Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (16,129)

Search Parameters:
Keywords = training neural networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 28131 KiB  
Article
Landslide Susceptibility Assessment in Ya’an Based on Coupling of GWR and TabNet
by Jiatian Li, Ruirui Wang, Wei Shi, Le Yang, Jiahao Wei, Fei Liu and Kaiwei Xiong
Remote Sens. 2025, 17(15), 2678; https://doi.org/10.3390/rs17152678 (registering DOI) - 2 Aug 2025
Abstract
Landslides are destructive geological hazards, making accurate landslide susceptibility assessment essential for disaster prevention and mitigation. However, existing studies often lack scientific rigor in negative sample construction and have unclear model applicability. This study focuses on Ya’an City, Sichuan Province, China, and proposes [...] Read more.
Landslides are destructive geological hazards, making accurate landslide susceptibility assessment essential for disaster prevention and mitigation. However, existing studies often lack scientific rigor in negative sample construction and have unclear model applicability. This study focuses on Ya’an City, Sichuan Province, China, and proposes an innovative approach to negative sample construction using Geographically Weighted Regression (GWR), which is then integrated with Tabular Network (TabNet), a deep learning architecture tailored to structured tabular data, to assess landslide susceptibility. The performance of TabNet is compared against Random Forest, Light Gradient Boosting Machine, deep neural networks, and Residual Networks. The experimental results indicate that (1) the GWR-based sampling strategy substantially improves model performance across all tested models; (2) TabNet trained using the GWR-based negative samples achieves superior performance over all other evaluated models, with an average AUC of 0.9828, exhibiting both high accuracy and interpretability; and (3) elevation, land cover, and annual Normalized Difference Vegetation Index are identified as dominant predictors through TabNet’s feature importance analysis. The results demonstrate that combining GWR and TabNet substantially enhances landslide susceptibility modeling by improving both accuracy and interpretability, establishing a more scientifically grounded approach to negative sample construction, and providing an interpretable, high-performing modeling framework for geological hazard risk assessment. Full article
Show Figures

Figure 1

27 pages, 2496 KiB  
Article
A Context-Aware Tourism Recommender System Using a Hybrid Method Combining Deep Learning and Ontology-Based Knowledge
by Marco Flórez, Eduardo Carrillo, Francisco Mendes and José Carreño
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 194; https://doi.org/10.3390/jtaer20030194 (registering DOI) - 2 Aug 2025
Abstract
The Santurbán paramo is a sensitive high-mountain ecosystem exposed to pressures from extractive and agricultural activities, as well as increasing tourism. In response, this study presents a context-aware recommendation system designed to support sustainable tourism through the integration of deep neural networks and [...] Read more.
The Santurbán paramo is a sensitive high-mountain ecosystem exposed to pressures from extractive and agricultural activities, as well as increasing tourism. In response, this study presents a context-aware recommendation system designed to support sustainable tourism through the integration of deep neural networks and ontology-based semantic modeling. The proposed system delivers personalized recommendations—such as activities, accommodations, and ecological routes—by processing user preferences, geolocation data, and contextual features, including cost and popularity. The architecture combines a trained TensorFlow Lite model with a domain ontology enriched with GeoSPARQL for geospatial reasoning. All inference operations are conducted locally on Android devices, supported by SQLite for offline data storage, which ensures functionality in connectivity-restricted environments and preserves user privacy. Additionally, the system employs geofencing to trigger real-time environmental notifications when users approach ecologically sensitive zones, promoting responsible behavior and biodiversity awareness. By incorporating structured semantic knowledge with adaptive machine learning, the system enables low-latency, personalized, and conservation-oriented recommendations. This approach contributes to the sustainable management of natural reserves by aligning individual tourism experiences with ecological protection objectives, particularly in remote areas like the Santurbán paramo. Full article
Show Figures

