Rice Wine Fermentation: Unveiling Key Factors Shaping Quality, Flavor, and Technological Evolution
Abstract
1. Introduction
1.1. Definition and Cultural Context of Rice Wine
1.2. Geographical Distribution and Regional Characteristics
2. Brewing Process of Rice Wine
2.1. Traditional Preparation of Qu
2.2. Traditional Solid-State Fermentation
2.3. Criteria for High-Quality Rice Wine
3. Raw Material Selection and Processing
3.1. Rice Variety Selection
3.2. Water Quality
3.3. Raw Material Processing
4. Technological Regulation of Rice Wine Quality
4.1. Traditional Techniques vs. Modern Innovations
4.2. Fermentation Conditions and Parameter Control
4.2.1. Temperature Control: Decisive Factor in Fermentation Quality
4.2.2. Fermentation Duration: Temporal Dynamics of Flavor Formation
4.2.3. Qu and Yeast Dosage: Drivers of Fermentation Kinetics
4.2.4. Raw Material Processing: Foundation of Quality
4.2.5. pH and Acidity: Metabolic Gatekeepers
4.2.6. Substrate-to-Liquid Ratio and Hydration Management
4.2.7. Hygiene and Contaminant Control
4.2.8. Additional Influencing Factors
5. Microbial Roles in Rice Wine Fermentation
5.1. Microbial Diversity and Its Dynamic Changes
5.2. Regional Differences in Microbial Communities
5.3. Climate Conditions and Microbial Ecology
5.4. Microbial Interactions in Fermentation Qu
5.5. Impact of Seasonal Factors on Fermentation
6. Major Compounds in Rice Wine and Their Formation Mechanisms
6.1. Classification of Major Flavor Compounds
6.2. Sources and Formation of Flavor Compounds
7. Factors Affecting the Quality and Flavor of Rice Wine
7.1. Key Aroma Compounds and Their Sources
7.2. Impact of Different Fermentation Conditions on Flavor Profiles
7.3. Comparative Analysis of Flavor Notes in Traditional vs. Modern Production Methods
8. Modern Research and Technological Advancements
9. Analytical Techniques for Food Safety Monitoring
10. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, H.T. Fermentations and Food Science; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Mao, X.; Yue, S.J.; Xu, D.Q.; Fu, R.J.; Han, J.Z.; Zhou, H.M.; Tang, Y.P. Research Progress on Flavor and Quality of Chinese Rice Wine in the Brewing Process. ACS Omega 2023, 8, 32311–32330. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Mao, X.; Liu, P.; Lin, H.; Du, Z.; Lv, N.; Han, J.; Qiu, C. Research into the functional components and antioxidant activities of North China rice wine (Ji Mo Lao Jiu). Food Sci. Nutr. 2013, 1, 307–314. [Google Scholar] [CrossRef]
- Dung, N.; Rombouts, F.; Nout, M. Functionality of selected strains of moulds and yeasts from Vietnamese rice wine starters. Food Microbiol. 2006, 23, 331–340. [Google Scholar] [CrossRef]
- Lee, G.H.; Bang, D.Y.; Lim, J.H.; Yoon, S.M.; Yea, M.J.; Chi, Y.M. Simultaneous determination of ethyl carbamate and urea in Korean rice wine by ultra-performance liquid chromatography coupled with mass spectrometric detection. J. Chromatogr. B 2017, 1065–1066, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, Z.; He, F.; Pan, Z.; Du, Y.; Chen, Z.; He, Y.; Sun, Y.; Li, M. Effect of microbial communities on flavor profile of Hakka rice wine throughout production. Food Chem. X 2024, 21, 101121. [Google Scholar] [CrossRef]
- Tsuji, A.; Koyanagi, T. Significant contribution of amino acids to antioxidant capacity of Japanese rice wine (sake). J. Sci. Food Agric. 2025, 105, 227–234. [Google Scholar] [CrossRef]
- Song, Y.R.; Jeong, D.Y.; Cha, Y.S.; Baik, S.H. Exopolysaccharide produced by Pediococcus acidilactici M76 isolated from the Korean traditional rice wine, makgeolli. J. Microbiol. Biotechnol. 2013, 23, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Ren, N.; Gong, W.; Zhao, Y.; Zhao, D.-G.; Xu, Y. Innovation in sweet rice wine with high antioxidant activity: Eucommia ulmoides leaf sweet rice wine. Front. Nutr. 2023, 9, 1108843. [Google Scholar] [CrossRef]
- Zhang, X.R.; Chen, A.L.; Li, X.Q.; Xing, Y.; Xi, Y.N. Research Progress on Rice Wine. Liquor.-Mak. 2024, 51, 43–47. [Google Scholar]
