Molecular Mechanisms of Lignans in Lowering Blood Pressure and Anti-Obesity Effects: A Review
Abstract
1. Introduction
2. Methodology
3. Biosynthesis of Lignans
4. Molecular Mechanisms of Lignans in Lowering Blood Pressure (Antihypertensive) and in Anti-Obesity Effects
4.1. Antihypertensive Effects
4.2. Beneficial Role in Obesity
5. Extraction of Lignans
6. Development of Value-Added Products Containing Lignans
7. Safety, Limitations, and Translational Challenges
8. Conclusions and Future Prospects
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ward, R. Recent advances in the chemistry of lignans. Stud. Nat. Prod. Chem. 2000, 24, 739–798. [Google Scholar]
- Berenshtein, L.; Okun, Z.; Shpigelman, A. Stability and bioaccessibility of Lignans in food products. ACS Omega 2024, 9, 2022–2031. [Google Scholar] [CrossRef]
- Sainvitu, P.; Nott, K.; Richard, G.; Blecker, C.; Jérôme, C.; Wathelet, J.-P.; Paquot, M.; Deleu, M. Structure, properties and obtention routes of flaxseed lignan secoisolariciresinol. Biotechnol. Agron. Société Environ. 2012, 16, 115–124. [Google Scholar]
- Cunha, W.R.; Silva, M.; Veneziani, R.C.S.; Ambrósio, S.R.; Bastos, J.K. Lignans: Chemical and biological properties. In Phytochemicals—A Global Perspective of Their Role in Nutrition and Health; InTech: Rijeka, Croatia, 2012; pp. 213–234. [Google Scholar]
- NCBI. PubChem Compound Summary for CID 1549095, Coniferyl Alcohol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Coniferyl-Alcohol (accessed on 14 May 2025).
- NCBI. PubChem Compound Summary for CID 5280507, Sinapyl Alcohol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Sinapyl-alcohol (accessed on 14 May 2025).
- NCBI. PubChem Compound Summary for CID 5280535, p-Coumaryl Alcohol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/p-Coumaryl-alcohol (accessed on 14 May 2025).
- Yeung, A.W.K.; Tzvetkov, N.T.; Balacheva, A.A.; Georgieva, M.G.; Gan, R.-Y.; Jozwik, A.; Pyzel, B.; Horbańczuk, J.O.; Novellino, E.; Durazzo, A. Lignans: Quantitative analysis of the research literature. Front. Pharmacol. 2020, 11, 37. [Google Scholar] [CrossRef]
- Meagher, L.P.; Beecher, G.R. Assessment of data on the lignan content of foods. J. Food Compos. Anal. 2000, 13, 935–947. [Google Scholar] [CrossRef]
- Wu, Z.; Li, Y.; Qiu, H.; Long, S.; Zhao, X.; Wang, Y.; Guo, X.; Baitelenova, A.; Qiu, C. Comparative Assessment of Lignan, Tocopherol, Tocotrienol and Carotenoids in 40 Selected Varieties of Flaxseed (Linum usitatissimum L.). Foods 2023, 12, 4250. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, J.; Kim, S.; Kim, M.Y.; Kim, Y. Lignan Content and Antioxidant Capacity of Eight Sesame Varieties Cultivated in Korea. Prev. Nutr. Food Sci. 2024, 29, 563. [Google Scholar] [CrossRef]
- Sintim, H.O. Seed quality and relative lignan profiles of sesame prospected from northern Ghana. Heliyon 2024, 10, e39108. [Google Scholar] [CrossRef]
- Smeds, A.I.; Eklund, P.C.; Willför, S.M. Content, composition, and stereochemical characterisation of lignans in berries and seeds. Food Chem. 2012, 134, 1991–1998. [Google Scholar] [CrossRef]
- Kim, J.H.; Seo, W.D.; Lee, S.K.; Lee, Y.B.; Park, C.H.; Ryu, H.W.; Lee, J.H. Comparative assessment of compositional components, antioxidant effects, and lignan extractions from Korean white and black sesame (Sesamum indicum L.) seeds for different crop years. J. Funct. Foods 2014, 7, 495–505. [Google Scholar] [CrossRef]
- Qin, Z.; Chang, Y.-L.; Chen, Z.-M.; Wang, Y.-G.; Fan, W.; Gu, L.-B.; Qin, Z.; Liu, H.-M.; Zhu, X.-L.; Mei, H.-X. A novel strategy for preparing lignan-rich sesame oil from cold-pressed sesame seed cake by combining enzyme-assisted treatment and subcritical fluid extraction. Ind. Crops Prod. 2024, 218, 119041. [Google Scholar] [CrossRef]
- Mallik, S.; Paria, B.; Firdous, S.M.; Ghazzawy, H.S.; Alqahtani, N.K.; He, Y.; Li, X.; Gouda, M.M. The positive implication of natural antioxidants on oxidative stress-mediated diabetes mellitus complications. J. Genet. Eng. Biotechnol. 2024, 22, 100424. [Google Scholar] [CrossRef]
- Rodríguez-García, C.; Sánchez-Quesada, C.; Toledo, E.; Delgado-Rodríguez, M.; Gaforio, J.J. Naturally lignan-rich foods: A dietary tool for health promotion? Molecules 2019, 24, 917. [Google Scholar] [CrossRef]
- Khan, G.B.; Qasim, M.; Rasul, A.; Ashfaq, U.A.; Alnuqaydan, A.M. Identification of lignan compounds as new 6-phosphogluconate dehydrogenase inhibitors for lung cancer. Metabolites 2022, 13, 34. [Google Scholar] [CrossRef]
- Ko, Y.H.; Jeong, M.; Jang, D.S.; Choi, J.-H. Gomisin L1, a lignan isolated from Schisandra berries, induces apoptosis by regulating NADPH oxidase in human ovarian cancer cells. Life 2021, 11, 858. [Google Scholar] [CrossRef] [PubMed]
- Mukhija, M.; Joshi, B.C.; Bairy, P.S.; Bhargava, A.; Sah, A.N. Lignans: A versatile source of anticancer drugs. Beni-Suef Univ. J. Basic Appl. Sci. 2022, 11, 76. [Google Scholar] [CrossRef] [PubMed]
- Rattanaburee, T.; Tanawattanasuntorn, T.; Thongpanchang, T.; Tipmanee, V.; Graidist, P. Trans-(−)-Kusunokinin: A potential anticancer lignan compound against HER2 in breast cancer cell lines? Molecules 2021, 26, 4537. [Google Scholar] [CrossRef] [PubMed]
- Turan-Demirci, B.; Isgin-Atici, K.; Sendur, S.N.; Yuce, D.; Erbas, T.; Buyuktuncer, Z. Dietary Total Polyphenol, Flavonoid, and Lignan Intakes Are Associated with Obesity and Diabetes-Related Traits: A Case-Control Study. Metab. Syndr. Relat. Disord. 2024, 22, 454–462. [Google Scholar] [CrossRef]
- Abdelwahab, A.H.; Negm, A.M.; Mahmoud, E.S.; Salama, R.M.; Schaalan, M.F.; El-Sheikh, A.A.; Ramadan, B.K. The cardioprotective effects of secoisolariciresinol diglucoside (flaxseed lignan) against cafeteria diet-induced cardiac fibrosis and vascular injury in rats: An insight into apelin/AMPK/FOXO3a signaling pathways. Front. Pharmacol. 2023, 14, 1199294. [Google Scholar] [CrossRef]
- Chhillar, H.; Chopra, P.; Ashfaq, M.A. Lignans from linseed (Linum usitatissimum L.) and its allied species: Retrospect, introspect and prospect. Crit. Rev. Food Sci. Nutr. 2021, 61, 2719–2741. [Google Scholar] [CrossRef]
- Canty, N.K.; Chang, W.-C. Current understanding of lignan biosynthesis. Arkivoc 2024, 2023, 1–23. [Google Scholar] [CrossRef]