Figure 1

17 pages, 3061 KiB  
Article
Model-Agnostic Meta-Learning in Predicting Tunneling-Induced Surface Ground Deformation
by Wei He, Guan-Bin Chen, Wenlian Qian, Wen-Li Chen, Liang Tang and Xiangxun Kong
Symmetry 2025, 17(8), 1220; https://doi.org/10.3390/sym17081220 (registering DOI) - 2 Aug 2025
Abstract
The present investigation presents the field measurement and prediction of tunneling-induced surface ground settlement in Tianjin Metro Line 7, China. The cross-section of a metro tunnel exhibits circular symmetry, thereby making it suitable for tunneling with a circular shield machine. The ground surface [...] Read more.
The present investigation presents the field measurement and prediction of tunneling-induced surface ground settlement in Tianjin Metro Line 7, China. The cross-section of a metro tunnel exhibits circular symmetry, thereby making it suitable for tunneling with a circular shield machine. The ground surface may deform during the tunneling stage. In the early stage of tunneling, few measurement data can be collected. To obtain a better usable prediction model, two kinds of neural networks according to the model-agnostic meta-learning (MAML) scheme are presented. One kind of deep learning strategy is a combination of the Back-Propagation Neural Network (BPNN) and the MAML model, named MAML-BPNN. The other prediction model is a mixture of the MAML model and the Long Short-Term Memory (LSTM) model, named MAML-LSTM. Founded on several measurement datasets, the prediction models of the MAML-BPNN and MAML-LSTM are successfully trained. The results show the present models possess good prediction ability for tunneling-induced surface ground settlement. Based on the coefficient of determination, the prediction result using MAML-LSTM is superior to that of MAML-BPNN by 0.1. Full article
Show Figures

Figure 1

23 pages, 2015 KiB  
Article
ASA-PSO-Optimized Elman Neural Network Model for Predicting Mechanical Properties of Coarse-Grained Soils
by Haijuan Wang, Jiang Li, Yufei Zhao and Biao Liu
Processes 2025, 13(8), 2447; https://doi.org/10.3390/pr13082447 (registering DOI) - 1 Aug 2025
Abstract
Coarse-grained soils serve as essential fill materials in earth–rock dam engineering, where their mechanical properties critically influence dam deformation and stability, directly impacting project safety. Artificial intelligence (AI) techniques are emerging as powerful tools for predicting the mechanical properties of coarse-grained soils. However, [...] Read more.
Coarse-grained soils serve as essential fill materials in earth–rock dam engineering, where their mechanical properties critically influence dam deformation and stability, directly impacting project safety. Artificial intelligence (AI) techniques are emerging as powerful tools for predicting the mechanical properties of coarse-grained soils. However, AI-based prediction models for these properties face persistent challenges, particularly in parameter tuning—a process requiring substantial computational resources, extensive time, and specialized expertise. To address these limitations, this study proposes a novel prediction model that integrates Adaptive Simulated Annealing (ASA) with an improved Particle Swarm Optimization (PSO) algorithm to optimize the Elman Neural Network (ENN). The methodology encompasses three key aspects: First, the standard PSO algorithm is enhanced by dynamically adjusting its inertial weight and learning factors. The ASA algorithm is then employed to optimize the Adaptive PSO (APSO), effectively mitigating premature convergence and local optima entrapment during training, thereby ensuring convergence to the global optimum. Second, the refined PSO algorithm optimizes the ENN, overcoming its inherent limitations of slow convergence and susceptibility to local minima. Finally, validation through real-world engineering case studies demonstrates that the ASA-PSO-optimized ENN model achieves high accuracy in predicting the mechanical properties of coarse-grained soils. This model provides reliable constitutive parameters for stress–strain analysis in earth–rock dam engineering applications. Full article
(This article belongs to the Section Particle Processes)
14 pages, 2795 KiB  
Article
Obtaining Rotational Stiffness of Wind Turbine Foundation from Acceleration and Wind Speed SCADA Data
by Jiazhi Dai, Mario Rotea and Nasser Kehtarnavaz
Sensors 2025, 25(15), 4756; https://doi.org/10.3390/s25154756 (registering DOI) - 1 Aug 2025
Abstract
Monitoring the health of wind turbine foundations is essential for ensuring their operational safety. This paper presents a cost-effective approach to obtain rotational stiffness of wind turbine foundations by using only acceleration and wind speed data that are part of SCADA data, thus [...] Read more.
Monitoring the health of wind turbine foundations is essential for ensuring their operational safety. This paper presents a cost-effective approach to obtain rotational stiffness of wind turbine foundations by using only acceleration and wind speed data that are part of SCADA data, thus lowering the use of moment and tilt sensors that are currently being used for obtaining foundation stiffness. First, a convolutional neural network model is applied to map acceleration and wind speed data within a moving window to corresponding moment and tilt values. Rotational stiffness of the foundation is then estimated by fitting a line in the moment-tilt plane. The results obtained indicate that such a mapping model can provide stiffness values that are within 7% of ground truth stiffness values on average. Second, the developed mapping model is re-trained by using synthetic acceleration and wind speed data that are generated by an autoencoder generative AI network. The results obtained indicate that although the exact amount of stiffness drop cannot be determined, the drops themselves can be detected. This mapping model can be used not only to lower the cost associated with obtaining foundation rotational stiffness but also to sound an alarm when a foundation starts deteriorating. Full article
(This article belongs to the Special Issue Sensors Technology Applied in Power Systems and Energy Management)
Show Figures

