Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (453)

Search Parameters:
Keywords = traditional beverages

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 449 KiB  
Review
The Science of Aging: Understanding Phenolic and Flavor Compounds and Their Influence on Alcoholic Beverages Aged with Alternative Woods
by Tainá Francisca Cordeiro de Souza, Bruna Melo Miranda, Julio Cesar Colivet Briceno, Joaquín Gómez-Estaca and Flávio Alves da Silva
Foods 2025, 14(15), 2739; https://doi.org/10.3390/foods14152739 - 5 Aug 2025
Abstract
Aging in wooden barrels is a proven technique that enhances the sensory complexity of alcoholic beverages by promoting the extraction of volatile and phenolic compounds. While oak has been traditionally used, there is a growing interest in exploring alternative wood species that can [...] Read more.
Aging in wooden barrels is a proven technique that enhances the sensory complexity of alcoholic beverages by promoting the extraction of volatile and phenolic compounds. While oak has been traditionally used, there is a growing interest in exploring alternative wood species that can impart distinct sensory characteristics and promote innovative maturation processes. This review examines the impact of alternative woods on the aging of beverages, such as wine, cachaça, tequila, and beer, focusing on their influence on aroma, flavor, color, and chemical composition. A bibliometric analysis highlights the increasing scientific attention toward wood diversification and emerging aging technologies, including ultrasound and micro-oxygenation, which accelerate maturation while preserving sensory complexity. The role of toasting techniques in modulating the release of phenolic and volatile compounds is also discussed, emphasizing their contribution to unique sensory profiles. Additionally, regulatory aspects and sustainability considerations are explored, suggesting that alternative woods can expand flavor possibilities while supporting environmentally sustainable practices. This review underscores the potential of non-traditional wood species to drive innovation in the aging of alcoholic beverages and provide new sensory experiences that align with evolving consumer preferences and market trends. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
18 pages, 2062 KiB  
Review
Living Cultures in a Glass: The Health Promise of Probiotic Bacteria in Kombucha
by Tara Budimac, Aleksandra Ranitović, Olja Šovljanski, Dragoljub Cvetković and Ana Tomić
Fermentation 2025, 11(8), 434; https://doi.org/10.3390/fermentation11080434 - 29 Jul 2025
Viewed by 387
Abstract
Kombucha is a fermented tea beverage of Asian origin, widely consumed due to its functional properties; yet, it typically lacks sufficient levels of probiotic micro-organisms to be classified as a probiotic product. This review analyzes the occurrence of lactic acid bacteria (LAB) in [...] Read more.
Kombucha is a fermented tea beverage of Asian origin, widely consumed due to its functional properties; yet, it typically lacks sufficient levels of probiotic micro-organisms to be classified as a probiotic product. This review analyzes the occurrence of lactic acid bacteria (LAB) in kombucha, reporting that concentrations rarely exceed 4–5 log CFU/mL and often decline during fermentation or storage. Strategies to enhance probiotic viability, including the use of robust LAB strains and encapsulation technologies, are critically evaluated. Notably, encapsulation using pea and whey protein has been shown to sustain LAB levels above 6 log CFU/mL during fermentation and up to 21 days under refrigerated storage for whey protein. Fortified kombucha beverages with probiotic strains have also been shown to possess enhanced functional and health-promoting benefits compared to traditional control samples. Despite promising approaches, inconsistencies in microbial survival and regulatory constraints remain key challenges. Future research should focus on the optimization of delivery systems for probiotic cultures, identification of kombucha-compatible LAB strains and standardized protocols to validate probiotic efficacy in real-world beverage conditions. Full article
Show Figures