- Gao, Z.; Cao, Q.; Deng, Z. Unveiling the Power of Flax Lignans: From Plant Biosynthesis to Human Health Benefits. Nutrients 2024, 16, 3520. [Google Scholar] [CrossRef] [PubMed]
- Corbin, C.; Drouet, S.; Markulin, L.; Auguin, D.; Lainé, É.; Davin, L.B.; Cort, J.R.; Lewis, N.G.; Hano, C. A genome-wide analysis of the flax (Linum usitatissimum L.) dirigent protein family: From gene identification and evolution to differential regulation. Plant Mol. Biol. 2018, 97, 73–101. [Google Scholar] [CrossRef] [PubMed]
- Plaha, N.S.; Awasthi, S.; Sharma, A.; Kaushik, N. Distribution, biosynthesis and therapeutic potential of lignans. 3 Biotech 2022, 12, 255. [Google Scholar] [CrossRef]
- Kezimana, P.; Dmitriev, A.A.; Kudryavtseva, A.V.; Romanova, E.V.; Melnikova, N.V. Secoisolariciresinol diglucoside of flaxseed and its metabolites: Biosynthesis and potential for nutraceuticals. Front. Genet. 2018, 9, 641. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.J.; Klaes, M.; Sendker, J. Lignans in seeds of Linum species. Phytochemistry 2012, 82, 89–99. [Google Scholar] [CrossRef]
- Suzuki, S.; Umezawa, T. Biosynthesis of lignans and norlignans. J. Wood Sci. 2007, 53, 273–284. [Google Scholar] [CrossRef]
- Hano, C.; Martin, I.; Fliniaux, O.; Legrand, B.; Gutierrez, L.; Arroo, R.; Mesnard, F.; Lamblin, F.; Lainé, E. Pinoresinol–lariciresinol reductase gene expression and secoisolariciresinol diglucoside accumulation in developing flax (Linum usitatissimum) seeds. Planta 2006, 224, 1291–1301. [Google Scholar] [CrossRef]
- Hemmati, S.; Schmidt, T.J.; Fuss, E. (+)-Pinoresinol/(−)-lariciresinol reductase from Linum perenne Himmelszelt involved in the biosynthesis of justicidin B. FEBS Lett. 2007, 581, 603–610. [Google Scholar] [CrossRef]
- Corbin, C.; Drouet, S.; Mateljak, I.; Markulin, L.; Decourtil, C.; Renouard, S.; Lopez, T.; Doussot, J.; Lamblin, F.; Auguin, D. Functional characterization of the pinoresinol–lariciresinol reductase-2 gene reveals its roles in yatein biosynthesis and flax defense response. Planta 2017, 246, 405–420. [Google Scholar] [CrossRef]
- Yonekura-Sakakibara, K.; Hanada, K. An evolutionary view of functional diversity in family 1 glycosyltransferases. Plant J. 2011, 66, 182–193. [Google Scholar] [CrossRef]
- Dalisay, D.S.; Kim, K.W.; Lee, C.; Yang, H.; Rübel, O.; Bowen, B.P.; Davin, L.B.; Lewis, N.G. Dirigent protein-mediated lignan and cyanogenic glucoside formation in flax seed: Integrated omics and MALDI mass spectrometry imaging. J. Nat. Prod. 2015, 78, 1231–1242. [Google Scholar] [CrossRef] [PubMed]
- Ford, J.D.; Huang, K.-S.; Wang, H.-B.; Davin, L.B.; Lewis, N.G. Biosynthetic Pathway to the Cancer Chemopreventive Secoisolariciresinol Diglucoside− Hydroxymethyl Glutaryl Ester-Linked Lignan Oligomers in Flax (Linum usitatissimum) Seed. J. Nat. Prod. 2001, 64, 1388–1397. [Google Scholar] [CrossRef]
- Xia, Z.-Q.; Costa, M.A.; Pélissier, H.C.; Davin, L.B.; Lewis, N.G. Secoisolariciresinol dehydrogenase purification, cloning, and functional expression: Implications for human health protection. J. Biol. Chem. 2001, 276, 12614–12623. [Google Scholar] [CrossRef]
- Shah, Z.; Gohar, U.F.; Jamshed, I.; Mushtaq, A.; Mukhtar, H.; Zia-UI-Haq, M.; Toma, S.I.; Manea, R.; Moga, M.; Popovici, B. Podophyllotoxin: History, recent advances and future prospects. Biomolecules 2021, 11, 603. [Google Scholar] [CrossRef]
- De Feo, M.; Del Pinto, R.; Pagliacci, S.; Grassi, D.; Ferri, C. Real-world hypertension prevalence, awareness, treatment, and control in adult diabetic individuals: An italian nationwide epidemiological survey. High Blood Press. Cardiovasc. Prev. 2021, 28, 301–307. [Google Scholar] [CrossRef]
- Tarko, T.; Duda-Chodak, A.; Soszka, A. Changes in phenolic compounds and antioxidant activity of fruit musts and fruit wines during simulated digestion. Molecules 2020, 25, 5574. [Google Scholar] [CrossRef] [PubMed]
- Bugg, T.D.H.; Ahmad, M.; Hardiman, E.M.; Singh, R. The emerging role for bacteria in lignin degradation and bio-product formation. Curr. Opin. Biotechnol. 2011, 22, 394–400. [Google Scholar] [CrossRef]
- Weiner, C.M.; Khan, S.E.; Leong, C.; Ranadive, S.M.; Campbell, S.C.; Howard, J.T.; Heffernan, K.S. Association of enterolactone with blood pressure and hypertension risk in NHANES. PLoS ONE 2024, 19, e0302254. [Google Scholar] [CrossRef]
- Sawant, S.H.; Bodhankar, S.L. Flax lignan concentrate reverses alterations in blood pressure, left ventricular functions, lipid profile and antioxidant status in DOCA-salt induced renal hypertension in rats. Ren. Fail. 2016, 38, 411–423. [Google Scholar] [CrossRef] [PubMed]
- Park, J.B.; Velasquez, M.T. Potential effects of lignan-enriched flaxseed powder on bodyweight, visceral fat, lipid profile, and blood pressure in rats. Fitoterapia 2012, 83, 941–946. [Google Scholar] [CrossRef] [PubMed]
- Prasad, K. Secoisolariciresinol diglucoside (SDG) isolated from flaxseed, an alternative to ACE inhibitors in the treatment of hypertension. Int. J. Angiol. 2013, 22, 235–238. [Google Scholar] [CrossRef] [PubMed]
- Setchell, K.D.; Brown, N.M.; Zimmer-Nechemias, L.; Wolfe, B.; Jha, P.; Heubi, J.E. Metabolism of secoisolariciresinol-diglycoside the dietary precursor to the intestinally derived lignan enterolactone in humans. Food Funct. 2014, 5, 491–501. [Google Scholar] [CrossRef]
- Ye, B.H.; Lee, S.J.; Choi, Y.W.; Park, S.Y.; Kim, C.D. Preventive effect of gomisin J from Schisandra chinensis on angiotensin II-induced hypertension via an increased nitric oxide bioavailability. Hypertens. Res. 2015, 38, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Lu, Y.; Chu, S.; Jiang, M.; Bai, G. Phillygenin, a lignan compound, inhibits hypertension by reducing PLCβ3-dependent Ca2+ oscillation. J. Funct. Foods 2019, 60, 103432. [Google Scholar] [CrossRef]
- Rodriguez-Leyva, D.; Weighell, W.; Edel, A.L.; LaVallee, R.; Dibrov, E.; Pinneker, R.; Maddaford, T.G.; Ramjiawan, B.; Aliani, M.; Guzman, R. Potent antihypertensive action of dietary flaxseed in hypertensive patients. Hypertension 2013, 62, 1081–1089. [Google Scholar] [CrossRef]
