (KBr) thin films were deposited by resistive thermal evaporation at substrate temperatures ranging from 50 °C to 250 °C to systematically elucidate the temperature-dependent evolution of their physical properties. Structural, morphological, and optical characteristics were examined by X-ray diffraction (XRD), scanning [...] Read more.
Potassium bromide (KBr) thin films were deposited by resistive thermal evaporation at substrate temperatures ranging from 50 °C to 250 °C to systematically elucidate the temperature-dependent evolution of their physical properties. Structural, morphological, and optical characteristics were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and Fourier transform infrared spectroscopy (FTIR). The results reveal a complex, non-monotonic response to temperature rather than a simple linear trend. As the substrate temperature increases, growth evolves from a mixed polycrystalline texture to a pronounced (200) preferred orientation. Morphological analysis shows that the film surface is smoothest at 150 °C, while the microstructure becomes densest at 200 °C. These structural variations directly modulate the optical constants: the refractive index attains its highest values in the 150–200 °C window, approaching that of bulk KBr. Cryogenic temperature (6 K) FTIR measurements further demonstrate that suppression of multi-phonon absorption markedly enhances the infrared transmittance of the films. Taken together, the data indicate that 150–200 °C constitutes an optimal process window for fabricating KBr films that combine superior crystallinity, low defect density, and high packing density. This study elucidates the temperature-driven structure–property coupling and offers valuable guidance for optimizing high-performance infrared and cryogenic optical components. Full article
(This article belongs to the Special Issue Obtaining and Characterization of New Materials (5th Edition))
Show Figures

Figure 1

22 pages, 5123 KiB  
Article
Tailored Effects of Plasma-Activated Water on Hair Structure Through Comparative Analysis of Nitrate-Rich and Peroxide-Rich Formulations Across Different Hair Types
by Antonia de Souza Leal, Michaela Shiotani Marcondes, Ariane Leite, Douglas Leite, Clodomiro Alves Junior, Laurita dos Santos and Rodrigo Pessoa
Appl. Sci. 2025, 15(15), 8573; https://doi.org/10.3390/app15158573 (registering DOI) - 1 Aug 2025
Viewed by 201
Abstract
Plasma-activated water (PAW), enriched with reactive oxygen and nitrogen species (RONS), presents oxidative and antimicrobial characteristics with potential in cosmetic applications. This study examined the effects of two PAW formulations—nitrate-rich (PAW-N) and peroxide-rich (PAW-P)—on human hair types classified as straight (Type 1), wavy [...] Read more.
Plasma-activated water (PAW), enriched with reactive oxygen and nitrogen species (RONS), presents oxidative and antimicrobial characteristics with potential in cosmetic applications. This study examined the effects of two PAW formulations—nitrate-rich (PAW-N) and peroxide-rich (PAW-P)—on human hair types classified as straight (Type 1), wavy (Type 2), and coily/kinky (Type 4). The impact of PAW on hair structure and chemistry was evaluated using Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), UV–Vis spectrophotometry, and physicochemical analyses of the liquids (pH, ORP, conductivity, and TDS). PAW-N, with high nitrate content (~500 mg/L), low pH (2.15), and elevated conductivity (6244 µS/cm), induced significant damage to porous hair types, including disulfide bond cleavage, protein oxidation, and lipid degradation, as indicated by FTIR and EDS data. SEM confirmed severe cuticle disruption. In contrast, PAW-P, containing >25 mg/L of hydrogen peroxide and exhibiting milder acidity and lower ionic strength, caused more localized and controlled oxidation with minimal morphological damage. Straight hair showed greater resistance to both treatments, while coily and wavy hair were more susceptible, particularly to PAW-N. These findings suggest that the formulation and ionic profile of PAW should be matched to hair porosity for safe oxidative treatments, supporting the use of PAW-P as a gentler alternative in hair care technologies. Full article
Show Figures