Figure 1

21 pages, 3912 KiB  
Article
Screening and Phenotyping of Lactic Acid Bacteria in Boza
by Xudong Zhao, Longying Pei, Xinqi Wang, Mingming Luo, Sihan Hou, Xingqian Ye, Wei Liu and Yuting Zhou
Microorganisms 2025, 13(8), 1767; https://doi.org/10.3390/microorganisms13081767 - 29 Jul 2025
Viewed by 343
Abstract
The aim of this study was to isolate and identify lactic acid bacteria (LAB) from a traditional fermented beverage, Boza, and to conduct an in-depth study on their fermentation and probiotic properties. The fermentation (acid production rate, acid tolerance, salt tolerance, amino acid [...] Read more.
The aim of this study was to isolate and identify lactic acid bacteria (LAB) from a traditional fermented beverage, Boza, and to conduct an in-depth study on their fermentation and probiotic properties. The fermentation (acid production rate, acid tolerance, salt tolerance, amino acid decarboxylase activity) and probiotic properties (gastrointestinal tolerance, bile salt tolerance, hydrophobicity, self-aggregation, drug resistance, bacteriostatic properties) of the 16 isolated LAB were systematically analyzed by morphological, physiological, and biochemical tests and 16S rDNA molecular biology. This analysis utilized principal component analysis (PCA) to comprehensively evaluate the biological properties of the strains. The identified LAB included Limosilactobacillus fermentum (9 strains), Levilactobacillus brevis (2 strains), Lacticaseibacillus paracasei (2 strains), and Lactobacillus helveticus (3 strains). These strains showed strong environmental adaptation at different pH (3.5) and temperature (45 °C), with different gastrointestinal colonization, tolerance, and antioxidant properties. All the strains did not show hemolytic activity and were inhibitory to Staphylococcus aureus, and showed resistance to kanamycin, gentamicin, vancomycin, and streptomycin. Based on the integrated scoring of biological properties by principal component analysis, Limosilactobacillus fermentum S4 and S6 and Levilactobacillus brevis S5 had excellent fermentation properties and tolerance and could be used as potential functional microbial resources. Full article
(This article belongs to the Special Issue Microbial Fermentation in Food Processing)
Show Figures

Figure 1

13 pages, 1417 KiB  
Review
A Comprehensive Evaluation of Microbial Synergistic Metabolic Mechanisms and Health Benefits in Kombucha Fermentation: A Review
by Xinyao Li, Norzin Tso, Shuaishuai Huang, Junwei Wang, Yonghong Zhou and Ruojin Liu
Biology 2025, 14(8), 952; https://doi.org/10.3390/biology14080952 - 28 Jul 2025
Viewed by 399
Abstract
Kombucha, a traditional fermented beverage, has become an important topic in global health beverage research due to its potential health benefits. The aim of this review is to integrate the existing literature and analyze the interactions among microbial communities during the fermentation process [...] Read more.
Kombucha, a traditional fermented beverage, has become an important topic in global health beverage research due to its potential health benefits. The aim of this review is to integrate the existing literature and analyze the interactions among microbial communities during the fermentation process of kombucha, especially how Saccharomyces, Acetobacter, and Lactobacillus generate bioactive components with health benefits through the cascade reaction in sugar metabolism–ethanol oxidation–organic acid accumulation. We also focus on the effects of fermentation conditions (e.g., time, temperature, and strain) on the microbial community structure and metabolic pathways, as well as their effects on the bioactive components and quality of kombucha microbiota (the microbial community in kombucha). By combing and analyzing the existing studies, this review provides an important theoretical basis for the optimization of the fermentation process, enhancement of health benefits, and development of functional beverages of kombucha microbiota, as well as new ideas for future research directions. Full article
Show Figures

Graphical abstract

27 pages, 1518 KiB  
Review
Application of Microbial Fermentation in Caffeine Degradation and Flavor Modulation of Coffee Beans
by Lu-Xia Ran, Xiang-Ying Wei, Er-Fang Ren, Jian-Feng Qin, Usman Rasheed and Gan-Lin Chen
Foods 2025, 14(15), 2606; https://doi.org/10.3390/foods14152606 - 24 Jul 2025
Viewed by 504
Abstract
Coffee is one of the most widely consumed beverages worldwide, primarily due to the stimulating effects attributed to its caffeine content. However, excessive intake of caffeine results in negative effects, including palpitations, anxiety, and insomnia. Therefore, low-caffeine coffee has captivated growing consumer interest, [...] Read more.
Coffee is one of the most widely consumed beverages worldwide, primarily due to the stimulating effects attributed to its caffeine content. However, excessive intake of caffeine results in negative effects, including palpitations, anxiety, and insomnia. Therefore, low-caffeine coffee has captivated growing consumer interest, highlighting its significant market potential. Traditional decaffeination methods often lead to non-selective extraction, resulting in a loss of desirable flavor compounds, thereby compromising coffee quality. In recent years, microbial fermentation has emerged as a promising, targeted, and safe approach for reducing caffeine content during processing. Additionally, mixed-culture fermentation further enhances coffee flavor and overcomes the drawbacks of monoculture fermentation, such as low efficiency and limited flavor profiles. Nonetheless, several challenges are yet to be resolved, including microbial tolerance to caffeine and related alkaloids, the safety of fermentation products, and elucidation of the underlying mechanisms behind microbial synergy in co-cultures. This review outlines the variety of microorganisms with the potential to degrade caffeine and the biochemical processes involved in this process. It explores how microbes tolerate caffeine, the safety of metabolites produced during fermentation, and the synergistic effects of mixed microbial cultures on the modulation of coffee flavor compounds, including esters and carbonyls. Future directions are discussed, including the screening of alkaloid-tolerant strains, constructing microbial consortia for simultaneous caffeine degradation for flavor enhancement, and developing high-quality low-caffeine coffee. Full article
Show Figures