- Moghadam, E.F.; Khaghani, L.; Shekarchizadeh-Esfahani, P. Flaxseed lowers blood pressure in hypertensive subjects: A meta-analysis of randomized controlled trials. Clin. Nutr. Res. 2024, 13, 295. [Google Scholar] [CrossRef]
- Khalesi, S.; Irwin, C.; Schubert, M. Flaxseed consumption may reduce blood pressure: A systematic review and meta-analysis of controlled trials. J. Nutr. 2015, 145, 758–765. [Google Scholar] [CrossRef]
- Ursoniu, S.; Sahebkar, A.; Andrica, F.; Serban, C.; Banach, M. Lipid and Blood Pressure Meta-Analysis Collaboration (LBPMC) Group. Effects of flaxseed supplements on blood pressure: A systematic review and meta-analysis of controlled clinical trial. Clin. Nutr. 2016, 35, 615–625. [Google Scholar] [CrossRef]
- Khosravi-Boroujeni, H.; Nikbakht, E.; Natanelov, E.; Khalesi, S. Can sesame consumption improve blood pressure? A systematic review and meta-analysis of controlled trials. J. Sci. Food Agric. 2017, 97, 3087–3094. [Google Scholar] [CrossRef]
- Kamal-Eldin, A.; Moazzami, A.; Washi, S. Sesame seed lignans: Potent physiological modulators and possible ingredients in functional foods & nutraceuticals. Recent Pat. Food Nutr. Agric. 2011, 3, 17–29. [Google Scholar]
- Kita, S.; Matsumura, Y.; Morimoto, S.; Akimoto, K.; Furuya, M.; Oka, N.; Tanaka, T. Antihypertensive effect of sesamin. II. Protection against two-kidney, one-clip renal hypertension and cardiovascular hypertrophy. Biol. Pharm. Bull. 1995, 18, 1283–1285. [Google Scholar] [CrossRef]
- Noguchi, T.; Ikeda, K.; Sasaki, Y.; Yamamoto, J.; Seki, J.; Yamagata, K.; Nara, Y.; Hara, H.; Kakuta, H.; Yamori, Y. Effects of vitamin E and sesamin on hypertension and cerebral thrombogenesis in stroke-prone spontaneously hypertensive rats. Hypertens. Res. 2001, 24, 735–742. [Google Scholar] [CrossRef]
- Miyawaki, T.; Aono, H.; Toyoda-Ono, Y.; Maeda, H.; Kiso, Y.; Moriyama, K. Antihypertensive effects of sesamin in humans. J. Nutr. Sci. Vitaminol. 2009, 55, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Zhao, J.; Ge, S.; Lu, H.; Xiong, Q.; Guo, X.; Li, L.; He, S.; Wang, J.; Peng, F. Dietary polyphenol intake and risk of hypertension: An 18-y nationwide cohort study in China. Am. J. Clin. Nutr. 2023, 118, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Li, Y.; Sampson, L.; Wang, M.; Manson, J.E.; Rimm, E.; Sun, Q. Lignan intake and risk of coronary heart disease. J. Am. Coll. Cardiol. 2021, 78, 666–678. [Google Scholar] [CrossRef]
- Di Giulio, C.; Gonzalez Guzman, J.M.; Dutra Gomes, J.V.; Choi, Y.H.; Magalhães, P.O.; Fonseca-Bazzo, Y.M.; Silveira, D.; Estrada, O. A new lignan from Annona squamosa L. (Annonaceae) demonstrates vasorelaxant effects in vitro. Molecules 2023, 28, 4256. [Google Scholar] [CrossRef]
- World Health Organization. Obesity and Overweight [WWW Document]. 2015. Available online: http://www.who.int/mediacentre/factsheets/fs311/en/ (accessed on 30 November 2015).
- Chu, Z.; Hu, Z.; Luo, Y.; Zhou, Y.; Yang, F.; Luo, F. Targeting gut-liver axis by dietary lignans ameliorate obesity: Evidences and mechanisms. Crit. Rev. Food Sci. Nutr. 2025, 65, 243–264. [Google Scholar]
- Lazarus, J.V.; Mark, H.E.; Villota-Rivas, M.; Palayew, A.; Carrieri, P.; Colombo, M.; Ekstedt, M.; Esmat, G.; George, J.; Marchesini, G. The global NAFLD policy review and preparedness index: Are countries ready to address this silent public health challenge? J. Hepatol. 2022, 76, 771–780. [Google Scholar] [CrossRef]
- Wang, N.; Li, C.; Zhang, Z. Arctigenin ameliorates high-fat diet-induced metabolic disorders by reshaping gut microbiota and modulating GPR/HDAC3 and TLR4/NF-κB pathways. Phytomedicine 2024, 135, 156123. [Google Scholar] [PubMed]
- Min, B.; Lee, H.; Song, J.H.; Han, M.J.; Chung, J. Arctiin inhibits adipogenesis in 3T3-L1 cells and decreases adiposity and body weight in mice fed a high-fat diet. Nutr. Res. Pract. 2014, 8, 655–661. [Google Scholar] [CrossRef]
- Gu, M.; Feng, Y.; Chen, Y.; Fan, S.; Huang, C. Deoxyschizandrin ameliorates obesity and non-alcoholic fatty liver disease: Involvement of dual Farnesyl X receptor/G protein-coupled bile acid receptor 1 activation and leptin sensitization. Phytother. Res. 2023, 37, 2771–2786. [Google Scholar] [CrossRef]
- Gao, Y.; Gu, C.; Wang, K.; Wang, H.; Ruan, K.; Xu, Z.; Feng, Y. The effects of hypoglycemia and weight loss of total lignans from Fructus Arctii in KKAy mice and its mechanisms of the activity. Phytother Res 2018, 32, 631–642. [Google Scholar] [CrossRef]
- Jang, M.-K.; Yun, Y.-R.; Kim, J.-H.; Park, M.-H.; Jung, M.H. Gomisin N inhibits adipogenesis and prevents high-fat diet-induced obesity. Sci. Rep. 2017, 7, 40345. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.-Y.; Chi, Y.-Y.; Han, J.-X.; Kong, P.; Liang, Z.; Wang, D.; Xiang, H.; Xie, Q. Litchi chinensis seed prevents obesity and modulates the gut microbiota and mycobiota compositions in high-fat diet-induced obese zebrafish. Food Funct. 2022, 13, 2832–2845. [Google Scholar] [CrossRef] [PubMed]
- Jagtap, S.; Khare, P.; Mangal, P.; Kondepudi, K.K.; Bishnoi, M.; Bhutani, K.K. Protective effects of phyllanthin, a lignan from Phyllanthus amarus, against progression of high fat diet induced metabolic disturbances in mice. RSC Adv. 2016, 6, 58343–58353. [Google Scholar] [CrossRef]
- Kim, Y.W.; Kim, Y.M.; Yang, Y.M.; Kim, T.H.; Hwang, S.J.; Lee, J.R.; Kim, S.C.; Kim, S.G. Inhibition of SREBP-1c-mediated hepatic steatosis and oxidative stress by sauchinone, an AMPK-activating lignan in Saururus chinensis. Free Radic. Biol. Med. 2010, 48, 567–578. [Google Scholar] [CrossRef]
- An, L.; Wang, Y.; Wang, C.; Fan, M.; Han, X.; Xu, G.; Yuan, G.; Li, H.; Sheng, Y.; Wang, M. Protective effect of Schisandrae chinensis oil on pancreatic β-cells in diabetic rats. Endocrine 2015, 48, 818–825. [Google Scholar] [CrossRef]
- Sun, Y.; Yan, T.; Gong, G.; Li, Y.; Zhang, J.; Wu, B.; Bi, K.; Jia, Y. Antidepressant-like effects of Schisandrin on lipopolysaccharide-induced mice: Gut microbiota, short chain fatty acid and TLR4/NF-κB signaling pathway. Int. Immunopharmacol. 2020, 89, 107029. [Google Scholar] [CrossRef]
