Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,149)

Search Parameters:
Keywords = traditional variety

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2333 KB  
Article
Evaluation of the Winemaking Characteristics of High Anthocyanin Teinturier Grape Varieties (Lines)
by Hongyan Zhang, Xiaoqian Zhang, Yu Deng, Yaoyuan Zhai, Yuanpeng Du, Yulin Fang, Kekun Zhang and Keqin Chen
Foods 2026, 15(2), 340; https://doi.org/10.3390/foods15020340 (registering DOI) - 17 Jan 2026
Abstract
Teinturier grapes are an important germplasm resource for addressing the insufficient accumulation of anthocyanins in grapes under adverse climatic conditions. To enrich the variety diversity, eight newly bred teinturier grape varieties were used for comparison with the traditional teinturier grape variety “Yan 73”. [...] Read more.
Teinturier grapes are an important germplasm resource for addressing the insufficient accumulation of anthocyanins in grapes under adverse climatic conditions. To enrich the variety diversity, eight newly bred teinturier grape varieties were used for comparison with the traditional teinturier grape variety “Yan 73”. The results showed that A1 wine exhibits high levels of citric and tartaric acids, while the B2 wine showed elevated levels of malic and succinic acids. The C1, B2, and G1 wines showed higher total phenol, anthocyanin, flavonoid, flavan-3-ol, and tannin content. In the free volatile components of C1 wine, α-phellandrene, methyl salicylate, α-Terpineol, β-Myrcene, isoamylol and ethyl acetate were the primary aroma compounds. Meanwhile, the glycosidically bound aroma components of B2 wine were predominantly dominated by nonanal, benzaldehyde, α-terpineol, hexanal, α-phellandrene, and D-limonene. Compared with Y73, B2 and A1 wines have better phenols, while B2, C1 and B5 wines have better flavors, which provides support for the promotion of new varieties. Full article
Show Figures

Figure 1

26 pages, 2278 KB  
Review
Molecular Mechanisms of Lignans in Lowering Blood Pressure and Anti-Obesity Effects: A Review
by Gitishree Das, Sandra Gonçalves, José Basilio Heredia, Nayely Leyva-López, Anabela Romano, Spiros Paramithiotis, Han-Seung Shin and Jayanta Kumar Patra
Foods 2026, 15(2), 336; https://doi.org/10.3390/foods15020336 - 16 Jan 2026
Abstract
Lignans are naturally occurring compounds found in a wide variety of plant species, including flaxseed, soybean, pumpkin seed, broccoli, sesame seed, and some berries. Lignans have been used for centuries in both food and traditional herbal medicine. Recently, numerous new lignans and lignan [...] Read more.
Lignans are naturally occurring compounds found in a wide variety of plant species, including flaxseed, soybean, pumpkin seed, broccoli, sesame seed, and some berries. Lignans have been used for centuries in both food and traditional herbal medicine. Recently, numerous new lignans and lignan derivatives with diverse biological properties have been identified. Lignans are considered promising for human health due to their hydrogen-donating antioxidant activity together with their ability to complex divalent transition metal cations. They have demonstrated beneficial effects for cardiovascular disease, as well as in maintaining blood glucose levels, supporting cardiac health, promoting anti-obesity effects, decreasing the risk of renal diseases, enhancing brain function, improving skin and gut health, among others. This review explores the biosynthesis and biological effects of lignans, with a particular focus on their antihypertensive and anti-obesity properties, as well as the molecular mechanisms involved. It also highlights recent advances in sustainable lignan extraction techniques that are suitable for human use. The mechanisms underlying these bioactivities are thought to involve hormonal metabolism and availability, antioxidant action, modulation of angiogenesis, and more. However, further research is needed to fully elucidate the molecular pathways through which lignans exert their therapeutic effects. Overall, lignans from various plant sources hold significant potential for application in functional foods, dietary supplements, and pharmaceutical products aimed at preventing and managing a range of health conditions, including hypertension and obesity. Full article
Show Figures