Figure 1

25 pages, 681 KiB  
Review
Insights into the Molecular Mechanisms and Signaling Pathways of Epithelial to Mesenchymal Transition (EMT) in the Pathophysiology of Endometriosis
by Hossein Hosseinirad, Jae-Wook Jeong and Breton F. Barrier
Int. J. Mol. Sci. 2025, 26(15), 7460; https://doi.org/10.3390/ijms26157460 - 1 Aug 2025
Viewed by 243
Abstract
Endometriosis is a disease characterized by the presence of endometrial glands and stroma outside of the uterine corpus, often clinically presenting with pain and/or infertility. Ectopic lesions exhibit features characteristic of epithelial-to-mesenchymal transition (EMT), a process in which epithelial cells lose polarity and [...] Read more.
Endometriosis is a disease characterized by the presence of endometrial glands and stroma outside of the uterine corpus, often clinically presenting with pain and/or infertility. Ectopic lesions exhibit features characteristic of epithelial-to-mesenchymal transition (EMT), a process in which epithelial cells lose polarity and acquire mesenchymal traits, including migratory and invasive capabilities. During the process of EMT, epithelial traits are downregulated, while mesenchymal traits are acquired, with cells developing migratory ability, increasing proliferation, and resistance to apoptosis. EMT is promoted by exposure to hypoxia and stimulation by transforming growth factor-β (TGF-β), platelet-derived growth factor (PDGF), and estradiol. Signaling pathways that promote EMT are activated in most ectopic lesions and involve transcription factors such as Snail, Slug, ZEB-1/2, and TWIST-1/2. EMT-specific molecules present in the serum of women with endometriosis appear to have diagnostic potential. Strategies targeting EMT in animal models of endometriosis have demonstrated regression of ectopic lesions, opening the door for novel therapeutic approaches. This review summarizes the current understanding of the role of EMT in endometriosis and highlights potential targets for EMT-related diagnosis and therapeutic interventions. Full article
(This article belongs to the Special Issue Endometriosis: Focusing on Molecular and Cellular Research)
Show Figures

Figure 1

19 pages, 3436 KiB  
Article
An Improved Wind Power Forecasting Model Considering Peak Fluctuations
by Shengjie Yang, Jie Tang, Lun Ye, Jiangang Liu and Wenjun Zhao
Electronics 2025, 14(15), 3050; https://doi.org/10.3390/electronics14153050 - 30 Jul 2025
Viewed by 198
Abstract
Wind power output sequences exhibit strong randomness and intermittency characteristics; traditional single forecasting models struggle to capture the internal features of sequences and are highly susceptible to interference from high-frequency noise and predictive accuracy is still notably poor at the peaks where the [...] Read more.
Wind power output sequences exhibit strong randomness and intermittency characteristics; traditional single forecasting models struggle to capture the internal features of sequences and are highly susceptible to interference from high-frequency noise and predictive accuracy is still notably poor at the peaks where the power curve undergoes abrupt changes. To address the poor fitting at peaks, a short-term wind power forecasting method based on the improved Informer model is proposed. First, the temporal convolutional network (TCN) is introduced to enhance the model’s ability to capture regional segment features along the temporal dimension, enhancing the model’s receptive field to address wind power fluctuation under varying environmental conditions. Next, a discrete cosine transform (DCT) is employed for adaptive modeling of frequency dependencies between channels, converting the time series data into frequency domain representations to extract its frequency features. These frequency domain features are then weighted using a channel attention mechanism to improve the model’s ability to capture peak features and resist noise interference. Finally, the Informer generative decoder is used to output the power prediction results, this enables the model to simultaneously leverage neighboring temporal segment features and long-range inter-temporal dependencies for future wind-power prediction, thereby substantially improving the fitting accuracy at power-curve peaks. Experimental results validate the effectiveness and practicality of the proposed model; compared with other models, the proposed approach reduces MAE by 9.14–42.31% and RMSE by 12.57–47.59%. Full article
(This article belongs to the Special Issue Digital Intelligence Technology and Applications)
Show Figures