Figure 1

14 pages, 21956 KiB  
Article
Evaluating Image Quality Metrics as Loss Functions for Image Dehazing
by Rareș Dobre-Baron, Adrian Savu-Jivanov and Cosmin Ancuți
Sensors 2025, 25(15), 4755; https://doi.org/10.3390/s25154755 (registering DOI) - 1 Aug 2025
Abstract
The difficulty and manual nature of procuring human evaluators for ranking the quality of images affected by various types of degradations, and of those cleaned up by developed algorithms, has lead to the widespread adoption of automated metrics, like the Peak Signal-to-Noise Ratio [...] Read more.
The difficulty and manual nature of procuring human evaluators for ranking the quality of images affected by various types of degradations, and of those cleaned up by developed algorithms, has lead to the widespread adoption of automated metrics, like the Peak Signal-to-Noise Ratio (PSNR) and the Structural Similarity Index Metric (SSIM). However, disparities between rankings given by these metrics and those given by human evaluators have encouraged the development of improved image quality assessment (IQA) metrics that are a better fit for this purpose. These methods have been previously used solely for quality assessments and not as objectives in the training of neural networks for high-level vision tasks, despite the potential improvements that may come about by directly optimizing for desired metrics. This paper examines the adequacy of ten recent IQA metrics, compared with standard loss functions, within two trained dehazing neural networks, with observed broad improvement in their performance. Full article
(This article belongs to the Special Issue Sensing and Imaging in Computer Vision)
18 pages, 2724 KiB  
Article
Uncertainty-Aware Earthquake Forecasting Using a Bayesian Neural Network with Elastic Weight Consolidation
by Changchun Liu, Yuting Li, Huijuan Gao, Lin Feng and Xinqian Wu
Buildings 2025, 15(15), 2718; https://doi.org/10.3390/buildings15152718 (registering DOI) - 1 Aug 2025
Abstract
Effective earthquake early warning (EEW) is essential for disaster prevention in the built environment, enabling a rapid structural response, system shutdown, and occupant evacuation to mitigate damage and casualties. However, most current EEW systems lack rigorous reliability analyses of their predictive outcomes, limiting [...] Read more.
Effective earthquake early warning (EEW) is essential for disaster prevention in the built environment, enabling a rapid structural response, system shutdown, and occupant evacuation to mitigate damage and casualties. However, most current EEW systems lack rigorous reliability analyses of their predictive outcomes, limiting their effectiveness in real-world scenarios—especially for on-site warnings, where data are limited and time is critical. To address these challenges, we propose a Bayesian neural network (BNN) framework based on Stein variational gradient descent (SVGD). By performing Bayesian inference, we estimate the posterior distribution of the parameters, thus outputting a reliability analysis of the prediction results. In addition, we incorporate a continual learning mechanism based on elastic weight consolidation, allowing the system to adapt quickly without full retraining. Our experiments demonstrate that our SVGD-BNN model significantly outperforms traditional peak displacement (Pd)-based approaches. In a 3 s time window, the Pearson correlation coefficient R increases by 9.2% and the residual standard deviation SD decreases by 24.4% compared to a variational inference (VI)-based BNN. Furthermore, the prediction variance generated by the model can effectively reflect the uncertainty of the prediction results. The continual learning strategy reduces the training time by 133–194 s, enhancing the system’s responsiveness. These features make the proposed framework a promising tool for real-time, reliable, and adaptive EEW—supporting disaster-resilient building design and operation. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