- Huke, R.E. Rice Area by Type of Culture: South, Southeast, and East Asia; International Rice Research Institute: Laguna, Philippines, 1982. [Google Scholar]
- Yang, Y.L.; Li, S.C.; Wang, J.J. Research Progress on Rice Wine. Liquor.-Mak. 2023, 50, 11–14. [Google Scholar]
- Peng, Q.; Zhang, L.; Huang, X.; Wu, J.; Cheng, Y.; Xie, G.; Feng, X.; Chen, X. Environmental Factors Affecting the Diversity and Composition of Environmental Microorganisms in the Shaoxing Rice Wine Producing Area. Foods 2023, 12, 3564. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Meng, K.; Yang, X.; Xu, Z.; Zhang, L.; Zheng, H.; Yu, H.; Zhang, Y.; Xie, G. Analysis of flavor substances in Shaoxing traditional hand-made Jiafan wine with different amounts of ZaoShao liquor. J. Sci. Food Agric. 2024, 104, 5252–5261. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Li, W.; Yuan, Y.; Liang, Z.; Yan, Y.; Chen, Y.; Ni, L.; Lv, X. Metagenomic Insights into the Regulatory Effects of Microbial Community on the Formation of Biogenic Amines and Volatile Flavor Components during the Brewing of Hongqu Rice Wine. Foods 2023, 12, 3075. [Google Scholar] [CrossRef]
- Tian, S.; Zeng, W.; Zhou, J.; Du, G. Correlation between the microbial community and ethyl carbamate generated during Huzhou rice wine fermentation. Food Res. Int. 2022, 154, 111001. [Google Scholar] [CrossRef]
- Xu, H.; Xu, J.; Yurong, Z.; Ba, W.; Li, Q.; Xie, J.; Chen, J.; Zhang, W. The Impact of Fermentation Methods on the Quality and Bacterial Diversity of Dazhu Glutinous Rice Wine. Curr. Microbiol. 2024, 82, 38. [Google Scholar] [CrossRef]
- He, J.; Zhang, R.; Lei, Q.; Chen, G.; Li, K.; Ahmed, S.; Long, C. Diversity, knowledge, and valuation of plants used as fermentation starters for traditional glutinous rice wine by Dong communities in Southeast Guizhou, China. J. Ethnobiol. Ethnomedicine 2019, 15, 20. [Google Scholar] [CrossRef]
- Park, K.H.; Liu, Z.; Park, C.-S.; Ni, L. Microbiota associated with the starter cultures and brewing process of traditional Hong Qu glutinous rice wine. Food Sci. Biotechnol. 2016, 25, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Ruan, F.; Qian, M.; Huang, X.; Li, X.; Li, Y.; Bai, W.; Dong, H. Comparing the differences of physicochemical properties and volatiles in semi-dry Hakka rice wine and traditional sweet rice wine via HPLC, GC–MS and E-tongue analysis. Food Chem. X 2023, 20, 100898. [Google Scholar] [CrossRef]
- Yu, H.; Guo, W.; Ai, L.; Chen, C.; Tian, H. Unraveling the difference in aroma characteristics of Huangjiu from Shaoxing region fermented with different brewing water, using descriptive sensory analysis, comprehensive two-dimensional gas chromatography–quadrupole mass spectrometry and multivariate data analysis. Food Chem. 2022, 372, 131227. [Google Scholar] [CrossRef]
- Yang, T.T.; Yang, S.Y.; Hou, Q.C.; Cai, W.C.; Liu, Z.J.; Guo, Z. Analysis of Fungal Diversity in Rice Wine Qu from Nanning and Xiaogan Areas Based on High-throughput Sequencing Technology. China Brew. 2021, 40, 110–114. [Google Scholar]
- Wang, D.D.; Shen, X.; Dong, Y.; Zhong, X.D.; Zhang, Z.D.; Guo, Z. Evaluation of Fungal Diversity of Xiaogan Fengwo Jiuqu. China Brew. 2017, 36, 38–42. [Google Scholar]
- Chen, G.M.; Li, W.L.; Tong, S.G.; Qiu, Y.T.; Han, J.Z.; Lv, X.C.; Ai, L.Z.; Sun, J.Y.; Sun, B.G.; Ni, L. Effects of the microbial community on the formation of volatile compounds and biogenic amines during the traditional brewing of Hongqu rice wine. Curr. Res. Food Sci. 2022, 5, 1433–1444. [Google Scholar] [CrossRef]
- Park, E.H.; Jeon, E.B.; Roy, P.K.; Park, S.-H.; Park, S.Y. Quality characteristics and antioxidant activity of the Korean traditional rice-oat wine “Makgeolli” supplemented with green seaweed Codium fragile. Heliyon 2024, 10, e39348. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Yu, L.; Xiao, M.; Zhang, C.; Zhao, J.; Narbad, A.; Chen, W.; Zhai, Q.; Tian, F. Exploring Core fermentation microorganisms, flavor compounds, and metabolic pathways in fermented Rice and wheat foods. Food Chem. 2025, 463, 141019. [Google Scholar] [CrossRef]