Figure 1

29 pages, 3125 KiB  
Article
Tomato Leaf Disease Identification Framework FCMNet Based on Multimodal Fusion
by Siming Deng, Jiale Zhu, Yang Hu, Mingfang He and Yonglin Xia
Plants 2025, 14(15), 2329; https://doi.org/10.3390/plants14152329 - 27 Jul 2025
Viewed by 459
Abstract
Precisely recognizing diseases in tomato leaves plays a crucial role in enhancing the health, productivity, and quality of tomato crops. However, disease identification methods that rely on single-mode information often face the problems of insufficient accuracy and weak generalization ability. Therefore, this paper [...] Read more.
Precisely recognizing diseases in tomato leaves plays a crucial role in enhancing the health, productivity, and quality of tomato crops. However, disease identification methods that rely on single-mode information often face the problems of insufficient accuracy and weak generalization ability. Therefore, this paper proposes a tomato leaf disease recognition framework FCMNet based on multimodal fusion, which combines tomato leaf disease image and text description to enhance the ability to capture disease characteristics. In this paper, the Fourier-guided Attention Mechanism (FGAM) is designed, which systematically embeds the Fourier frequency-domain information into the spatial-channel attention structure for the first time, enhances the stability and noise resistance of feature expression through spectral transform, and realizes more accurate lesion location by means of multi-scale fusion of local and global features. In order to realize the deep semantic interaction between image and text modality, a Cross Vision–Language Alignment module (CVLA) is further proposed. This module generates visual representations compatible with Bert embeddings by utilizing block segmentation and feature mapping techniques. Additionally, it incorporates a probability-based weighting mechanism to achieve enhanced multimodal fusion, significantly strengthening the model’s comprehension of semantic relationships across different modalities. Furthermore, to enhance both training efficiency and parameter optimization capabilities of the model, we introduce a Multi-strategy Improved Coati Optimization Algorithm (MSCOA). This algorithm integrates Good Point Set initialization with a Golden Sine search strategy, thereby boosting global exploration, accelerating convergence, and effectively preventing entrapment in local optima. Consequently, it exhibits robust adaptability and stable performance within high-dimensional search spaces. The experimental results show that the FCMNet model has increased the accuracy and precision by 2.61% and 2.85%, respectively, compared with the baseline model on the self-built dataset of tomato leaf diseases, and the recall and F1 score have increased by 3.03% and 3.06%, respectively, which is significantly superior to the existing methods. This research provides a new solution for the identification of tomato leaf diseases and has broad potential for agricultural applications. Full article
(This article belongs to the Special Issue Advances in Artificial Intelligence for Plant Research)
Show Figures

Figure 1

16 pages, 3986 KiB  
Article
Design and Flow Characteristics of a Gravity-Driven Flow Control Valve
by Qing Wang, Jun Qu, Li Liu, Xingyu Tan, Jianhua Guo, Yingqi Li, Jiawei Zhang, Xiaoao Liu, Jinping Yu, Guodong Ji, Fei Zhou and Qilong Xue
Machines 2025, 13(8), 654; https://doi.org/10.3390/machines13080654 - 25 Jul 2025
Viewed by 232
Abstract
Ultra-high-temperature and pressure downhole environments pose challenges for conventional electronic instruments to adapt to high-temperature formations, thereby restricting the application of downhole electronic tool technology in deep and ultra-deep wells. Given the aforementioned limitation of electronic inclination measurement systems, specifically their poor temperature [...] Read more.
Ultra-high-temperature and pressure downhole environments pose challenges for conventional electronic instruments to adapt to high-temperature formations, thereby restricting the application of downhole electronic tool technology in deep and ultra-deep wells. Given the aforementioned limitation of electronic inclination measurement systems, specifically their poor temperature resistance, this study proposes a novel shunt flow control method. This method employs a mechanical structure to overcome temperature constraints: gravitational torque generated by the mechanical structure is utilized to control valve opening and regulate flow rate. By converting sensed well inclination information into changes in flow rate, this approach enables the transformation of well inclination sensing and its associated signals. In this study, a kinetic analysis model of the shunt-regulating valve spool was established. Using computational fluid dynamics (CFD) simulations, the flow characteristics of the regulating spool were analyzed under varying valve openings. The structure of the flow control valve was optimized with the goal of maximizing internal flow. Finally, the reliability of the designed structure for well deviation sensing and flow control was verified using simulation experimental studies and theoretical analyses. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