Figure 1

13 pages, 10056 KB  
Article
An Electrical Equivalent Model of an Electromembrane Stack with Fouling Under Pulsed Operation
by Pablo Yáñez, Hector Ramirez and Alvaro Gonzalez-Vogel
Membranes 2026, 16(1), 42; https://doi.org/10.3390/membranes16010042 - 16 Jan 2026
Abstract
This study introduces a novel hybrid model for an electromembrane stack, unifying an equivalent electrical circuit model incorporating specific resistance (RM,Rs) and capacitance (Cgs,Cdl) parameters with an empirical fouling [...] Read more.
This study introduces a novel hybrid model for an electromembrane stack, unifying an equivalent electrical circuit model incorporating specific resistance (RM,Rs) and capacitance (Cgs,Cdl) parameters with an empirical fouling model in a single framework. The model simplifies the traditional approach by serially connecting N (N=10) ion exchange membranes (anionic PC-SA and cationic PC-SK) and is validated using NaCl and Na2SO4 solutions in comparison with laboratory tests using various voltage signals, including direct current and electrically pulsed reversal operations at frequencies of 2000 and 4000 Hz. The model specifically accounts for the chemical stratification of the cell unit into bulk solution, diffusion, and Stern layers. We also included a calibration method using correction factors (αi) to fine-tune the electrical current signals induced by voltage stimulation. The empirical component of the model uses experimental data to simulate membrane fouling, ensuring consistency with laboratory-scale desalination processes performed under pulsed reversal operations and achieving a prediction error of less than 10%. In addition, a comparative analysis was used to assess the increase in electrical resistance due to fouling. By integrating electronic and empirical electrochemical data, this hybrid model opens the way to the construction of simple, practical, and reliable models that complement theoretical approaches, signifying an advance for a variety of electromembrane-based technologies. Full article
Show Figures

Graphical abstract

17 pages, 3431 KB  
Review
Conservation and Sustainable Development of Rice Landraces for Enhancing Resilience to Climate Change, with a Case Study of ‘Pantiange Heigu’ in China
by Shuyan Kou, Zhulamu Ci, Weihua Liu, Zhigang Wu, Huipin Peng, Pingrong Yuan, Cheng Jiang, Huahui Li, Elsayed Mansour and Ping Huang
Life 2026, 16(1), 143; https://doi.org/10.3390/life16010143 - 15 Jan 2026
Viewed by 33
Abstract
Climate change poses a threat to global rice production by increasing the frequency and intensity of extreme weather events. The widespread cultivation of genetically uniform modern varieties has narrowed the genetic base of rice, increasing its vulnerability to these increased pressures. Rice landraces [...] Read more.
Climate change poses a threat to global rice production by increasing the frequency and intensity of extreme weather events. The widespread cultivation of genetically uniform modern varieties has narrowed the genetic base of rice, increasing its vulnerability to these increased pressures. Rice landraces are traditional rice varieties that have been cultivated by farming communities for centuries and are considered crucial resources of genetic diversity. These landraces are adapted to a wide range of agro-ecological environments and exhibit valuable traits that provide tolerance to various biotic stresses, including drought, salinity, nutrient-deficient soils, and the increasing severity of climate-related temperature extremes. In addition, many landraces possess diverse alleles associated with resistance to biotic stresses, including pests and diseases. In addition, rice landraces exhibit great grain quality characters including high levels of essential amino acids, antioxidants, flavonoids, vitamins, and micronutrients. Hence, their preservation is vital for maintaining agricultural biodiversity and enhancing nutritional security, especially in vulnerable and resource-limited regions. However, rice landraces are increasingly threatened by genetic erosion due to widespread adoption of modern high-yielding varieties, habitat loss, and changing farming practices. This review discusses the roles of rice landraces in developing resilient and climate-smart rice cultivars. Moreover, the Pantiange Heigu landrace, cultivated at one of the highest altitudes globally in Yunnan Province, China, has been used as a case study for integrated conservation by demonstrating the successful combination of in situ and ex situ strategies, community engagement, policy support, and value-added development to sustainably preserve genetic diversity under challenging environmental and socio-economic challenges. Finally, this study explores the importance of employing advanced genomic technologies with supportive policies and economic encouragements to enhance conservation and sustainable development of rice landraces as a strategic imperative for global food security. By preserving and enhancing the utilization of rice landraces, the agricultural community can strengthen the genetic base of rice, improve crop resilience, and contribute substantially to global food security and sustainable agricultural development in the face of environmental and socio-economic challenges. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