- Li, B.; Xiao, Q.; Zhao, H.; Zhang, J.; Yang, C.; Zou, Y.; Zhang, B.; Liu, J.; Sun, H.; Liu, H. Schisanhenol ameliorates non-alcoholic fatty liver disease via inhibiting miR-802 activation of AMPK-mediated modulation of hepatic lipid metabolism. Acta Pharm. Sin. B 2024, 14, 3949–3963. [Google Scholar] [CrossRef]
- Sun, J.; Tang, Y.; Yu, X.; Xu, Y.; Liu, P.; Xiao, L.; Liu, L.; Deng, Q.; Yao, P. Flaxseed lignans alleviate high fat diet-induced hepatic steatosis and insulin resistance in mice: Potential involvement of AMP-activated protein kinase. J. Funct. Foods 2016, 24, 482–491. [Google Scholar] [CrossRef]
- Jahagirdar, A.; Usharani, D.; Srinivasan, M.; Rajasekharan, R. Sesaminol diglucoside, a water-soluble lignan from sesame seeds induces brown fat thermogenesis in mice. Biochem. Biophys. Res. Commun. 2018, 507, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.S.; Adachi, Y.; Takahashi, Y.; Ide, T. Comparative analysis of sesame lignans (sesamin and sesamolin) in affecting hepatic fatty acid metabolism in rats. Br. J. Nutr. 2007, 97, 85–95. [Google Scholar] [CrossRef]
- Kim, M.; Woo, M.; Noh, J.S.; Choe, E.; Song, Y.O. Sesame oil lignans inhibit hepatic endoplasmic reticulum stress and apoptosis in high-fat diet-fed mice. J. Funct. Foods 2017, 37, 658–665. [Google Scholar] [CrossRef]
- Rajendran, R.; Suman, S.; Divakaran, S.J.; Swatikrishna, S.; Tripathi, P.; Jain, R.; Sagar, K.; Rajakumari, S. Sesaminol alters phospholipid metabolism and alleviates obesity-induced NAFLD. FASEB J. 2024, 38, e23835. [Google Scholar] [CrossRef]
- Yuan, T.; Chu, C.; Shi, R.; Cui, T.; Zhang, X.; Zhao, Y.; Shi, X.; Hui, Y.; Pan, J.; Qian, R. ApoE-Dependent protective effects of sesamol on high-fat diet-induced behavioral disorders: Regulation of the microbiome-gut–brain axis. J. Agric. Food Chem. 2019, 67, 6190–6201. [Google Scholar] [CrossRef]
- Tang, Y.; Zheng, W.; Chen, J.; Xie, Y.; Yang, J.; Wang, Z.; Qin, H. Ameliorating Oxidative Stress-Aggravated Adipose Tissue Senescence by Sesamol in Aged Obese Mice via Nrf2/p38MAPK Signaling. Plant Foods Hum. Nutr. 2025, 80, 11. [Google Scholar] [CrossRef]
- Yuzefovych, L.V.; Musiyenko, S.I.; Wilson, G.L.; Rachek, L.I. Mitochondrial DNA damage and dysfunction, and oxidative stress are associated with endoplasmic reticulum stress, protein degradation and apoptosis in high fat diet-induced insulin resistance mice. PLoS ONE 2013, 8, e54059. [Google Scholar] [CrossRef]
- Xiao, H.-B.; Sui, G.-G.; Lu, X.-Y. Phillyrin lowers body weight in obese mice via the modulation of PPAR<beta>/<delta>-ANGPTL 4 pathway. Obes. Res. Clin. Pract. 2018, 12, 71–79. [Google Scholar]
- Zhao, Y.; Zhong, X.; Yan, J.; Sun, C.; Zhao, X.; Wang, X. Potential roles of gut microbes in biotransformation of natural products: An overview. Front. Microbiol. 2022, 13, 956378. [Google Scholar] [CrossRef]
- Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 2016, 165, 1332–1345. [Google Scholar] [CrossRef] [PubMed]
- Folkerts, J.; Stadhouders, R.; Redegeld, F.A.; Tam, S.-Y.; Hendriks, R.W.; Galli, S.J.; Maurer, M. Effect of dietary fiber and metabolites on mast cell activation and mast cell-associated diseases. Front. Immunol. 2018, 9, 1067. [Google Scholar] [CrossRef] [PubMed]
- Fukumitsu, S.; Aida, K.; Shimizu, H.; Toyoda, K. Flaxseed lignan lowers blood cholesterol and decreases liver disease risk factors in moderately hypercholesterolemic men. Nutr. Res. 2010, 30, 441–446. [Google Scholar] [CrossRef]
- Liu, H.; Wu, C.; Wang, S.; Gao, S.; Liu, J.; Dong, Z.; Zhang, B.; Liu, M.; Sun, X.; Guo, P. Extracts and lignans of Schisandra chinensis fruit alter lipid and glucose metabolism in vivo and in vitro. J. Funct. Foods 2015, 19, 296–307. [Google Scholar] [CrossRef]
- Prasad, A.; Kumar, S.; Khaliq, A.; Pandey, A. Heavy metals and arbuscular mycorrhizal (AM) fungi can alter the yield and chemical composition of volatile oil of sweet basil (Ocimum basilicum L.). Biol. Fertil. Soils 2011, 47, 853–861. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, X.; Liu, Y.; Tian, H.; Flickinger, B.; Empie, M.W.; Sun, S.Z. Dietary flaxseed lignan extract lowers plasma cholesterol and glucose concentrations in hypercholesterolaemic subjects. Br. J. Nutr. 2008, 99, 1301–1309. [Google Scholar] [CrossRef]
- Ide, T.; Lim, J.S.; Odbayar, T.-O.; Nakashima, Y. Comparative study of sesame lignans (sesamin, episesamin and sesamolin) affecting gene expression profile and fatty acid oxidation in rat liver. J. Nutr. Sci. Vitaminol. 2009, 55, 31–43. [Google Scholar] [CrossRef]
- Gholami, Z.; Akhlaghi, M. The effect of flaxseed on physical and mental fatigue in children and adolescents with overweight/obesity: A randomised controlled trial. Br. J. Nutr. 2021, 126, 151–159. [Google Scholar] [CrossRef]
- Vuksan, V.; Choleva, L.; Jovanovski, E.; Jenkins, A.; Au-Yeung, F.; Dias, A.; Ho, H.; Zurbau, A.; Duvnjak, L. Comparison of flax (Linum usitatissimum) and Salba-chia (Salvia hispanica L.) seeds on postprandial glycemia and satiety in healthy individuals: A randomized, controlled, crossover study. Eur. J. Clin. Nutr. 2017, 71, 234–238. [Google Scholar] [CrossRef]
- Guo, S.; Nighot, M.; Al-Sadi, R.; Alhmoud, T.; Nighot, P.; Ma, T.Y. Lipopolysaccharide regulation of intestinal tight junction permeability is mediated by TLR4 signal transduction pathway activation of FAK and MyD88. J. Immunol. 2015, 195, 4999–5010. [Google Scholar] [CrossRef]
- Kapoor, N.; Naufahu, J.; Tewfik, S.; Bhatnagar, S.; Garg, R.; Tewfik, I. A prospective randomized controlled trial to study the impact of a nutrition-sensitive intervention on adult women with cancer cachexia undergoing palliative care in India. Integr. Cancer Ther. 2017, 16, 74–84. [Google Scholar] [CrossRef]
- Monteiro, W.L.A.; Rosa, G.; Luiz, R.R.; Neto, J.F.N.; Oliveira, G. Effects of Different Types of Flaxseed Flour in Appetite and Satiety Sensations Among Overweighed and Obese Women. Int. J. Cardiovasc. Sci. 2016, 29, 37–46. [Google Scholar]
- Ahmadniay Motlagh, H.; Aalipanah, E.; Mazidi, M.; Faghih, S. Effect of flaxseed consumption on central obesity, serum lipids, and adiponectin level in overweight or obese women: A randomised controlled clinical trial. Int. J. Clin. Pract. 2021, 75, e14592. [Google Scholar] [CrossRef]