20 pages, 4025 KiB  
Article
Genomic Analysis of Cadmium-Resistant and Plant Growth-Promoting Burkholderia alba Isolated from Plant Rhizosphere
by Luyao Feng, Xin Liu, Nan Wang, Zhuli Shi, Yu Wang, Jianpeng Jia, Zhufeng Shi, Te Pu and Peiwen Yang
Agronomy 2025, 15(8), 1780; https://doi.org/10.3390/agronomy15081780 - 24 Jul 2025
Viewed by 323
Abstract
Reducing the application of chemical fertilizers and remediating heavy metal pollution in soil are important directions in current agricultural research. Utilizing the plant-growth-promoting and remediation capabilities of bacteria can provide more environmentally friendly assistance to agricultural production. In this study, the Burkholderia alba [...] Read more.
Reducing the application of chemical fertilizers and remediating heavy metal pollution in soil are important directions in current agricultural research. Utilizing the plant-growth-promoting and remediation capabilities of bacteria can provide more environmentally friendly assistance to agricultural production. In this study, the Burkholderia alba YIM B08401 strain was isolated and identified from rhizospheric soil, subjected to whole-genome sequencing and analysis, and its Cd2+ adsorption efficiency and characteristics were confirmed using multiple experimental methods, including atomic absorption spectrometry (AAS), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS). The results showed that the genome of strain YIM B08401 has a total length of 7,322,157 bp, a GC content of 66.39%, and predicts 6504 protein-coding sequences. It contains abundant functional genes related to nutrient conversion (phosphate solubilization, sulfur metabolism, zinc solubilization, siderophore production), plant hormone regulation (indole-3-acetic acid secretion, ACC deaminase production), phenolic acid degradation, root colonization, heavy metal tolerance, pathogen antagonism, and the production of antagonistic secondary metabolites. Additionally, strain YIM B08401 can specifically bind to Cd2+ through various functional groups on the cell surface, such as C-O-C, P=O, and O-H, enabling biosorption. In conclusion, strain YIM B08401 is an excellent strain with plant-growth-promoting, disease-resistant, and bioremediation capabilities, warranting further development as a biofertilizer for agricultural applications to promote green and sustainable agricultural development. Full article
Show Figures

Figure 1

25 pages, 2052 KiB  
Review
Perspectives of RNAi, CUADb and CRISPR/Cas as Innovative Antisense Technologies for Insect Pest Control: From Discovery to Practice
by Hemant Kumar, Nikita Gal’chinsky, Verma Sweta, Nikita Negi, Roman Filatov, Anamika Chandel, Jamin Ali, Vol Oberemok and Kate Laikova
Insects 2025, 16(7), 746; https://doi.org/10.3390/insects16070746 - 21 Jul 2025
Viewed by 575
Abstract
Pest management is undergoing a transformative shift with the development of the cutting-edge antisense technologies: RNA interference (RNAi), contact unmodified antisense DNA biotechnology (CUADb), and the CRISPR-associated proteins (CRISPR/Cas). These approaches function by facilitating sequence-specific pairing of nucleic acids followed by nuclease-mediated cleavage, [...] Read more.
Pest management is undergoing a transformative shift with the development of the cutting-edge antisense technologies: RNA interference (RNAi), contact unmodified antisense DNA biotechnology (CUADb), and the CRISPR-associated proteins (CRISPR/Cas). These approaches function by facilitating sequence-specific pairing of nucleic acids followed by nuclease-mediated cleavage, offering exceptional precision for targeted pest control. While RNA-guided mechanisms such as RNAi and CRISPR/Cas were initially characterized in non-insect systems, primarily as innate defenses against viral infections, the DNA-guided CUADb pathway was first identified in insect pests as a functional pest control strategy. Its broader role in ribosomal RNA (rRNA) biogenesis was recognized later. Together, these discoveries have revealed an entirely new dimension of gene regulation, with profound implications for sustainable pest management. Despite sharing a common principle of sequence-specific targeting RNAi, CUADb, and CRISPR/Cas differ in several key aspects, including their mechanisms of action, target specificity, and applicability. Rather than serving as universal solutions, each technology is likely to be optimally effective against specific pest groups. Moreover, these technologies allow for rapid adaptation of control strategies to overcome target-site resistance, ensuring long-term efficacy. This review summarizes the core functional characteristics, potential applications, and current limitations of each antisense technology, emphasizing their complementary roles in advancing environmentally sustainable pest control. By integrating foundational biological discoveries with applied innovations, this work provides a new perspectives on incorporating antisense-based strategies into next-generation integrated pest management systems. Full article
(This article belongs to the Special Issue RNAi in Insect Physiology)
Show Figures