24 pages, 1552 KB  
Review
Georgian Grapes and Wines as a Source of Phenolic Compounds: Composition, Antioxidant Activity, and Traditional Winemaking
by Valentina Mittova, Zurab R. Tsetskhladze, Nino Motsonelidze, Rosanna Palumbo and Giovanni N. Roviello
Molecules 2026, 31(2), 303; https://doi.org/10.3390/molecules31020303 - 15 Jan 2026
Viewed by 157
Abstract
Georgia is recognized as one of the world’s earliest known centers of grape cultivation and wine production, as well as the home of 525 indigenous grape varieties. Phenolic compounds are a diverse group of secondary metabolites which are present in both grapes and [...] Read more.
Georgia is recognized as one of the world’s earliest known centers of grape cultivation and wine production, as well as the home of 525 indigenous grape varieties. Phenolic compounds are a diverse group of secondary metabolites which are present in both grapes and wine, with the phenolic derivatives determining the organoleptic properties and the antioxidant activity of the resulting wines. Remarkably, the content and composition of phenolic compounds in wine are mainly influenced by the grape variety and the winemaking method. In this context, herein we review the present knowledge on the phenolic composition of the most common Georgian grape varieties and discuss available molecular insights on the resulting wines. The comparison of traditional European and traditional Georgian “qvevri” winemaking methods revealed that this method provides high antioxidant activity of Georgian wines, as well as a unique phenolic composition of red and white Georgian wines. Full article
(This article belongs to the Special Issue NUCLEO-OMICS24)
Show Figures

Graphical abstract

15 pages, 563 KB  
Article
Assessment of Juniper Ash Elemental Composition for Potential Use in a Traditional Indigenous Dietary Pattern
by Julie M. Hess, Madeline E. Comeau, Derek D. Bussan, Kyra Schwartz and Claudia PromSchmidt
Nutrients 2026, 18(2), 260; https://doi.org/10.3390/nu18020260 - 14 Jan 2026
Viewed by 159
Abstract
Background/Objectives: Ash made from juniper trees and added to cornmeal-based dishes may have provided calcium (Ca) to traditional Indigenous diets. Few studies have quantified the mineral content of juniper ash, including its Ca content. The objective of this study was to determine whether [...] Read more.
Background/Objectives: Ash made from juniper trees and added to cornmeal-based dishes may have provided calcium (Ca) to traditional Indigenous diets. Few studies have quantified the mineral content of juniper ash, including its Ca content. The objective of this study was to determine whether juniper ash could serve as a safe source of non-dairy Ca in an intervention study. Methods: Branches from two varieties of Juniper (Rocky Mountain Juniper, or Juniperus scopulorum and Eastern Red Cedar, or Juniperus virginiana) were harvested and burned to ash in a laboratory setting. Juniper ash from the southwestern U.S. available for retail purchase was used for comparison. All samples were tested for content of 10 nutritive elements (Ca, copper, iron, potassium, magnesium, manganese, sodium, phosphorus, selenium, and zinc) and 20 potentially toxic elements (silver, aluminum, arsenic, barium, beryllium, cadmium, cobalt, chromium, mercury, lithium, molybdenum, nickel, lead, antimony, tin, strontium, thallium, uranium, and vanadium) as well as n = 576 pesticide residues. Results: All samples contained both nutritive and potentially toxic elements. Each teaspoon of ash contained an average of 445 ± 141 mg Ca. However, the samples also contained lead in amounts ranging from 1.09 ppm to 15 ppm. Conclusions: Information on the nutritive and potentially toxic elemental content of juniper ash and how it may interact within a food matrix is insufficient to determine its safety as a Ca source. Further investigation is needed on the bioavailability of calcium oxide and its interaction with other dietary components to clarify the potential role of juniper ash in contemporary food patterns. Full article
(This article belongs to the Special Issue Mineral Nutrition on Human Health and Disease—2nd Edition)
Show Figures