- Zaki, U.K.H.; Trijsburg, L.; Feskens, E.J. Association between lignan intake from different types of plant-based foods and obesity indicators in the Netherlands. J. Food Nutrition Res. 2024, 12, 34–41. [Google Scholar] [CrossRef]
- Musazadeh, V.; Abolghasemian, M.; Kavyani, Z.; Moridpour, A.H.; Nazari, A.; Faghfouri, A.H. The effects of flaxseed (Linum usitatissimum) supplementation on anthropometric indices: An updated systematic review and meta-analysis of randomized clinical trials. Complement. Ther. Med. 2024, 84, 103066. [Google Scholar] [CrossRef]
- Mohammadi-Sartang, M.; Mazloom, Z.; Raeisi-Dehkordi, H.; Barati-Boldaji, R.; Bellissimo, N.; Totosy de Zepetnek, J. The effect of flaxseed supplementation on body weight and body composition: A systematic review and meta-analysis of 45 randomized placebo-controlled trials. Obes. Rev. 2017, 18, 1096–1107. [Google Scholar] [CrossRef] [PubMed]
- Rhee, Y.; Brunt, A. Flaxseed supplementation improved insulin resistance in obese glucose intolerant people: A randomized crossover design. Nutr. J. 2011, 10, 44. [Google Scholar] [CrossRef]
- Cornish, S.M.; Chilibeck, P.D.; Paus-Jennsen, L.; Biem, H.J.; Khozani, T.; Senanayake, V.; Vatanparast, H.; Little, J.P.; Whiting, S.J.; Pahwa, P. A randomized controlled trial of the effects of flaxseed lignan complex on metabolic syndrome composite score and bone mineral in older adults. Appl. Physiol. Nutr. Metab. = Physiol. Appl. Nutr. Metab. 2009, 34, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Sawane, K.; Hosomi, K.; Park, J.; Ookoshi, K.; Nanri, H.; Nakagata, T.; Chen, Y.-A.; Mohsen, A.; Kawashima, H.; Mizuguchi, K.; et al. Identification of Human Gut Microbiome Associated with Enterolignan Production. Microorganisms 2022, 10, 2169. [Google Scholar] [CrossRef]
- Rashidi, A.; Ebadi, M.; Rehman, T.U.; Elhusseini, H.; Nalluri, H.; Kaiser, T.; Holtan, S.G.; Khoruts, A.; Weisdorf, D.J.; Staley, C. Gut microbiota response to antibiotics is personalized and depends on baseline microbiota. Microbiome 2021, 9, 211. [Google Scholar] [CrossRef]
- Holmes, Z.C.; Villa, M.M.; Durand, H.K.; Jiang, S.; Dallow, E.P.; Petrone, B.L.; Silverman, J.D.; Lin, P.-H.; David, L.A. Microbiota responses to different prebiotics are conserved within individuals and associated with habitual fiber intake. Microbiome 2022, 10, 114. [Google Scholar] [CrossRef]
- Patyra, A.; Kołtun-Jasion, M.; Jakubiak, O.; Kiss, A.K. Extraction techniques and analytical methods for isolation and characterization of lignans. Plants 2022, 11, 2323. [Google Scholar] [CrossRef]
- Alam, M.M.; Greco, A.; Rajabimashhadi, Z.; Corcione, C.E. Efficient and environmentally friendly techniques for extracting lignin from lignocellulose biomass and subsequent uses: A review. Clean. Mater. 2024, 13, 100253. [Google Scholar] [CrossRef]
- Chen, H. Lignocellulose biorefinery feedstock engineering. In Lignocellulose Biorefinery Engineering; Woodhead Publishing: Cambridge, UK, 2015; pp. 37–86. [Google Scholar]
- Sutradhar, S.; Fatehi, P. Latest development in the fabrication and use of lignin-derived humic acid. Biotechnol. Biofuels Bioprod. 2023, 16, 38. [Google Scholar] [CrossRef]
- Hu, Y.; Tse, T.J.; Shim, Y.Y.; Purdy, S.K.; Kim, Y.J.; Meda, V.; Reaney, M.J. A review of flaxseed lignan and the extraction and refinement of secoisolariciresinol diglucoside. Crit. Rev. Food Sci. Nutr. 2024, 64, 5057–5072. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-t.; Zhang, Y.; Bian, Y.; Zhu, J.; Feng, X.-S. Trends in extraction and purification methods of Lignans in plant-derived foods. Food Chem. X 2025, 26, 102249. [Google Scholar] [CrossRef]
- Sui, Y.; Pan, L.; Yang, N.; Guo, X.; Tang, Z. Establishment of HPLC method and optimization of ultrasonic-assisted extraction process for two lignan active substances in Asarum heterotropoides. J. Appl. Res. Med. Aromat. Plants 2024, 40, 100542. [Google Scholar] [CrossRef]
- Corbin, C.; Fidel, T.; Leclerc, E.A.; Barakzoy, E.; Sagot, N.; Falguiéres, A.; Renouard, S.; Blondeau, J.-P.; Ferroud, C.; Doussot, J. Development and validation of an efficient ultrasound assisted extraction of phenolic compounds from flax (Linum usitatissimum L.) seeds. Ultrason. Sonochem. 2015, 26, 176–185. [Google Scholar] [CrossRef]
- Beejmohun, V.; Fliniaux, O.; Grand, É.; Lamblin, F.; Bensaddek, L.; Christen, P.; Kovensky, J.; Fliniaux, M.A.; Mesnard, F. Microwave-assisted extraction of the main phenolic compounds in flaxseed. Phytochem. Anal. Int. J. Plant Chem. Biochem. Tech. 2007, 18, 275–282. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, H.-W.; Sung, J.; Kim, Y. Optimal extraction conditions and quantification of lignan phytoestrogens in cereal grains using targeted LC-MS/MS. Front. Nutr. 2024, 11, 1409309. [Google Scholar] [CrossRef] [PubMed]
- Bouloumpasi, E.; Skendi, A.; Christaki, S.; Biliaderis, C.G.; Irakli, M. Optimizing conditions for the recovery of lignans from sesame cake using three green extraction methods: Microwave-, ultrasound-and accelerated-assisted solvent extraction. Ind. Crops Prod. 2024, 207, 117770. [Google Scholar] [CrossRef]
- Kaur, P.; Waghmare, R.; Kumar, V.; Rasane, P.; Kaur, S.; Gat, Y. Recent advances in utilization of flaxseed as potential source for value addition. OCL 2018, 25, A304. [Google Scholar] [CrossRef]
- Blitz, C.L.; Murphy, S.P.; Au, D.L.M. Adding lignan values to a food composition database. J. Food Compos. Anal. 2007, 20, 99–105. [Google Scholar] [CrossRef]
- Valsta, L.M.; Kilkkinen, A.; Mazur, W.; Nurmi, T.; Lampi, A.-M.; Ovaskainen, M.-L.; Korhonen, T.; Adlercreutz, H.; Pietinen, P. Phyto-oestrogen database of foods and average intake in Finland. Br. J. Nutr. 2003, 89, S31–S38. [Google Scholar] [CrossRef]
- Kaur, P.; Sharma, P.; Kumar, V.; Panghal, A.; Kaur, J.; Gat, Y. Effect of addition of flaxseed flour on phytochemical, physicochemical, nutritional, and textural properties of cookies. J. Saudi Soc. Agric. Sci. 2019, 18, 372–377. [Google Scholar] [CrossRef]
- Pramanik, J.; Kumar, A.; Prajapati, B. A review on flaxseeds: Nutritional profile, health benefits, value added products, and toxicity. eFood 2023, 4, e114. [Google Scholar] [CrossRef]