31 pages, 3315 KiB  
Article
Searching for the Best Artificial Neural Network Architecture to Estimate Column and Beam Element Dimensions
by Ayla Ocak, Gebrail Bekdaş, Sinan Melih Nigdeli, Umit Işıkdağ and Zong Woo Geem
Information 2025, 16(8), 660; https://doi.org/10.3390/info16080660 (registering DOI) - 1 Aug 2025
Abstract
The cross-sectional dimensions of structural elements in a structure are design elements that need to be carefully designed and are related to the stiffness of the structure. Various optimization processes are applied to determine the optimum cross-sectional dimensions of beams or columns in [...] Read more.
The cross-sectional dimensions of structural elements in a structure are design elements that need to be carefully designed and are related to the stiffness of the structure. Various optimization processes are applied to determine the optimum cross-sectional dimensions of beams or columns in structures. By repeating the optimization processes for multiple load scenarios, it is possible to create a data set that shows the optimum design section properties. However, this step means repeating the same processes to produce the optimum cross-sectional dimensions. Artificial intelligence technology offers a short-cut solution to this by providing the opportunity to train itself with previously generated optimum cross-sectional dimensions and infer new cross-sectional dimensions. By processing the data, the artificial neural network can generate models that predict the cross-section for a new structural element. In this study, an optimization process is applied to a simple tubular column and an I-section beam, and the results are compiled to create a data set that presents the optimum section dimensions as a class. The harmony search (HS) algorithm, which is a metaheuristic method, was used in optimization. An artificial neural network (ANN) was created to predict the cross-sectional dimensions of the sample structural elements. The neural architecture search (NAS) method, which incorporates many metaheuristic algorithms designed to search for the best artificial neural network architecture, was applied. In this method, the best values of various parameters of the neural network, such as activation function, number of layers, and neurons, are searched for in the model with a tool called HyperNetExplorer. Model metrics were calculated to evaluate the prediction success of the developed model. An effective neural network architecture for column and beam elements is obtained. Full article
(This article belongs to the Special Issue Optimization Algorithms and Their Applications)
Show Figures

Figure 1

19 pages, 6085 KiB  
Article
Earthquake Precursors Based on Rock Acoustic Emission and Deep Learning
by Zihan Jiang, Zhiwen Zhu, Giuseppe Lacidogna, Leandro F. Friedrich and Ignacio Iturrioz
Sci 2025, 7(3), 103; https://doi.org/10.3390/sci7030103 (registering DOI) - 1 Aug 2025
Abstract
China is one of the countries severely affected by earthquakes, making precise and timely identification of earthquake precursors essential for reducing casualties and property damage. A novel method is proposed that combines a rock acoustic emission (AE) detection technique with deep learning methods [...] Read more.
China is one of the countries severely affected by earthquakes, making precise and timely identification of earthquake precursors essential for reducing casualties and property damage. A novel method is proposed that combines a rock acoustic emission (AE) detection technique with deep learning methods to facilitate real-time monitoring and advance earthquake precursor detection. The AE equipment and seismometers were installed in a granite tunnel 150 m deep in the mountains of eastern Guangdong, China, allowing for the collection of experimental data on the correlation between rock AE and seismic activity. The deep learning model uses features from rock AE time series, including AE events, rate, frequency, and amplitude, as inputs, and estimates the likelihood of seismic events as the output. Precursor features are extracted to create the AE and seismic dataset, and three deep learning models are trained using neural networks, with validation and testing. The results show that after 1000 training cycles, the deep learning model achieves an accuracy of 98.7% on the validation set. On the test set, it reaches a recognition accuracy of 97.6%, with a recall rate of 99.6% and an F1 score of 0.975. Additionally, it successfully identified the two biggest seismic events during the monitoring period, confirming its effectiveness in practical applications. Compared to traditional analysis methods, the deep learning model can automatically process and analyse recorded massive AE data, enabling real-time monitoring of seismic events and timely earthquake warning in the future. This study serves as a valuable reference for earthquake disaster prevention and intelligent early warning. Full article
Show Figures