Figure 1

19 pages, 1143 KB  
Article
Utilisation of Woody Waste from Wine Production for Energy Purposes Depending on the Place of Cultivation
by Magdalena Kapłan, Grzegorz Maj, Kamila E. Klimek, Richard Danko, Mojmir Baroň and Radek Sotolář
Agriculture 2026, 16(2), 212; https://doi.org/10.3390/agriculture16020212 - 14 Jan 2026
Viewed by 137
Abstract
Orchard crops generate substantial quantities of diverse biomass each year, with grapevines being among the most economically significant species worldwide. Considering the scale of this biomass, there is a growing need to explore rational strategies for its utilisation, for example, for energy production [...] Read more.
Orchard crops generate substantial quantities of diverse biomass each year, with grapevines being among the most economically significant species worldwide. Considering the scale of this biomass, there is a growing need to explore rational strategies for its utilisation, for example, for energy production or other value-added applications. Such approaches may contribute to improving resource efficiency and reducing the environmental burden associated with agricultural waste. The aim of this study was to examine the energy potential of woody post-production waste from wine processing, with particular emphasis on grape stems of four cultivars—Chardonnay, Riesling, Merlot, and Zweigelt—grown in two contrasting climatic regions: south-eastern Poland and Moravia (Czech Republic). The results demonstrated that both the grape variety and cultivation site significantly influenced the majority of bunch biometric traits, including bunch and berry weight, berry number, and stem dimensions. A moderately warm climate promoted the development of larger and heavier bunches as well as more robust stems across all examined cultivars. Energy analyses indicated that Zweigelt stems produced under moderately warm conditions and Chardonnay stems from a temperate climate exhibited the most favourable combustion properties. Nonetheless, certain constraints were identified, such as increased ash (12.20%) and moisture content (11.51%) in Chardonnay grown in warmer conditions, and elevated CO and CO2 emissions observed for Zweigelt (1333.26 kg·mg−1). Overall, the findings confirm that grape stems constitute a promising local source of bioenergy, with their energy performance determined predominantly by varietal characteristics and climatic factors. Their utilisation aligns with circular-economy principles and may help reduce the environmental impacts associated with traditional viticultural waste management. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