- Olombrada, E.; Mesias, M.; Morales, F.J. Risk/benefits of the use of chia, quinoa, sesame and flax seeds in bakery products. An update review. Food Rev. Int. 2024, 40, 1047–1068. [Google Scholar] [CrossRef]
- Sarfraz, H.; Ahmad, I.Z. A systematic review on the pharmacological potential of Linum usitatissimum L.: A significant nutraceutical plant. J. Herb. Med. 2023, 42, 100755. [Google Scholar] [CrossRef]
- Mohamed, R.S.; Fouda, K. Protein, mucilage and lignans from flaxseed pressing waste: Extraction and potential health effects. Food Humanit. 2025, 5, 100844. [Google Scholar] [CrossRef]
- Zaki, U.H.; Fryganas, C.; Trijsburg, L.; Feskens, E.; Capuano, E. Influence of different processing method on lignan content of selected Malaysian plant-based foods. Food Chem. 2023, 404, 134607. [Google Scholar] [CrossRef]
- Nasiri, F.; Mohtarami, F.; Esmaiili, M.; Pirsa, S. Production of gluten-free biscuits with inulin and flaxseed powder: Investigation of physicochemical properties and formulation optimization. Biomass Convers. Biorefinery 2024, 14, 21443–21459. [Google Scholar] [CrossRef]
- Marpalle, P.; Sonawane, S.K.; Arya, S.S. Effect of flaxseed flour addition on physicochemical and sensory properties of functional bread. LWT-Food Sci. Technol. 2014, 58, 614–619. [Google Scholar] [CrossRef]
- Hyvärinen, H.K.; Pihlava, J.-M.; Hiidenhovi, J.A.; Hietaniemi, V.; Korhonen, H.J.; Ryhänen, E.-L. Effect of processing and storage on the stability of flaxseed lignan added to bakery products. J. Agric. Food Chem. 2006, 54, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Huff, H.; Hsieh, F. Processing and properties of extruded flaxseed-corn puff. J. Food Process. Preserv. 2007, 31, 211–226. [Google Scholar] [CrossRef]
- Duarte, S.; Shah, M.A.; Sanches Silva, A. Flaxseed in Diet: A Comprehensive Look at Pros and Cons. Molecules 2025, 30, 1335. [Google Scholar] [CrossRef]
- Ionkova, I. Biotechnological approaches for the production of lignans. Pharmacogn. Rev. 2007, 1, 57–68. [Google Scholar]
- Satake, H.; Koyama, T.; Bahabadi, S.E.; Matsumoto, E.; Ono, E.; Murata, J. Essences in metabolic engineering of lignan biosynthesis. Metabolites 2015, 5, 270–290. [Google Scholar] [CrossRef]
- Singh, R.; Iqbal, N.; Umar, S.; Ahmad, S. Lignan Enhancement: An Updated Review on the Significance of Lignan and Its Improved Production in Crop Plants. Phyton 2024, 93, 3237–3271. [Google Scholar] [CrossRef]
- Alfermann, A.; Petersen, M.; Fuss, E. Production of natural products by plant cell biotechnology: Results, problems and perspectives. In Plant Tissue Culture: 100 Years Since Gottlieb Haberlandt; Springer: Vienna, Austria, 2003; pp. 153–166. [Google Scholar]
- Anjum, S.; Komal, A.; Drouet, S.; Kausar, H.; Hano, C.; Abbasi, B.H. Feasible production of lignans and neolignans in root-derived in vitro cultures of flax (Linum usitatissimum L.). Plants 2020, 9, 409. [Google Scholar] [CrossRef]
- Dougué Kentsop, R.A.; Consonni, R.; Alfieri, M.; Laura, M.; Ottolina, G.; Mascheretti, I.; Mattana, M. Linum lewisii Adventitious and Hairy-Roots Cultures as Lignan Plant Factories. Antioxidants 2022, 11, 1526. [Google Scholar] [CrossRef]
- Fuss, E. Lignans in plant cell and organ cultures: An overview. Phytochem. Rev. 2003, 2, 307–320. [Google Scholar] [CrossRef]
- YILDIZ, M.; Özcan, S.; ER, C. The effect of different explant sources on adventitious shoot regeneration in flax (Linum usitatissimum L.). Turk. J. Biol. 2002, 26, 37–40. [Google Scholar]
- Khan, I.; Khan, M.A.; Shehzad, M.A.; Ali, A.; Mohammad, S.; Ali, H.; Alyemeni, M.N.; Ahmad, P. Micropropagation and Production of Health Promoting Lignans in Linum usitatissimum. Plants 2020, 9, 728. [Google Scholar] [CrossRef]
- Szopa, A.; Dziurka, M.; Kubica, P.; Jafernik, K.; Siomak, O.; Ekiert, H. Stimulation of Lignan Production in Schisandra rubriflora In Vitro Cultures by Elicitation. Molecules 2022, 27, 6681. [Google Scholar] [CrossRef]
- Zhao, J.-L.; Zou, L.; Zhang, C.-Q.; Li, Y.-Y.; Peng, L.-X.; Xiang, D.-B.; Zhao, G. Efficient production of flavonoids in Fagopyrum tataricum hairy root cultures with yeast polysaccharide elicitation and medium renewal process. Pharmacogn. Mag. 2014, 10, 234. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, J.; Zhou, X.; Chen, X.; Li, Q.; Tan, H.; Dong, X.; Xiao, Y.; Chen, L.; Chen, W. Dynamic metabolic and transcriptomic profiling of methyl jasmonate-treated hairy roots reveals synthetic characters and regulators of lignan biosynthesis in Isatis indigotica Fort. Plant Biotechnol. J. 2016, 14, 2217–2227. [Google Scholar] [CrossRef] [PubMed]
- Bayindir, Ü.; Alfermann, A.W.; Fuss, E. Hinokinin biosynthesis in Linum corymbulosum Reichenb. Plant J. 2008, 55, 810–820. [Google Scholar] [CrossRef] [PubMed]
- Isah, M.B.; Tajuddeen, N.; Yusuf, A.; Mohammed, A.; Ibrahim, M.A.; Melzig, M.; Zhang, X. The antidiabetic properties of lignans: A comprehensive review. Phytomedicine 2025, 141, 156717. [Google Scholar] [CrossRef] [PubMed]
- Clavel, T.; Doré, J.; Blaut, M. Bioavailability of lignans in human subjects. Nutr. Res. Rev. 2006, 19, 187–196. [Google Scholar] [CrossRef]
- Durazzo, A.; Lucarini, M.; Camilli, E.; Marconi, S.; Gabrielli, P.; Lisciani, S.; Gambelli, L.; Aguzzi, A.; Novellino, E.; Santini, A. Dietary lignans: Definition, description and research trends in databases development. Molecules 2018, 23, 3251. [Google Scholar] [CrossRef]
- Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef]
- Ehambarampillai, D.; Wan, M.L.Y. A comprehensive review of Schisandra chinensis lignans: Pharmacokinetics, pharmacological mechanisms, and future prospects in disease prevention and treatment. Chin. Med. 2025, 20, 47. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, S.; He, H.; Liu, C.; Chen, W.; Tang, X. Technology for improving the bioavailability of small molecules extracted from traditional Chinese medicines. Expert. Opin. Drug Deliv. 2009, 6, 1247–1259. [Google Scholar] [CrossRef]
- Eran Nagar, E.; Berenshtein, L.; Hanuka Katz, I.; Lesmes, U.; Okun, Z.; Shpigelman, A. The impact of chemical structure on polyphenol bioaccessibility, as a function of processing, cell wall material and pH: A model system. J. Food Eng. 2021, 289, 110304. [Google Scholar] [CrossRef]