Figure 1

21 pages, 3746 KiB  
Article
DCP: Learning Accelerator Dataflow for Neural Networks via Propagation
by Peng Xu, Wenqi Shao and Ping Luo
Electronics 2025, 14(15), 3085; https://doi.org/10.3390/electronics14153085 (registering DOI) - 1 Aug 2025
Abstract
Deep neural network (DNN) hardware (HW) accelerators have achieved great success in improving DNNs’ performance and efficiency. One key reason is the dataflow in executing a DNN layer, including on-chip data partitioning, computation parallelism, and scheduling policy, which have large impacts on latency [...] Read more.
Deep neural network (DNN) hardware (HW) accelerators have achieved great success in improving DNNs’ performance and efficiency. One key reason is the dataflow in executing a DNN layer, including on-chip data partitioning, computation parallelism, and scheduling policy, which have large impacts on latency and energy consumption. Unlike prior works that required considerable efforts from HW engineers to design suitable dataflows for different DNNs, this work proposes an efficient data-centric approach, named Dataflow Code Propagation (DCP), to automatically find the optimal dataflow for DNN layers in seconds without human effort. It has several attractive benefits that prior studies lack, including the following: (i) We translate the HW dataflow configuration into a code representation in a unified dataflow coding space, which can be optimized by back-propagating gradients given a DNN layer or network. (ii) DCP learns a neural predictor to efficiently update the dataflow codes towards the desired gradient directions to minimize various optimization objectives, e.g., latency and energy. (iii) It can be easily generalized to unseen HW configurations in a zero-shot or few-shot learning manner. For example, without using additional training data, Extensive experiments on several representative models such as MobileNet, ResNet, and ViT show that DCP outperforms its counterparts in various settings. Full article
(This article belongs to the Special Issue Applied Machine Learning in Data Science)
Show Figures

Figure 1

27 pages, 15404 KiB  
Article
Machine-Learning Models for Surface Ozone Forecast in Mexico City
by Mateen Ahmad, Bernhard Rappenglück, Olabosipo O. Osibanjo and Armando Retama
Atmosphere 2025, 16(8), 931; https://doi.org/10.3390/atmos16080931 (registering DOI) - 1 Aug 2025
Abstract
Mexico City frequently experiences high near-surface ozone concentrations, and exposure to elevated near-surface ozone causes harmful effects to the inhabitants and the environment of Mexico City. This necessitates developing models for Mexico City that predict near-surface ozone levels in advance. Such models are [...] Read more.
Mexico City frequently experiences high near-surface ozone concentrations, and exposure to elevated near-surface ozone causes harmful effects to the inhabitants and the environment of Mexico City. This necessitates developing models for Mexico City that predict near-surface ozone levels in advance. Such models are crucial for regulatory procedures and can save a great deal of near-surface ozone detrimental effects by serving as early warning systems. We utilize three machine-learning models, trained on seven-year data (2015–2021) and tested on one-year data (2022), to forecast the near-surface ozone concentrations. The trained models predict the next day’s 24-h near-surface ozone concentrations for up to one month; before forecasting the following months, the models are trained again and updated. Based on prediction results, the convolutional neural network outperforms the rest of the models on a yearly scale with an index of agreement of 0.93 for three stations, 0.92 for nine stations, and 0.91 for one station. Full article
Show Figures