Figure 1

22 pages, 5401 KiB  
Article
Evaluation of Integral and Surface Hydrophobic Modification on Permeation Resistance of Foam Concrete
by Liangbo Ying, Pengfei Yu, Fuping Wang and Ping Jiang
Coatings 2025, 15(7), 854; https://doi.org/10.3390/coatings15070854 - 20 Jul 2025
Viewed by 343
Abstract
To investigate the impermeability of foam concrete in various challenging environments, this study evaluates its water resistance by measuring the water contact angle and water absorption. Polyurethane (PU) was used to fabricate polyurethane foam concrete (PFC), enabling a monolithic hydrophobic modification to improve [...] Read more.
To investigate the impermeability of foam concrete in various challenging environments, this study evaluates its water resistance by measuring the water contact angle and water absorption. Polyurethane (PU) was used to fabricate polyurethane foam concrete (PFC), enabling a monolithic hydrophobic modification to improve the permeation performance of foam concrete. The study also examines the effects of carbonation and freeze–thaw environments on the permeation resistance of PFC. Graphene oxide (GO), KH-550, and a composite hydrophobic coating (G/S) consisting of GO and KH-550 were employed to enhance the permeation resistance of PFC through surface hydrophobic modification. The functionality of the G/S composite hydrophobic coating was confirmed using energy dispersive X-ray spectrometry (EDS) and Fourier transform infrared spectroscopy (FTIR). The results showed the following: (1) The water contact angle of PFC increased by 20.2° compared to that of ordinary foam concrete, indicating that PU-based hydrophobic modification can significantly improve its impermeability. (2) After carbonation, a micro–nano composite structure resembling the surface of a lotus leaf developed on the surface of PFC, further enhancing its impermeability. However, freeze–thaw cycles led to the formation and widening of microcracks in the PFC, which compromised its hydrophobic properties. (3) Surface hydrophobic modifications using GO, KH-550, and the G/S composite coating improved the anti-permeability properties of PFC, with the G/S composite showing the most significant enhancement. (4) GO filled the tiny voids and pores on the surface of the PFC, thereby improving its anti-permeability properties. KH-550 replaced water on the surface of PFC and encapsulated surface particles, orienting its R-groups outward to enhance hydrophobicity. The G/S composite emulsion coating formed a hydrophobic silane layer inside the concrete, which enhanced water resistance by blocking water penetration, reducing microscopic pores in the hydrophobic layer, and improving impermeability characteristics. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