- Eran Nagar, E.; Okun, Z.; Shpigelman, A. In vitro bioaccessibility of polyphenolic compounds: The effect of dissolved oxygen and bile. Food Chem. 2023, 404, 134490. [Google Scholar] [CrossRef] [PubMed]
- Hussain Zaki, U.K.; Fryganas, C.; Trijsburg, L.; Feskens, E.J.M.; Capuano, E. In vitro gastrointestinal bioaccessibility and colonic fermentation of lignans from fresh, fermented, and germinated flaxseed. Food Funct. 2022, 13, 10737–10747. [Google Scholar] [CrossRef] [PubMed]
- Toulabi, T.; Yarahmadi, M.; Goudarzi, F.; Ebrahimzadeh, F.; Momenizadeh, A.; Yarahmadi, S. Effects of flaxseed on blood pressure, body mass index, and total cholesterol in hypertensive patients: A randomized clinical trial. Explore 2022, 18, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Baldi, S.; Tristán Asensi, M.; Pallecchi, M.; Sofi, F.; Bartolucci, G.; Amedei, A. Interplay between Lignans and Gut Microbiota: Nutritional, Functional and Methodological Aspects. Molecules 2023, 28, 343. [Google Scholar] [CrossRef]
- Lv, S.; Li, J.; Hu, Y.; Cai, J.; Nan, G.; Kong, Y.; Shen, X.; Zhu, L.; Yang, S.; Dong, C. Multi-Target Therapeutic Potential of Arctii fructus Lignans in Diabetes Mellitus and Its Complications: A Mechanistic Review. Pharmaceuticals 2025, 18, 1569. [Google Scholar] [CrossRef]
- Di Lorenzo, C.; Colombo, F.; Biella, S.; Stockley, C.; Restani, P. Polyphenols and Human Health: The Role of Bioavailability. Nutrients 2021, 13, 273. [Google Scholar] [CrossRef]
- Gong, J.; Yang, L.; Su, Q.; Zhong, W.; Xiao, J. Gut microbiota and host metabolizing enzymes co-contribute to pharmacokinetic variability in type 2 diabetes mellitus rats. eFood 2024, 5, e137. [Google Scholar] [CrossRef]
- Peterson, J.; Dwyer, J.; Adlercreutz, H.; Scalbert, A.; Jacques, P.; McCullough, M.L. Dietary lignans: Physiology and potential for cardiovascular disease risk reduction. Nutr. Rev. 2010, 68, 571–603. [Google Scholar] [CrossRef] [PubMed]





| Product/Compound | Model | Dose/Duration of Treatment | Findings | Reference |
|---|---|---|---|---|
| Flax lignan concentrate (FLC) | Hypertensive rats | FLC (200, 400, and 800 mg/kg, p.o.) was administered daily to the rats for 5 weeks. | FLC (400 and 800 mg/kg) significantly reduced the systolic blood pressure and diastolic blood pressure via modulation of endogenous enzymes. | [44] |
| Gomisin J from Schisandra chinensis | Hypertensive mice | Mice were treated with 1 or 3 μg/kg/min gomisin J for 14 days. | Gomisin J reduced the rise in arterial blood pressure by preserving vascular nitric oxide (NO) bioavailability, inhibiting reactive oxygen species (ROS) production, and preventing the dysfunction of endothelial nitric oxide synthase (eNOS). | [48] |
| Phillygenin | Hypertensive rats | Rats were orally treated with 2.5–10 mg/kg phillygenin | Phillygenin reduces hypertension by reducing PLCβ3-dependent Ca2+ oscillation. | [49] |
| Secoisolariciresinol diglucoside (SDG) from flaxseed | Sprague Dawley male rats | Rats were treated with 10 mg/kg SDG. | SDG attenuated the angiotensin I-induced increases in systolic, diastolic, and mean arterial blood pressures. | [46] |
| Secoisolariciresinol diglucoside lignan-enriched flaxseed powder (LEFP) | Rats fed a high-fat and high-fructose diet | The diet was added with 0.02% LEFP for 12 weeks. | LEFP lowered blood pressure. | [45] |
| Product/Compound | Model | Dose/Duration of Treatment | Findings | Reference |
|---|---|---|---|---|
| Arctigenin | HFD mice | Mice were treated with 100 mg/kg arctigenin | Arctigenin improves metabolic disorders by reshaping the gut microbiota and regulating the GPR/HDAC3 and TLR4/NF-κB signaling pathways. | [65] |
| Arctiin | 3T3-L1 cells and HFD mice | 3T3-L1 cells were treated with arctiin at concentrations ranging from 12.5 to 100 μM for 8 days, while rats received a daily dose of 500 mg/kg arctiin for 4 weeks. | Arctiin inhibited adipogenesis by suppressing PPARγ and C/EBPα expression and activating the AMPK signaling pathway. | [66] |
| Deoxyschizandrin | HFD obese mice | Obese mice were fed either a lignan-free diet or a diet supplemented with 65 mg/kg/day of lignans for 6 weeks. | Deoxyschizandrin alleviates obesity by regulating the activity of the farnesoid X receptor, bile acid receptor 1, and leptin signaling pathways. | [67] |
| Fructus arctii | KKAy mice | KKAy mice were fed either a lignan-free diet or a diet supplemented with 125 or 250 mg/kg/day of Fructus arctii for 11 weeks. | Fructus arctii reduced body weight, serum triglycerides, and free fatty acid levels in the mice. | [68] |
| Gomisin N | 3T3-L1 preadipocytes and HFD mice | Preadipocytes were incubated with 10–100 µM Gomisin N; mice were orally treated with 2 or 10 mg/kg Gomisin N. | Gomisin N repressed the differentiation of 3T3-L1 preadipocytes, reduced body weight gain, fat pad weight, adipocyte sizes, serum levels of glucose, triglyceride, as well as hepatic triglyceride in the HFD-induced obese mice. | [69] |
| Litchi chinensis seed | HFD zebrafish and mice | HFD zebrafish were treated with a lignan-free diet or a diet containing 0.35 or 1.4 mg/d lignan for 8 weeks; HFD mice were treated with either a lignan-free diet and a diet containing 300 or 500 mg/d lignans for 12 weeks. | Litchi chinensis seed can diminish the weight of HFD zebrafish and ice, improve lipid accumulation and lipid metabolism, control appetite, and prevent hepatoenteric inflammation. | [70] |
| Phyllanthin | HFD mice | HFD mice were treated with either a lignan-free diet or a diet with phyllanthin (2 or 4 mg/d) for 12 weeks. | Phyllanthin consumption can ameliorate the development of metabolic disorders. | [71] |
| Sauchinone | HFD mice | HFD mice were treated with either a lignan-free diet or a diet with sauchinone (10 or 30 mg/kg) for 11 weeks. | Sauchinone inhibits hepatic steatosis, protecting hepatocytes from oxidative stress caused by fat accumulation. | [72] |
| Schisandrae chinensis oil | Diabetic Wistar rats | Oil (1 mg/kg) was administered orally by gavage daily for 8 weeks to diabetic and normal rats. | The oil enhances pancreatic β-cell function by boosting the antioxidant capacity of the pancreas and increasing the expression of genes involved in glucose metabolism. | [73] |