Figure 1

22 pages, 2120 KiB  
Article
Machine Learning Algorithms and Explainable Artificial Intelligence for Property Valuation
by Gabriella Maselli and Antonio Nesticò
Real Estate 2025, 2(3), 12; https://doi.org/10.3390/realestate2030012 - 1 Aug 2025
Abstract
The accurate estimation of urban property values is a key challenge for appraisers, market participants, financial institutions, and urban planners. In recent years, machine learning (ML) techniques have emerged as promising tools for price forecasting due to their ability to model complex relationships [...] Read more.
The accurate estimation of urban property values is a key challenge for appraisers, market participants, financial institutions, and urban planners. In recent years, machine learning (ML) techniques have emerged as promising tools for price forecasting due to their ability to model complex relationships among variables. However, their application raises two main critical issues: (i) the risk of overfitting, especially with small datasets or with noisy data; (ii) the interpretive issues associated with the “black box” nature of many models. Within this framework, this paper proposes a methodological approach that addresses both these issues, comparing the predictive performance of three ML algorithms—k-Nearest Neighbors (kNN), Random Forest (RF), and the Artificial Neural Network (ANN)—applied to the housing market in the city of Salerno, Italy. For each model, overfitting is preliminarily assessed to ensure predictive robustness. Subsequently, the results are interpreted using explainability techniques, such as SHapley Additive exPlanations (SHAPs) and Permutation Feature Importance (PFI). This analysis reveals that the Random Forest offers the best balance between predictive accuracy and transparency, with features such as area and proximity to the train station identified as the main drivers of property prices. kNN and the ANN are viable alternatives that are particularly robust in terms of generalization. The results demonstrate how the defined methodological framework successfully balances predictive effectiveness and interpretability, supporting the informed and transparent use of ML in real estate valuation. Full article
Show Figures

Figure 1

16 pages, 1651 KiB  
Article
Modular Pipeline for Text Recognition in Early Printed Books Using Kraken and ByT5
by Yahya Momtaz, Lorenza Laccetti and Guido Russo
Electronics 2025, 14(15), 3083; https://doi.org/10.3390/electronics14153083 (registering DOI) - 1 Aug 2025
Abstract
Early printed books, particularly incunabula, are invaluable archives of the beginnings of modern educational systems. However, their complex layouts, antique typefaces, and page degradation caused by bleed-through and ink fading pose significant challenges for automatic transcription. In this work, we present a modular [...] Read more.
Early printed books, particularly incunabula, are invaluable archives of the beginnings of modern educational systems. However, their complex layouts, antique typefaces, and page degradation caused by bleed-through and ink fading pose significant challenges for automatic transcription. In this work, we present a modular pipeline that addresses these problems by combining modern layout analysis and language modeling techniques. The pipeline begins with historical layout-aware text segmentation using Kraken, a neural network-based tool tailored for early typographic structures. Initial optical character recognition (OCR) is then performed with Kraken’s recognition engine, followed by post-correction using a fine-tuned ByT5 transformer model trained on manually aligned line-level data. By learning to map noisy OCR outputs to verified transcriptions, the model substantially improves recognition quality. The pipeline also integrates a preprocessing stage based on our previous work on bleed-through removal using robust statistical filters, including non-local means, Gaussian mixtures, biweight estimation, and Gaussian blur. This step enhances the legibility of degraded pages prior to OCR. The entire solution is open, modular, and scalable, supporting long-term preservation and improved accessibility of cultural heritage materials. Experimental results on 15th-century incunabula show a reduction in the Character Error Rate (CER) from around 38% to around 15% and an increase in the Bilingual Evaluation Understudy (BLEU) score from 22 to 44, confirming the effectiveness of our approach. This work demonstrates the potential of integrating transformer-based correction with layout-aware segmentation to enhance OCR accuracy in digital humanities applications. Full article
Show Figures