13 pages, 3980 KiB  
Article
Research on the Synergistic Evolution Law of Microstructure and Properties of Deformed Austenitic Stainless Steel
by Huimin Tao, Yafang Cai, Zi Li, Haiteng Xiu, Zeqi Tong and Mingming Ding
Coatings 2025, 15(7), 845; https://doi.org/10.3390/coatings15070845 - 18 Jul 2025
Viewed by 215
Abstract
Austenitic stainless steel inevitably undergoes deformation during application, and it is necessary to study the properties of deformed steel. This article investigates the evolution of microstructure, mechanical properties, and corrosion resistance of plastic-deformed 304 steel, the evolution law of structure and properties of [...] Read more.
Austenitic stainless steel inevitably undergoes deformation during application, and it is necessary to study the properties of deformed steel. This article investigates the evolution of microstructure, mechanical properties, and corrosion resistance of plastic-deformed 304 steel, the evolution law of structure and properties of steel is revealed. As a result, it was found that with the increase in deformation, the grains of 304 steel were destroyed, and many small subgrains were generated internally, resulting in a significant decrease in grain size. At the same time, the content of martensitic transformation in stainless steel increased significantly. The characteristics of the surface passivation film of stainless steel also change during the deformation process. Meanwhile, with the increase in deformation, the nanohardness and wear resistance of 304 steel gradually increase, but its corrosion resistance gradually decreases. Analysis suggests that microstructural changes such as grain size and phase transformation in stainless steel lead to an improvement in its mechanical properties, while the generation of defects during deformation and changes in surface passivation film characteristics result in a deterioration of its corrosion resistance. This study can provide a reference for the forming and performance optimization of metals and has high theoretical significance and practical value. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Graphical abstract

23 pages, 2625 KiB  
Article
Effects of Andrographolide-Loaded Nanostructured Lipid Carriers on Growth, Feed Efficiency, and Resistance to Streptococcus agalactiae in Nile Tilapia (Oreochromis niloticus)
by Warut Kengkittipat, Manoj Tukaram Kamble, Sirikorn Kitiyodom, Jakarwan Yostawonkul, Gotchagorn Sawatphakdee, Kim D. Thompson, Seema Vijay Medhe and Nopadon Pirarat
Animals 2025, 15(14), 2117; https://doi.org/10.3390/ani15142117 - 17 Jul 2025
Viewed by 454
Abstract
The increasing demand for sustainable disease management in aquaculture has intensified interest in plant-based therapeutics. This study evaluated the formulation and efficacy of andrographolide-loaded nanostructured lipid carriers (AND-NLCs) in Nile tilapia (Oreochromis niloticus) challenged with Streptococcus agalactiae ENC06. AND-NLCs were prepared [...] Read more.
The increasing demand for sustainable disease management in aquaculture has intensified interest in plant-based therapeutics. This study evaluated the formulation and efficacy of andrographolide-loaded nanostructured lipid carriers (AND-NLCs) in Nile tilapia (Oreochromis niloticus) challenged with Streptococcus agalactiae ENC06. AND-NLCs were prepared by the phase-inversion technique and characterized by dynamic light scattering, transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), and in vitro release profiling. Antibacterial activity was assessed by measuring inhibition zone diameters, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC). Growth performance, feed utilization, hepatosomatic index (HSI), and disease resistance were evaluated over a 60-day feeding trial. The AND-NLCs exhibited an optimal particle size (189.6 nm), high encapsulation efficiency (90.58%), sustained release, and structural stability. Compared to the free AND and control group, AND-NLC supplementation significantly improved growth, feed efficiency, HSI, and positive allometric growth. It also enhanced survival (73.3%) and relative percent survival (RPS = 65.6%) following S. agalactiae ENC06 infection. Antibacterial efficacy and physiological responses showed positive correlations with nanoparticle characteristics. These findings suggest that AND-NLCs enhance bioavailability and therapeutic efficacy, supporting their potential as a functional dietary additive to promote growth and improve disease resistance in tilapia aquaculture. Full article
(This article belongs to the Special Issue Lipid-Based Nanoparticles for Sustainable Aquaculture)
Show Figures