Figure 1

16 pages, 1913 KiB  
Proceeding Paper
Collaborative Robots as an Engineering Tool for the Transition of the Food Industry to Industry 5.0
by Valentina Nikolova-Alexieva, Katina Valeva, Margarita Terziyska and Nikola Shakev
Eng. Proc. 2025, 100(1), 57; https://doi.org/10.3390/engproc2025100057 - 22 Jul 2025
Viewed by 262
Abstract
The article examines the application of collaborative robots (cobots) as a modern engineering tool for the transformation of the food industry following the principles of Industry 5.0. A conceptual engineering model has been developed that integrates collaborative robots with IoT systems, digital twins, [...] Read more.
The article examines the application of collaborative robots (cobots) as a modern engineering tool for the transformation of the food industry following the principles of Industry 5.0. A conceptual engineering model has been developed that integrates collaborative robots with IoT systems, digital twins, and predictive analytics to increase the flexibility, safety, and sustainability of production processes. The proposed model is validated through a practical case study focused on a yogurt packaging line in the dairy sector, where cobot systems demonstrate a significant improvement in operational efficiency and process safety. A step-by-step strategic roadmap is presented to guide industrial enterprises through the various stages of implementation, from the initial assessment to the full-scale integration of solutions. Additionally, a comparative analysis has been performed between traditional automated systems and the integrated approach with collaborative robots, which highlights the technological, economic, and human-oriented advantages of the latter. The results of the study confirm that collaborative robotics offers an effective and applicable path for transforming the food and beverage industry towards a sustainable, adaptive, and human-centered manufacturing ecosystem characteristic of Industry 5.0. Full article
Show Figures

Figure 1

23 pages, 625 KiB  
Review
Rice Wine Fermentation: Unveiling Key Factors Shaping Quality, Flavor, and Technological Evolution
by Baoyu Peng, Haiyang Huang, Jingjing Xu, Yuan Xin, Lang Hu, Lelei Wen, Li Li, Jinwen Chen, Yu Han and Changchun Li
Foods 2025, 14(14), 2544; https://doi.org/10.3390/foods14142544 - 21 Jul 2025
Viewed by 550
Abstract
Rice wine, as a traditional fermented beverage, has its quality and flavor influenced by a combination of multiple factors. This review provides an overview of the key aspects of rice wine production, including raw material selection and processing, the regulation of quality by [...] Read more.
Rice wine, as a traditional fermented beverage, has its quality and flavor influenced by a combination of multiple factors. This review provides an overview of the key aspects of rice wine production, including raw material selection and processing, the regulation of quality by brewing techniques, the mechanisms of microbial community interaction during fermentation, and the types and formation mechanisms of major compounds in rice wine (including flavor compounds and non-volatile components). The study highlights that different raw materials and processing methods significantly impact the fundamental flavor profile of rice wine, while fermentation conditions and dynamic changes in microbial communities determine its flavor complexity and stability. Additionally, this review examines various factors affecting the quality and flavor of rice wine, such as fermentation environment, microbial metabolism, and control of harmful substances, and summarizes modern research and technological advancements, emphasizing the potential of digital and intelligent technologies in enhancing the quality and safety of rice wine. Finally, future research directions are proposed to promote modernization and quality improvement of the rice wine industry. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