| Schisandrin | Depressive mouse model induced by lipopolysaccharide. | Mice were fed either a lignan-free diet or a diet supplemented with lignans (30 mg/kg/day) for 14 days. | Schisandrin restored intestinal microbial balance in inflammatory mice by inhibiting the expression of the TLR4/NF-κB signaling pathway. | [74] |
| Schisanhenol | Liver disease mouse model induced by HFD non-alcoholic fatty. | Mice were treated with 5, 10, or 20 mg/kg schisanhenol. | Schisanhenol improved lipolysis and fatty acid oxidation, showed anti-lipogenic activity, and modulated AMPK-mediated lipid metabolism by inhibiting miR-802. | [75] |
| Secoisolariciresinol diglucoside (SDG) | HFD mice | SDG (0.05%, w/w) supplementation for 16 weeks. | SDG mitigates hepatic steatosis and improves insulin resistance. | [76] |
| Secoisolariciresinol diglucoside lignan-enriched flaxseed powder (LEFP) | HFD rats | Normal and HFD rats were treated with 0.02% LEFP | LEFP reduced body weight and fat accumulation, improved lipid profiles, and helped regulate blood pressure. | [45] |
| Sesame extracts and sesaminol diglucoside | HFD mice | Mice were treated with 20 mg/kg sesame extract and 5 mg/kg sesaminol diglucoside. | Sesaminol diglucoside induced brown adipose tissue thermogenesis through β3-AR. | [77] |
| Sesame lignans (sesamin and sesamolin) | Rats | A diet containing either 0.6 or 2 g/kg of lignans (sesamin or sesamolin), or a combination diet with sesamin (1.4 g/kg) and sesamolin (0.6 g/kg), was administered for 10 days. | Sesamin and sesamolin increased both the activity and mRNA expression of several enzymes involved in hepatic fatty acid oxidation and lipogenesis. | [78] |
| Sesame oil lignans | HFD mice | Mice were treated with sesame oil for 12 weeks. | Sesame oil reduced endoplasmic reticulum stress and apoptosis. | [79] |
| Sesaminol | Liver disease in a mouse model induced by HFD non-alcoholic fatty. | Mice were treated with sesaminol (2 mg/kg). | Sesaminol influences mitochondrial function, lipid metabolism, and inflammation. | [80] |
| Sesamol | Mice | Wildtype and ApoE−/− mice were treated with an HFD and sesamol (0.05%, w/v, in drinking water) for 10 weeks. | Sesamol can restructure the intestinal environment of HFD mice and boost the production of SCFAs. | [81] |
| Sesamol | Aged obese (HFD) mice and a senescent cell model. | Mice were treated with 100 mg/kg sesamol for 8 weeks. | Sesamol ameliorates oxidative stress-intensified adipose tissue senescence in aged obese mice through Nrf2/p38MAPK signaling. | [82] |
| Population | Product/Compound | Dose and Duration | Key Outcomes | Reference |
|---|---|---|---|---|
| Overweight/obese women | Milled flaxseed | 30 g/day, 12 weeks | ↓ waist circumference, ↓ waist-to-hip ratio; ↑ adiponectin | [95] |
| Adults with overweight/obesity | Flaxseed/flax products (whole, lignan, oil) | varied; ~≥10–20 weeks | ↓ body weight, ↓ BMI, ↓ waist circumference | [100] |
| Adults with overweight/obesity | Flaxseed | varied | ↓ body weight, ↓ BMI, ↓ waist circumference | [101] |
| Type 2 diabetics | Ground flaxseed vs. wheat bran | 40 g/day, 12 weeks | Did not show significant weight/BMI change; improved metabolic markers | [102] |
| Older obese adults | Flaxseed lignan complex vs. placebo (with exercise program) | ~543 mg/day, 6 months | Smaller waist circumference gain (central adiposity trend) | [103] |
| Children and adolescents with overweight/obesity | Flaxseed or puffed wheat | 20 g/d flaxseed or 25 g/d puffed wheat for 4 weeks. | ↓ BMI, ↓ appetite, and waist circumference. | [65] |
| Source | Extraction Method | Conditions | Yield or Lignan Content | Reference |
|---|---|---|---|---|
| Asarum sp. | Ultrasound-assisted extraction | S: 80% ethanol, t: 40 min, T: 51 °C, SS: 1 g/10 mL | 13.40 mg asarinin/g/g and 2.39 mg sesamin/g/g | [113] |
| Flaxseed | Ultrasound-assisted extraction | S: Water supplemented with 0.2 N NaOH, t: 60 min, T: 25 °C, SS: 50 mg/10 mL | 23.6 mg SDG/g | [114] |
| Flaxseed cake | Microwave-assisted extraction | S: 70% Methanol with 1 M NaOH, t: 3 min, SS: 500 mg/20 mL | 16.1 mg SDG/g | [115] |
| Oat powder (Avena sativa L.) | Ultrasound-assisted extraction | S: 84% methanol, t: 60 min, T: 40 °C, SW: 0.1 g | 59.56 µg/100 g | [116] |
| Sesame cake | Ultrasound-assisted extraction | S: 71% ethanol, t: 10 min, T: 50 °C, SS: 1.50 g/20 mL | 8.28% | [117] |
| Microwave-assisted extraction | S: 80% ethanol, t: 5 min, T: 50 °C, SS: 0.85 g/20 mL | 8.75% | ||
| Accelerated-assisted solvent extraction | S: 80% ethanol, t: 20 min, T: 65 °C, SW: 2 g | 9.34% | ||
| Sesame seed cake | enzyme-assisted treatment + subcritical fluid extraction | Enzyme assisted E: cellulase + pectinase+ xylanase + β-glucosidase, SW: 6 g Subcritical extraction S: 1000 mL dimethyl ether, P: −0.1 MPa, T: 40 °C, t: 30 min, SW: 200 g | 13.43 mg/100 g | [15] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Das, G.; Gonçalves, S.; Heredia, J.B.; Leyva-López, N.; Romano, A.; Paramithiotis, S.; Shin, H.-S.; Patra, J.K. Molecular Mechanisms of Lignans in Lowering Blood Pressure and Anti-Obesity Effects: A Review. Foods 2026, 15, 336. https://doi.org/10.3390/foods15020336
Das G, Gonçalves S, Heredia JB, Leyva-López N, Romano A, Paramithiotis S, Shin H-S, Patra JK. Molecular Mechanisms of Lignans in Lowering Blood Pressure and Anti-Obesity Effects: A Review. Foods. 2026; 15(2):336. https://doi.org/10.3390/foods15020336
Chicago/Turabian StyleDas, Gitishree, Sandra Gonçalves, José Basilio Heredia, Nayely Leyva-López, Anabela Romano, Spiros Paramithiotis, Han-Seung Shin, and Jayanta Kumar Patra. 2026. "Molecular Mechanisms of Lignans in Lowering Blood Pressure and Anti-Obesity Effects: A Review" Foods 15, no. 2: 336. https://doi.org/10.3390/foods15020336
APA StyleDas, G., Gonçalves, S., Heredia, J. B., Leyva-López, N., Romano, A., Paramithiotis, S., Shin, H.-S., & Patra, J. K. (2026). Molecular Mechanisms of Lignans in Lowering Blood Pressure and Anti-Obesity Effects: A Review. Foods, 15(2), 336. https://doi.org/10.3390/foods15020336