Figure 1

19 pages, 1404 KiB  
Article
Comprehensive Evaluation of the Resilience of China’s Oil and Gas Industry Chain: Analysis and Thinking from Multiple Perspectives
by Yanqiu Wang, Lixia Yao, Xiangyun Li and Zhaoguo Qin
Sustainability 2025, 17(14), 6505; https://doi.org/10.3390/su17146505 - 16 Jul 2025
Viewed by 311
Abstract
Enhancing the resilience of the oil and gas industry chain is essential for achieving sustainable energy development amid global industrial restructuring and the accelerating low-carbon transformation. This study identifies the core contradictions in the development of China’s OGI and constructs a comprehensive evaluation [...] Read more.
Enhancing the resilience of the oil and gas industry chain is essential for achieving sustainable energy development amid global industrial restructuring and the accelerating low-carbon transformation. This study identifies the core contradictions in the development of China’s OGI and constructs a comprehensive evaluation index system to assess the resilience of the industry from the four sustainability-aligned dimensions of resistance, recovery, innovation, and transformation. Using the entropy weight comprehensive evaluation model, obstacle degree model, and coupling coordination degree model, the resilience performance of China’s OGI chain is evaluated from 2001 to 2022. The results show a significant upward trend in overall resilience, with evident stage characteristics. Resistance remains relatively stable, recovery shows the most improvement, innovation steadily increases, and transformation accelerates after 2019, particularly in response to China’s dual carbon goals. Key barriers include limited CCUS deployment and insufficient downstream innovation capacity. The improved coupling coordination among resilience subsystems highlights enhanced systemic synergy. These findings offer valuable implications for strengthening the sustainability and security of energy supply chains under climate and geopolitical pressures. Full article
Show Figures

Figure 1

18 pages, 4009 KiB  
Article
Impact of Thermo-Oxidative Aging on Flame Retardancy of Melamine Formaldehyde Particle Boards: Processes and Performance Degradation Analysis
by Shiyue Ling, Yanni Zhang, Dan Yang, Luoxin Huang and Yuchen Zhang
Fire 2025, 8(7), 274; https://doi.org/10.3390/fire8070274 - 11 Jul 2025
Viewed by 424
Abstract
Melamine formaldehyde particle boards (MFPBs), commonly utilized as a wooden decorative material in traditional architecture, demonstrate considerable performance deterioration with extended age, with reductions in essential flame retardancy and structural integrity presenting substantial risks to fire safety in structures. This research examines the [...] Read more.
Melamine formaldehyde particle boards (MFPBs), commonly utilized as a wooden decorative material in traditional architecture, demonstrate considerable performance deterioration with extended age, with reductions in essential flame retardancy and structural integrity presenting substantial risks to fire safety in structures. This research examines the impact of thermo-oxidative aging on the flame retardancy of MFPBs. The morphological evolution, surface composition, and flame-retardant characteristics of aged MFPBs were examined via scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG), limiting oxygen index (LOI), and cone calorimeter (CCT). The results indicate that thermo-oxidative aging (60 °C, 1440 h) markedly reduces the activation energy (E, by 17.05%), pre-exponential factor (A, by 68.52%), LOI value (by 4%, from 27.5 to 26.4), and time to ignition (TTI, by 17.1%, from 41 s to 34 s) while augmenting the peak mass loss rate (MHRR, by 4.7%) and peak heat release rate (pHRR, by 20.1%). Subsequent investigation indicates that aging impairs the char layer structure on MFPB surfaces, hastens the migration and degradation of melamine formaldehyde resin (MFR), and alters the dynamic equilibrium between “MFR surface enrichment” and “thermal decomposition”. The identified degradation thresholds and failure mechanisms provide essential parameters for developing aging-resistant fireproof composites, meeting the pressing demands of building safety requirements and sustainable material design. Full article
(This article belongs to the Special Issue Fire Prevention and Flame Retardant Materials)
Show Figures