19 pages, 4718 KiB  
Article
Assessment of Winery By-Products as Ingredients as a Base of “3S” (Safe, Salubrious, and Sustainable) Fermented Beverages Rich in Bioactive Anthocyanins
by Berta María Cánovas, Irene Pérez-Novas, Cristina García-Viguera, Raúl Domínguez-Perles and Sonia Medina
Foods 2025, 14(14), 2514; https://doi.org/10.3390/foods14142514 - 17 Jul 2025
Viewed by 519
Abstract
Oenological residues may cause environmental pollution when processing does not significantly reduce volume and/or harmful conditions. The lack of proper valorisation alternatives entails high disposal costs and resource inefficiency that jeopardise the sustainability and competitiveness of the industry. Interestingly, wine by-products are underappreciated [...] Read more.
Oenological residues may cause environmental pollution when processing does not significantly reduce volume and/or harmful conditions. The lack of proper valorisation alternatives entails high disposal costs and resource inefficiency that jeopardise the sustainability and competitiveness of the industry. Interestingly, wine by-products are underappreciated sources of multipurpose bioactive compounds, such as anthocyanins, associated with health benefits. Alternatively, transforming oenological by-products into valuable co-products will promote sustainability and thus, create new business opportunities. In this context, the present study has assessed the applicability of winery by-products (grape pomace and wine lees) as ingredients to develop new functional kombucha-analogous beverages “3S” (safe, salubrious, and sustainable) by the Symbiotic Culture of Bacteria and Yeast (SCOBY). Concerning the main results, during the kombucha’s development, the fermentation reactions modified the physicochemical parameters of the beverages, namely pH, total soluble solids, acetic acid, ethanol, and sugars, which remained stable throughout the monitored shelf-life period considered (21 days). The fermented beverages obtained exhibited high anthocyanin concentration, especially when using wine lees as an ingredient (up to 5.60 mg/L at the end of the aerobic fermentation period (10 days)) compared with the alternative beverages produced using grape pomace (1.69 mg/L). These findings demonstrated that using winery by-products for the development of new “3S” fermented beverages would provide a dietary source of bioactive compounds (mainly anthocyanins), further supporting new valorisation chances and thus contributing to the competitiveness and sustainability of the winery industries. This study opens a new avenue for cross-industry innovation, merging fermentation traditions with a new eco-friendly production of functional beverages that contribute to transforming oenological residues into valuable co-products. Full article
Show Figures

Figure 1

20 pages, 1065 KiB  
Review
Microbial Genome Editing with CRISPR–Cas9: Recent Advances and Emerging Applications Across Sectors
by Chhavi Dudeja, Amish Mishra, Ansha Ali, Prem Pratap Singh and Atul Kumar Jaiswal
Fermentation 2025, 11(7), 410; https://doi.org/10.3390/fermentation11070410 - 16 Jul 2025
Viewed by 1005
Abstract
CRISPR technology, which is derived from the bacterial adaptive immune system, has transformed traditional genetic engineering techniques, made strain engineering significantly easier, and become a very versatile genome editing system that allows for precise, programmable modifications to a wide range of microbial genomes. [...] Read more.
CRISPR technology, which is derived from the bacterial adaptive immune system, has transformed traditional genetic engineering techniques, made strain engineering significantly easier, and become a very versatile genome editing system that allows for precise, programmable modifications to a wide range of microbial genomes. The economies of fermentation-based manufacturing are changing because of its quick acceptance in both academic and industry labs. CRISPR processes have been used to modify industrially significant bacteria, including the lactic acid producers, Clostridium spp., Escherichia coli, and Corynebacterium glutamicum, in order to increase the yields of bioethanol, butanol, succinic acid, acetone, and polyhydroxyalkanoate precursors. CRISPR-mediated promoter engineering and single-step multiplex editing have improved inhibitor tolerance, raised ethanol titers, and allowed for the de novo synthesis of terpenoids, flavonoids, and recombinant vaccines in yeasts, especially Saccharomyces cerevisiae and emerging non-conventional species. While enzyme and biopharmaceutical manufacturing use CRISPR for quick strain optimization and glyco-engineering, food and beverage fermentations benefit from starter-culture customization for aroma, texture, and probiotic functionality. Off-target effects, cytotoxicity linked to Cas9, inefficient delivery in specific microorganisms, and regulatory ambiguities in commercial fermentation settings are some of the main challenges. This review provides an industry-specific summary of CRISPR–Cas9 applications in microbial fermentation and highlights technical developments, persisting challenges, and industrial advancements. Full article
(This article belongs to the Section Fermentation Process Design)
Show Figures