Figure 1

15 pages, 748 KiB  
Article
Development of a Hybrid System Based on the CIELAB Colour Space and Artificial Neural Networks for Monitoring pH and Acidity During Yogurt Fermentation
by Ulises Alvarado, Jhon Tacuri, Alejandro Coloma, Edgar Gallegos Rojas, Herbert Callo, Cristina Valencia-Sullca, Nancy Curasi Rafael and Manuel Castillo
Dairy 2025, 6(4), 41; https://doi.org/10.3390/dairy6040041 (registering DOI) - 1 Aug 2025
Abstract
Monitoring pH and acidity during yoghurt fermentation is essential for product quality and process efficiency. Conventional measurement methods, however, are invasive and labour-intensive. This study developed artificial neural network (ANN) models to predict pH and titratable acidity during yoghurt fermentation using CIELAB colour [...] Read more.
Monitoring pH and acidity during yoghurt fermentation is essential for product quality and process efficiency. Conventional measurement methods, however, are invasive and labour-intensive. This study developed artificial neural network (ANN) models to predict pH and titratable acidity during yoghurt fermentation using CIELAB colour parameters (L, a*, b*). Reconstituted milk powder with 12% total solids was prepared with varying protein levels (4.2–4.8%), inoculum concentrations (1–3%), and fermentation temperatures (36–44 °C). Data were collected every 10 min until pH 4.6 was reached. Forty models were trained for each output variable, using 90% of the data for training and 10% for validation. The first two phases of the fermentation process were clearly distinguishable, lasting between 4.5 and 7 h and exceeding 0.6% lactic acid in all treatments evaluated. The best pH model used two hidden layers with 28 neurons (R2 = 0.969; RMSE = 0.007), while the optimal acidity model had four hidden layers with 32 neurons (R2 = 0.868; RMSE = 0.002). The strong correlation between colour and physicochemical changes confirms the feasibility of this non-destructive approach. Integrating ANN models and colourimetry offers a practical solution for real-time monitoring, helping improve process control in industrial yoghurt production. Full article
(This article belongs to the Section Milk Processing)
Show Figures

Figure 1

26 pages, 1790 KiB  
Article
A Hybrid Deep Learning Model for Aromatic and Medicinal Plant Species Classification Using a Curated Leaf Image Dataset
by Shareena E. M., D. Abraham Chandy, Shemi P. M. and Alwin Poulose
AgriEngineering 2025, 7(8), 243; https://doi.org/10.3390/agriengineering7080243 - 1 Aug 2025
Abstract
In the era of smart agriculture, accurate identification of plant species is critical for effective crop management, biodiversity monitoring, and the sustainable use of medicinal resources. However, existing deep learning approaches often underperform when applied to fine-grained plant classification tasks due to the [...] Read more.
In the era of smart agriculture, accurate identification of plant species is critical for effective crop management, biodiversity monitoring, and the sustainable use of medicinal resources. However, existing deep learning approaches often underperform when applied to fine-grained plant classification tasks due to the lack of domain-specific, high-quality datasets and the limited representational capacity of traditional architectures. This study addresses these challenges by introducing a novel, well-curated leaf image dataset consisting of 39 classes of medicinal and aromatic plants collected from the Aromatic and Medicinal Plant Research Station in Odakkali, Kerala, India. To overcome performance bottlenecks observed with a baseline Convolutional Neural Network (CNN) that achieved only 44.94% accuracy, we progressively enhanced model performance through a series of architectural innovations. These included the use of a pre-trained VGG16 network, data augmentation techniques, and fine-tuning of deeper convolutional layers, followed by the integration of Squeeze-and-Excitation (SE) attention blocks. Ultimately, we propose a hybrid deep learning architecture that combines VGG16 with Batch Normalization, Gated Recurrent Units (GRUs), Transformer modules, and Dilated Convolutions. This final model achieved a peak validation accuracy of 95.24%, significantly outperforming several baseline models, such as custom CNN (44.94%), VGG-19 (59.49%), VGG-16 before augmentation (71.52%), Xception (85.44%), Inception v3 (87.97%), VGG-16 after data augumentation (89.24%), VGG-16 after fine-tuning (90.51%), MobileNetV2 (93.67), and VGG16 with SE block (94.94%). These results demonstrate superior capability in capturing both local textures and global morphological features. The proposed solution not only advances the state of the art in plant classification but also contributes a valuable dataset to the research community. Its real-world applicability spans field-based plant identification, biodiversity conservation, and precision agriculture, offering a scalable tool for automated plant recognition in complex ecological and agricultural environments. Full article
(This article belongs to the Special Issue Implementation of Artificial Intelligence in Agriculture)
Show Figures

Figure 1

Back to TopTop