Figure 1

24 pages, 13937 KiB  
Article
Investigation into the Strength, Hydration, and Microstructural Characteristics of Clinker-Free Cement Composed of Phosphorus Slag, Fluidized Bed Combustion Bottom Ash, and Lime
by Yanzhou Peng, Haitian Li, Hefei Yin, Ji Xiao and Gang Xu
Materials 2025, 18(14), 3266; https://doi.org/10.3390/ma18143266 - 10 Jul 2025
Viewed by 403
Abstract
This study focuses on developing a novel clinker-free cement, specifically comprising phosphorus slag-based cementitious materials (PSCMs), by utilizing lime and industrial byproducts, including granulated electric furnace phosphorus slag and fluidized bed combustion bottom ash. The optimal composition of PSCM was determined by investigating [...] Read more.
This study focuses on developing a novel clinker-free cement, specifically comprising phosphorus slag-based cementitious materials (PSCMs), by utilizing lime and industrial byproducts, including granulated electric furnace phosphorus slag and fluidized bed combustion bottom ash. The optimal composition of PSCM was determined by investigating the effects of different proportions of activators (water glass and sodium sulfate) and retarder (potassium fluoride) on the setting time and the mechanical strength of PSCMs. Performance evaluations demonstrated that the compressive and flexural strengths of the optimal PSCM formulation at 28 days were 64.1 MPa and 7.5 MPa, respectively. Notably, concrete prepared with the optimal PSCM exhibited superior freeze–thaw resistance and sulfate resistance compared to Portland cement concrete of equivalent strength grades. The comprehensive characterization of selected PSCM compositions, conducted using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscope–energy-dispersive spectrometry (SEM-EDS), provided in-depth insights into the interrelationship among mechanical properties, durability, and microstructural characteristics. SEM-EDS analysis confirmed that calcium aluminosilicate hydrate and sodium aluminosilicate hydrate are the predominant hydration products of PSCMs. FTIR and TG analyses elucidated the continuous hydration behavior of PSCMs during the curing process, while SEM observations revealed a densely compact microstructure in the hardened PSCM paste. Full article
(This article belongs to the Topic Novel Cementitious Materials)
Show Figures

Figure 1

12 pages, 3441 KiB  
Article
Mechanical Strength and Hydration Characteristic of Multiple Common Waste-Blended Cement-Based Materials Cured by Electric-Induced Heating Curing Under Severely Cold Environments
by Lei Zhang, Ruisen Li, Sheng Li, Han Wang and Qiang Fu
Materials 2025, 18(14), 3220; https://doi.org/10.3390/ma18143220 - 8 Jul 2025
Viewed by 305
Abstract
To address the challenges of concrete construction in polar regions, this study investigates the feasibility of fabricating cement-based materials under severely low temperatures using electric-induced heating curing methods. Cement mortars incorporating fly ash (FA-CM), ground granulated blast furnace slag (GGBS-CM), and metakaolin (MK-CM) [...] Read more.
To address the challenges of concrete construction in polar regions, this study investigates the feasibility of fabricating cement-based materials under severely low temperatures using electric-induced heating curing methods. Cement mortars incorporating fly ash (FA-CM), ground granulated blast furnace slag (GGBS-CM), and metakaolin (MK-CM) were cured at environmental temperatures of −20 °C, −40 °C, and −60 °C. The optimal carbon fiber (CF) contents were determined using the initial electric resistivity to ensure a consistent electric-induced heating curing process. The thermal profiles during curing were monitored, and mechanical strength development was systematically evaluated. Hydration characteristics were elucidated through thermogravimetric analysis (TG), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR) to identify phase compositions and reaction products. Results demonstrate that electric-induced heating effectively mitigates the adverse effect caused by the ultra-low temperature constraints, with distinct differences in the strength performance and hydration kinetics among supplementary cementitious materials. MK-CM exhibited superior early strength development with strength increasing rates above 10% compared to the Ref. specimen, which was attributed to the accelerated pozzolanic reactions. Microstructural analyses further verified the macroscopic strength test results that showed that electric-induced heating curing can effectively promote the performance development even under severely cold environments with a higher hydration degree and refined micro-pore structure. This work proposes a viable strategy for polar construction applications. Full article
Show Figures

Figure 1

Back to TopTop