Figure 1

11 pages, 846 KiB  
Article
Application of the Precolumn Derivatization Reagent CIM-C2-NH2 for Labeling Carboxyl Groups in LC-MS/MS Analysis of Primary Organic Acids in Japanese Sake
by Mayu Onozato, Haruna Uchida, Misaki Ono, Mikoto Koishi, Maya Oi, Maho Umino, Tatsuya Sakamoto and Takeshi Fukushima
Separations 2025, 12(7), 186; https://doi.org/10.3390/separations12070186 - 16 Jul 2025
Viewed by 274
Abstract
Japanese sake, a traditional alcoholic beverage, contains several organic acids that may contribute to its sour taste. To identify these, a precolumn derivatization reagent, benzyl 5-(2-aminoethyl)-3-methyl-4-oxoimidazolidine-1-carboxylate (CIM-C2-NH2), developed for labeling carboxyl groups, was synthesized and applied to liquid chromatography–tandem [...] Read more.
Japanese sake, a traditional alcoholic beverage, contains several organic acids that may contribute to its sour taste. To identify these, a precolumn derivatization reagent, benzyl 5-(2-aminoethyl)-3-methyl-4-oxoimidazolidine-1-carboxylate (CIM-C2-NH2), developed for labeling carboxyl groups, was synthesized and applied to liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis of organic acids in six commercial sake samples. The majority primarily contained lactic acid (LA), and dicarboxylic acids, such as succinic acid (SA), malic acid (MA), and citramalic acid (CMA). The organic acid concentrations and compositions in the sake differed among brands. Notably, both l- and d-forms of LA were detected in all samples, while only d-CMA was present. To estimate the total acidic content, neutralization titration with sodium hydroxide was performed. In four of the six samples, titration results closely matched LC-MS/MS data, suggesting that l-LA, d-LA, SA, MA, and d-CMA were the primary contributors for the sour taste in these sakes. The discrepancy between titration and LC-MS/MS data for the other samples was attributed to the presence of other organic acids, which will be investigated in future studies. Full article
(This article belongs to the Section Analysis of Food and Beverages)
Show Figures

Figure 1

24 pages, 1883 KiB  
Article
An Integrated Life Cycle Assessment of a Hemp-Based Craft Beer: A Case Study from Italy
by Marco Ruggeri, Giuliana Vinci, Marco Savastano and Lucia Maddaloni
Sustainability 2025, 17(13), 6232; https://doi.org/10.3390/su17136232 - 7 Jul 2025
Viewed by 371
Abstract
With over 180 million tons produced annually and a global market exceeding 500 billion dollars, beer is one of the most widely consumed beverages in the world, thanks to its broad variety of styles, traditions, ingredients, and brewing techniques. However, behind this widespread [...] Read more.
With over 180 million tons produced annually and a global market exceeding 500 billion dollars, beer is one of the most widely consumed beverages in the world, thanks to its broad variety of styles, traditions, ingredients, and brewing techniques. However, behind this widespread popularity lies a potentially impactful production chain, whose environmental impacts remain underexplored, particularly within the craft segment. This research evaluates the sustainability of a hemp-based craft beer produced in the Lazio region (Italy) using an integrated approach that combines life cycle assessment with environmental impact monetization. The results indicate that the main impacts in beer production are related to global warming potential (0.916 kg CO2 eq/L), terrestrial ecotoxicity (0.404 kg 1.4-DCB eq/L), land use (0.841 m2a crop eq/L), and fossil resource scarcity (0.211 kg oil eq/L), primarily due to malt production and hop transportation. Packaging analysis revealed that including environmental costs, aluminum cans may add an additional environmental cost of €0.80–1.60 per unit, while glass bottles, despite their weight, incur a lower additional cost. For a beer priced at €3.50, this would translate to a real cost of €4.30–5.10, reflecting a 22–45% increase. Improving sustainability in the brewing sector requires strategic actions, such as careful supplier selection and appropriate packaging choices. Overall, sustainability in brewing emerges as a balance between production needs, distribution impacts, and systemic decisions. Full article
(This article belongs to the Special Issue Sustainable Development in Food Quality and Safety)
Show Figures