16 pages, 1327 KB  
Article
Chromosome Analysis of Mitosis on Interspecific Hybrid Progenies on (Fagopyrum tataricum) with Golden Buckwheat (Fagopyrum cymosum Complex)
by Fan Zhang, Lian Tang, Lijuan Yang, Ziyang Liu, Yuanzhi Cheng, Hongyou Li, Taoxiong Shi and Qingfu Chen
Agronomy 2026, 16(2), 190; https://doi.org/10.3390/agronomy16020190 - 13 Jan 2026
Viewed by 89
Abstract
Tartary buckwheat has increasingly become the focus of people’s attention due to its powerful health benefits. Golden buckwheat is a traditional Chinese medicine. People have begun to utilize it through wide hybridization to further enhance the health benefits of Tartary buckwheat. To study [...] Read more.
Tartary buckwheat has increasingly become the focus of people’s attention due to its powerful health benefits. Golden buckwheat is a traditional Chinese medicine. People have begun to utilize it through wide hybridization to further enhance the health benefits of Tartary buckwheat. To study the genetic stability of the interspecific hybrids of Tartary buckwheat with golden buckwheat, and to provide scientific basis for the interspecific cross breeding of buckwheat, the mitotic chromosomes of two buckwheat double lines and their interspecific hybrids with golden buckwheat were subjected to observe the karyotypes. The results showed as follows: (1) The two autotetraploid Tartary buckwheat lines (Long Black-4T and Daku-1) have chromosome number 2n = 32. The karyotype formula of 2n = 4x = 32 consisted of 16 pairs of metacentric chromosomes for Long Black-4T (TTTT) while Daku-1 (TTTT) has 1sm + 7m Gui Jinqiao 4 with 2n = 32 has a karyotype formula of 2n = 4x = 32 that consisted 1sm + 6m + 1M (genome M) and 2sm + 5m + 1M (genome M’). The normal fertile tetraploid hybrid F1 plants between Long Black-4T and Gui Jinqiao 4 has 2n = 4x = [1sm + 7m (M), 1sm + 7m (M’), 14m + 2M (TT)]. The normal fertile variety Gui Jinku 1 from the above hybrid progenies shows 2n = 4x = [3sm + 5m (M), 2sm + 6m (M’), 16m (TT)], indicating an increment of sm chromosomes by rearrangements of chromosome structure in the M and M’ genomes. The above parents and their hybrids with the MM’TT genome show fertility. A plant from F2 of the above cross, showing highly infertility, has 2n = 3x= [1sm + 7m (M), 1sm + 7m (M’), 8m (T)]; and back cross progeny plant from Daku 1/Gui Jinqiao 4 F2//Gui Jinqiao 2 golden buckwheat has 2n = 4x = [16m (MM), 5sm + 3m (M’), 1sm + 7m (T)], showed high infertility, which is caused by genome aneuploidy and non-even ploidy. The above shows that there are obvious variations of genome karyotypes from the same parent, indicated by certain chromosome structural rearrangements in genomes T, M, and M’. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

16 pages, 412 KB  
Review
Plant Status Nutrition and “Extremely Dense Planting” Technology
by Daxia Wu, Shiyong Chen, Xiaoxiao Lu, Fuwei Wang, Xianfu Yuan, Wenxia Pei and Jianfei Wang
Agronomy 2026, 16(2), 191; https://doi.org/10.3390/agronomy16020191 - 13 Jan 2026
Viewed by 234
Abstract
Advances in plant nutrition have driven substantial progress in modern fertilization technologies. Nevertheless, excessive chemical fertilizer application, low nutrient-use efficiency, and the resulting environmental pollution remain widespread. We have reviewed the research progress and existing limitations in the field of plant nutrition and [...] Read more.
Advances in plant nutrition have driven substantial progress in modern fertilization technologies. Nevertheless, excessive chemical fertilizer application, low nutrient-use efficiency, and the resulting environmental pollution remain widespread. We have reviewed the research progress and existing limitations in the field of plant nutrition and fertilization technology. Based on the traditional plant nutrition diagnosis and integrating visual diagnosis methods, this study explores the intrinsic relationship between plant growth status, nutrient supply conditions, and crop yield and proposed the concept of “status nutrition”. Variations in environmental nutrient conditions lead plants to exhibit distinct growth status in terms of vigor and phenotype. We define the plant nutritional status reflected by this growth status as “status nutrition”. Based on growth characteristics, plant growth status can be classified as weak, normal, or vigorous, corresponding to deficient, appropriate, and excessive environmental nutrient supply, respectively. Guided by this concept, an innovative rice “extremely dense planting” technology is integrated by increasing planting density, eliminating tiller-stage fertilization, and optimizing nitrogen management. The technology adapts to growth status with low nutrient demand, coordinates population growth and main-stem panicle formation, and achieves high yield with reduced fertilizer inputs. Further research is needed on the nutrient metabolism mechanisms of plants under different growth statuses and the growth status grading system. The promotion of “extremely dense planting” is constrained by crop variety traits and soil fertility, and its parameters urgently need to be optimized. Overall, the framework of “status nutrition” provides important theoretical support for the development and application of crop high-yield cultivation technologies. Full article
(This article belongs to the Special Issue Plant Nutrition Eco-Physiology and Nutrient Management)
Show Figures