Figure 1

27 pages, 1374 KiB  
Review
Increasing Life Expectancy with Plant Polyphenols: Lessons from the Mediterranean and Japanese Diets
by Marco Fiore, Anton B. Tonchev, Ruzha Z. Pancheva, Tetsumori Yamashima, Sabrina Venditti, Giampiero Ferraguti and Sergio Terracina
Molecules 2025, 30(13), 2888; https://doi.org/10.3390/molecules30132888 - 7 Jul 2025
Viewed by 947
Abstract
Plant polyphenols have emerged as potent bioactive molecules that can modulate key cellular pathways associated with aging and chronic disorders. The Mediterranean diet and the traditional Japanese style of life are rich in polyphenol-containing foods and beverages, and epidemiological evidence links these dietary [...] Read more.
Plant polyphenols have emerged as potent bioactive molecules that can modulate key cellular pathways associated with aging and chronic disorders. The Mediterranean diet and the traditional Japanese style of life are rich in polyphenol-containing foods and beverages, and epidemiological evidence links these dietary patterns to increased longevity and reduced morbidity. This narrative review examines the chemical description of plant polyphenols, their mechanisms of action, including anti-inflammatory, antioxidant, and hormetic effects, and how supplementation or a diet rich in these compounds may provide further life extension. We discuss the major classes of polyphenols present in the Mediterranean dietary pattern (e.g., resveratrol and hydroxytyrosol) and in the Japanese diet (e.g., epigallocatechin gallate and soy isoflavones), comparing their biological behaviors and cooperative effects on metabolic, cardiovascular, and neurodegenerative conditions. We also examine a few preclinical and clinical studies that explain the beneficial impact of these chemicals on aging-associated biomarkers. Furthermore, both dietary habits are characterized by low consumption of processed foods and sugary carbonated drinks and reduced utilization of deep-frying with linoleic acid-rich oils, a practice that reduces the formation of harmful lipid peroxidation products, notably 4-hydroxynonenal, known to be implicated in accelerating the aging process. The Mediterranean dietary pattern is also characterized by a low/moderate daily consumption of wine, mainly red wine. This work debates emerging evidence addressing issues of bioavailability, dosage optimization, and formulation technologies for polyphenol supplementation, also comparing differences and similarities with the vegan and vegetarian diets. We also explore how these chemicals could modulate epigenetic modifications that affect gene expression patterns pertinent to health and aging. In conclusion, we aim to show a consolidated framework for the comprehension of how plant polyphenols could be utilized in nutritional strategies for potentiating life expectancy while stimulating further research on nutraceutical development. Full article
(This article belongs to the Special Issue Bioactive Phenolic and Polyphenolic Compounds, 3rd Edition)
Show Figures

Figure 1

16 pages, 660 KiB  
Article
Cooking Skills and Mediterranean Diet Adherence: Societal Insights from the iMC SALT Trial
by Carla Gonçalves, Patrícia Padrão, Olívia Pinho, Tânia Silva-Santos and Pedro Moreira
Societies 2025, 15(6), 164; https://doi.org/10.3390/soc15060164 - 14 Jun 2025
Viewed by 1071
Abstract
Background: Cooking skills represent an important yet often overlooked form of social and cultural capital, influencing dietary quality and health outcomes. As modern societies face growing challenges related to unhealthy eating patterns and a loss of traditional food practices, understanding the societal role [...] Read more.
Background: Cooking skills represent an important yet often overlooked form of social and cultural capital, influencing dietary quality and health outcomes. As modern societies face growing challenges related to unhealthy eating patterns and a loss of traditional food practices, understanding the societal role of culinary competence becomes critical. This study explored the association between culinary skills, adherence to the Mediterranean diet, and nutritional intake. Methods: Baseline data from 111 adults (60 women; mean age 47.6 ± 10.5 years) participating in the iMC SALT randomized controlled trial (Portugal) were analyzed. Culinary skills were assessed using the Cooking Skills Score, while the dietary intake was evaluated with a Food Frequency Questionnaire and adherence to the Mediterranean diet through the alternative Mediterranean Diet (aMED) Score. Food and beverage processing levels were categorized using the NOVA classification, and the sodium/potassium intake was measured via 24 h urinary excretion. Results: Women demonstrated better culinary skills (5.1 ± 0.9 vs. 4.0 ± 1.1, p < 0.001) and greater adherence to the Mediterranean diet (5.1 ± 1.9 vs. 3.8 ± 1.8, p = 0.001) than men. Better culinary skills were associated with younger age, larger households, and increased adherence to the Mediterranean diet. Culinary skills significantly explained 27.2% of the variance in the Mediterranean diet adherence. Better culinary skills were linked to a greater energy and protein intake; but a lower sodium and potassium intake. Conclusion: These findings highlight culinary skills as a key societal factor shaping dietary behavior and nutritional intake. Promoting culinary education may offer a powerful strategy to address dietary inequalities, support cultural food heritage, and foster healthier, more resilient societies. Full article
Show Figures

Figure 1

26 pages, 948 KiB  
Review
Fermented Dairy Products as Precision Modulators of Gut Microbiota and Host Health: Mechanistic Insights, Clinical Evidence, and Future Directions
by Yuan Gao, Yanyan Liu, Tingting Ma, Qimeng Liang, Junqi Sun, Xiaomeng Wu, Yinglong Song, Hui Nie, Jun Huang and Guangqing Mu
Foods 2025, 14(11), 1946; https://doi.org/10.3390/foods14111946 - 29 May 2025
Cited by 2 | Viewed by 2903
Abstract
Dairy products—encompassing yogurt, kefir, cheese, and cultured milk beverages—are emerging as versatile, food-based modulators of gut microbiota and host physiology. This review synthesizes mechanistic insights demonstrating how live starter cultures and their fermentation-derived metabolites (short-chain fatty acids, bioactive peptides, and exopolysaccharides) act synergistically [...] Read more.
Dairy products—encompassing yogurt, kefir, cheese, and cultured milk beverages—are emerging as versatile, food-based modulators of gut microbiota and host physiology. This review synthesizes mechanistic insights demonstrating how live starter cultures and their fermentation-derived metabolites (short-chain fatty acids, bioactive peptides, and exopolysaccharides) act synergistically to enhance microbial diversity, reinforce epithelial barrier integrity via upregulation of tight-junction proteins, and modulate immune signaling. Clinical evidence supports significant improvements in metabolic parameters (fasting glucose, lipid profiles, blood pressure) and reductions in systemic inflammation across metabolic syndrome, hypertension, and IBS cohorts. We highlight critical modulatory factors—including strain specificity, host enterotypes and FUT2 genotype, fermentation parameters, and matrix composition—that govern probiotic engraftment, postbiotic yield, and therapeutic efficacy. Despite promising short-term outcomes, current studies are limited by heterogeneous designs and brief intervention periods, underscoring the need for long-term, adaptive trials and integrative multi-omics to establish durability and causality. Looking forward, precision nutrition frameworks that harness baseline microbiota profiling, host genetics, and data-driven fermentation design will enable bespoke fermented dairy formulations, transforming these traditional foods into next-generation functional matrices for targeted prevention and management of metabolic, inflammatory, and neuroimmune disorders. Full article
Show Figures

Figure 1

26 pages, 2305 KiB  
Review
Alternative Biosorbents Based on Grape Pomace: Reducing Heavy Metals and Pesticides
by Georgiana-Diana Gabur, Anamaria-Ioana Dumitrașcu, Carmen Teodosiu, Valeriu V. Cotea and Iulian Gabur
Toxics 2025, 13(5), 408; https://doi.org/10.3390/toxics13050408 - 17 May 2025
Viewed by 587
Abstract
Heavy metal and pesticide contaminations represent significant environmental and health hazards to humans and animals. Toxic heavy metals such as lead (Pb), cadmium (Cd), mercury (Hg), and copper (Cu) persist in the environment, bioaccumulating in beverages and food products from both natural and [...] Read more.
Heavy metal and pesticide contaminations represent significant environmental and health hazards to humans and animals. Toxic heavy metals such as lead (Pb), cadmium (Cd), mercury (Hg), and copper (Cu) persist in the environment, bioaccumulating in beverages and food products from both natural and anthropogenic sources. Traditional remediation techniques, such as chemical precipitation and ion exchange, are effective but often costly and challenging to apply at a large scale. In recent years, grape pomace—a winemaking by-product rich in bioactive compounds—has emerged as a promising, low-cost biosorbent for the removal of such pollutants. Its high adsorption capacity, environmental friendliness, and availability make it a strong candidate for water and food decontamination processes. This study evaluates grape pomace and its biochar as sustainable biosorbents for heavy metal removal from water and soil, examining their adsorption efficiency, adsorption mechanisms, environmental benefits, advantages, limitations, and perspectives for future industrial-scale applications. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Figure 1

Back to TopTop