Figure 1

22 pages, 30575 KB  
Article
Dual-Domain Seismic Data Reconstruction Based on U-Net++
by Enkai Li, Wei Fu, Feng Zhu, Bonan Li, Xiaoping Fan, Tuo Zheng, Peng Zhang, Tiantian Hu, Ziming Zhou, Chongchong Wang and Pengcheng Jiang
Processes 2026, 14(2), 263; https://doi.org/10.3390/pr14020263 - 12 Jan 2026
Viewed by 181
Abstract
Missing seismic data in reflection seismology, which frequently arises from a variety of operational and natural limitations, immediately impairs the quality of ensuing imaging and calls into question the validity of geological interpretation. Traditional techniques for reconstructing seismic data frequently rely significantly on [...] Read more.
Missing seismic data in reflection seismology, which frequently arises from a variety of operational and natural limitations, immediately impairs the quality of ensuing imaging and calls into question the validity of geological interpretation. Traditional techniques for reconstructing seismic data frequently rely significantly on parameter choices and prior assumptions. Even while these methods work well for partially missing traces, reconstructing whole shot gather is still a difficult task that has not been thoroughly studied. Data-driven approaches that summarize and generalize patterns from massive amounts of data have become more and more common in seismic data reconstruction research in recent years. This work builds on earlier research by proposing an enhanced technique that can recreate whole shot gathers as well as partially missing traces. During model training, we first implement a Moveout-window selective slicing method for reconstructing missing traces. By creating training datasets inside a high signal-to-noise ratio (SNR) window, this method improves the model’s capacity for learning. Additionally, a technique is presented for the receiver domain reconstruction of missing shot data. A dual-domain reconstruction method is used to successfully recover the seismic data in order to handle situations where there is simultaneous missing data in both domains. Full article
Show Figures

Figure 1

15 pages, 2576 KB  
Article
Active Power Criterion Based High-Adaptive Differential Protection for Power Electronic Equipment
by Yigong Xie, Chen Wu, Min Cheng, Dan Zhang, Xiao Zhang and Qian Chen
Energies 2026, 19(2), 356; https://doi.org/10.3390/en19020356 - 11 Jan 2026
Viewed by 160
Abstract
In flexible AC/DC microgrids, a variety of non-traditional power equipment are in operation, such as AC/DC interlinking converters. Moreover, due to the influence of interlinking converters, short-circuit fault characteristics in microgrids are much different from those in traditional distribution networks, which makes existing [...] Read more.
In flexible AC/DC microgrids, a variety of non-traditional power equipment are in operation, such as AC/DC interlinking converters. Moreover, due to the influence of interlinking converters, short-circuit fault characteristics in microgrids are much different from those in traditional distribution networks, which makes existing protection methods have poor adaptability. This paper introduces an active power variable-based differential protection method, which is suitable for various non-traditional power equipment. While in normal operation or during an external fault state, internal active power losses are rather minimum, resulting in nearly zero power difference between equipment terminals. However, during an internal fault state, the active power difference between terminals becomes extremely large, which can be adopted as protection criteria. The selectivity and rapidity are verified by simulation cases, and the aforementioned method is applicable to various non-traditional equipment, such as single-phase AC/DC converters, three-phase AC/DC converters, etc. Full article
Show Figures

Figure 1

24 pages, 3255 KB  
Article
Research on Drought Stress Detection in the Seedling Stage of Yunnan Large-Leaf Tea Plants Based on Biomimetic Vision and Chlorophyll Fluorescence Imaging Technology
by Baijuan Wang, Weihao Liu, Xiaoxue Guo, Jihong Zhou, Xiujuan Deng, Shihao Zhang and Yuefei Wang
Biomimetics 2026, 11(1), 56; https://doi.org/10.3390/biomimetics11010056 - 8 Jan 2026
Viewed by 220
Abstract
To address the issue of drought level confusion in the detection of drought stress during the seedling stage of the Yunnan large-leaf tea variety using the traditional YOLOv13 network, this study proposes an improved version of the network, MC-YOLOv13-L, based on animal vision. [...] Read more.
To address the issue of drought level confusion in the detection of drought stress during the seedling stage of the Yunnan large-leaf tea variety using the traditional YOLOv13 network, this study proposes an improved version of the network, MC-YOLOv13-L, based on animal vision. With the compound eye’s parallel sampling mechanism at its core, Compound-Eye Apposition Concatenation optimization is applied in both the training and inference stages. Simulating the environmental information acquisition and integration mechanism of primates’ “multi-scale parallelism—global modulation—long-range integration,” multi-scale linear attention is used to optimize the network. Simulating the retinal wide-field lateral inhibition and cortical selective convergence mechanisms, CMUNeXt is used to optimize the network’s backbone. To further improve the localization accuracy of drought stress detection and accelerate model convergence, a dynamic attention process simulating peripheral search, saccadic focus, and central fovea refinement in primates is used. Inner-IoU is applied for targeted improvement of the loss function. The testing results from the drought stress dataset (324 original images, 4212 images after data augmentation) indicate that, in the training set, the Box Loss, Cls Loss, and DFL Loss of the MC-YOLOv13-L network decreased by 5.08%, 3.13%, and 4.85%, respectively, compared to the YOLOv13 network. In the validation set, these losses decreased by 2.82%, 7.32%, and 3.51%, respectively. On the whole, the improved MC-YOLOv13-L improves the accuracy, recall rate and mAP@50 by 4.64%, 6.93% and 4.2%, respectively, on the basis of only sacrificing 0.63 FPS. External validation results from the Laobanzhang base in Xishuangbanna, Yunnan Province, indicate that the MC-YOLOv13-L network can quickly and accurately capture the drought stress response of tea plants under mild drought conditions. This lays a solid foundation for the intelligence-driven development of the tea production sector and, to some extent, promotes the application of bio-inspired computing in complex ecosystems. Full article
(This article belongs to the Special Issue Artificial Intelligence-Based Bio-Inspired Computer Vision System)
Show Figures

Figure 1

21 pages, 1209 KB  
Review
Intelligent Discrimination of Grain Aging Using Volatile Organic Compound Fingerprints and Machine Learning: A Comprehensive Review
by Liuping Zhang, Jingtao Zhou, Guoping Qian, Shuyi Liu, Mohammed Obadi, Tianyue Xu and Bin Xu
Foods 2026, 15(2), 216; https://doi.org/10.3390/foods15020216 - 8 Jan 2026
Viewed by 132
Abstract
Grain aging during storage leads to quality deterioration and significant economic losses. Traditional analytical approaches are often labor-intensive, slow, and inadequate for modern intelligent grain storage management. This review summarizes recent advances in the intelligent discrimination of grain aging using volatile organic compound [...] Read more.
Grain aging during storage leads to quality deterioration and significant economic losses. Traditional analytical approaches are often labor-intensive, slow, and inadequate for modern intelligent grain storage management. This review summarizes recent advances in the intelligent discrimination of grain aging using volatile organic compound (VOC) fingerprints combined with machine learning (ML) techniques. It first outlines the biochemical mechanisms underlying grain aging and identifies VOCs as early and sensitive biomarkers for timely determination. The review then examines VOC determination methodologies, with a focus on headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS), for constructing volatile fingerprinting profiles, and discusses related method standardization. A central theme is the application of ML algorithms, including Partial Least Squares Discriminant Analysis (PLS-DA), Support Vector Machines (SVM), Random Forest (RF), and Convolutional Neural Networks (CNN)) for feature extraction and pattern recognition in high-dimensional datasets, enabling effective discrimination of aging stages, spoilage types, and grain varieties. Despite these advances, key challenges remain, such as limited model generalizability, the lack of large-scale multi-source databases, and insufficient validation under real storage conditions. Finally, future directions are proposed that emphasize methodological standardization, algorithmic innovation, and system-level integration to support intelligent, non-destructive, real-time grain quality monitoring. This emerging framework provides a promising powerful pathway for enhancing global food security. Full article
Show Figures

Figure 1

21 pages, 13341 KB  
Article
Metabolomics and Transcriptomics Analyses Explore the Genes Related to the Biosynthesis of Antioxidant Active Ingredient Isoquercetin
by Liyan Cui, Jiaoli Yang, Rui Yuan, Shuting Wang, Zhennan Ma, Defu Wang and Yanbing Niu
Foods 2026, 15(2), 218; https://doi.org/10.3390/foods15020218 - 8 Jan 2026
Viewed by 159
Abstract
Astragalus membranaceus is a model of traditional ‘homologous nature of medicine and food’. Its stems and leaves have been proven to have a variety of biological activities. In this study, high-throughput sequencing technology was used to sequence transcriptomics and metabolomics A. membranaceus stems [...] Read more.
Astragalus membranaceus is a model of traditional ‘homologous nature of medicine and food’. Its stems and leaves have been proven to have a variety of biological activities. In this study, high-throughput sequencing technology was used to sequence transcriptomics and metabolomics A. membranaceus stems and leaves at different growth stages (flowerless stage, flower bud stage, flowering stage, green fruit stage, mature fruit staged, and withering stage), and a regulation analysis was conducted on its differentially expressed genes and differentially accumulated metabolites. The results showed that five hub genes, PAL, CHI, AMIE, CAD, and PRX, were found to play a central regulatory role in flavonoid biosynthesis. The combined analysis of transcriptomics and metabolomics constructed a flavonoid metabolic regulatory network during the growth and development of A. membranaceus stems and leaves. At the same time, based on the significant antioxidant activity of isoquercitrin, three genes that may be related to isoquercitrin biosynthesis were screened, namely IF7MAT, FG3, and UGT78D2. The results of this study provide insights into the biosynthesis and comprehensive development and utilization of flavonoids in A. membranaceus. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

18 pages, 2386 KB  
Article
Chloroplast Genome-Based Insights into Variety Identification in Toona sinensis
by Shuqiao Zhang, Panyue Du, Hongqiang Lin, Mingcheng Wang and Rui Li
Agronomy 2026, 16(1), 127; https://doi.org/10.3390/agronomy16010127 - 4 Jan 2026
Viewed by 328
Abstract
Modern sequencing technologies have transformed the identification of medicinal plant species and varieties, overcoming the limitations of traditional approaches. To address the challenge of discriminating Toona sinensis varieties, we sequenced and compared 15 complete chloroplast genomes from five varieties in northern China. Although [...] Read more.
Modern sequencing technologies have transformed the identification of medicinal plant species and varieties, overcoming the limitations of traditional approaches. To address the challenge of discriminating Toona sinensis varieties, we sequenced and compared 15 complete chloroplast genomes from five varieties in northern China. Although these genomes exhibited a highly conserved structure, we identified eight variety-specific simple sequence repeats (SSRs), two unique tandem repeats, and several hypervariable regions with elevated nucleotide diversity. Phylogenetic analysis demonstrated that whole chloroplast genomes provided the highest resolution for variety identification, outperforming conventional barcodes. Furthermore, we developed 13 specific primer pairs targeting variable regions, and PCR validation confirmed their reliable amplification across varieties. In addition, sequence-level validation by Sanger sequencing of representative SSR and tandem repeat markers revealed stable, variety-specific repeat copy number differences. These results demonstrate that the identified chloroplast markers can effectively discriminate closely related T. sinensis varieties. This study confirms that despite overall conservation, the T. sinensis plastome contains sufficient variation for reliable identification, providing a robust framework for future germplasm conservation and molecular breeding. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

Back to TopTop