- Pei, J.; Liu, Z.; Huang, Y.; Geng, J.; Li, X.; Ramachandra, S.; Udeshika, A.A.; Brennan, C.; Tao, Y. Potential Use of Emerging Technologies for Preservation of Rice Wine and Their Effects on Quality: Updated Review. Front. Nutr. 2022, 9, 912504. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.M.; Huang, Z.R.; Wu, L.; Wu, Q.; Guo, W.L.; Zhao, W.H.; Liu, B.; Zhang, W.; Rao, P.F.; Lv, X.C.; et al. Microbial diversity and flavor of Chinese rice wine (Huangjiu): An overview of current research and future prospects. Curr. Opin. Food Sci. 2021, 42, 37–50. [Google Scholar] [CrossRef]
- Jiao, A.; Xu, X.; Jin, Z. Research progress on the brewing techniques of new-type rice wine. Food Chem. 2017, 215, 508–515. [Google Scholar] [CrossRef]
- Xiang, W.; Xu, Q.; Zhang, N.; Rao, Y.; Zhu, L.; Zhang, Q. Mucor indicus and Rhizopus oryzae co-culture to improve the flavor of Chinese turbid rice wine. J. Sci. Food Agric. 2019, 99, 5577–5585. [Google Scholar] [CrossRef]
- Jin, G.; Zhao, Y.; Xin, S.; Li, T.; Xu, Y. Solid-State Fermentation Engineering of Traditional Chinese Fermented Food. Foods 2024, 13, 3003. [Google Scholar] [CrossRef]
- Xu, J.Z.; Zhang, Y.Y.; Zhang, W.G. Correlation between changes in flavor compounds and microbial community ecological succession in the liquid fermentation of rice wine. World J. Microbiol. Biotechnol. 2023, 40, 17. [Google Scholar] [CrossRef]
- Shen, C.; Yu, Y.; Zhang, X.; Zhang, H.; Chu, M.; Yuan, B.; Guo, Y.; Li, Y.; Zhou, J.; Mao, J.; et al. The dynamic of physicochemical properties, volatile compounds and microbial community during the fermentation of Chinese rice wine with diverse cereals. Food Res. Int. 2024, 198, 115319. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Tie, Y.; Zhu, Z.; Yang, Y.; Feng, S.; Liu, J. The effects of an innovative pulping technique of synchronously pulping and gelatinizing treatment on raw materials properties, oenological parameters, fermentation process, and flavor characteristics of glutinous rice wine. Food Sci. Biotechnol. 2022, 31, 1343–1353. [Google Scholar] [CrossRef]
- Takahashi, K.; Kohno, H.; Okuda, M. Spatial Distribution and Characteristics of Protein Content and Composition in Japonica Rice Grains: Implications for Sake Quality. Rice 2024, 17, 26. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Fan, T.; Feng, Z.; Yang, L. Structure-guided engineered urethanase from Candida parapsilosis with pH and ethanol tolerance to efficiently degrade ethyl carbamate in Chinese rice wine. Ecotoxicol. Environ. Saf. 2024, 276, 116335. [Google Scholar] [CrossRef]
- Xu, E.; Long, J.; Wu, Z.; Li, H.; Wang, F.; Xu, X.; Jin, Z.; Jiao, A. Characterization of Volatile Flavor Compounds in Chinese Rice Wine Fermented from Enzymatic Extruded Rice. J. Food Sci. 2015, 80, C1476–C1489. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wei, B.; Wu, C.; Zhang, B.; Xu, X.; Jin, Z.; Tian, Y. Modelling and optimisation of enzymatic extrusion pretreatment of broken rice for rice wine manufacture. Food Chem. 2014, 150, 94–98. [Google Scholar] [CrossRef]
- Li, H.; Jiao, A.; Xu, X.; Wu, C.; Wei, B.; Hu, X.; Jin, Z.; Tian, Y. Simultaneous saccharification and fermentation of broken rice: An enzymatic extrusion liquefaction pretreatment for Chinese rice wine production. Bioprocess Biosyst. Eng. 2012, 36, 1141–1148. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.Y.; Xia, T.Y.; Wu, D.H.; Lu, J. Effect of Rice Milling Degree on the Flavor and Quality of Enzymatic Brewing Rice Wine. J. Food Biotechnol. 2024, 43, 142–152. [Google Scholar]
- He, C.; Deng, F.; Yuan, Y.; Huang, X.; He, Y.; Li, Q.; Li, B.; Wang, L.; Cheng, H.; Wang, T.; et al. Appearance, components, pasting, and thermal characteristics of chalky grains of rice varieties with varying protein content. Food Chem. 2024, 440, 138256. [Google Scholar] [CrossRef]
- Indrasari, S.D.; Purwaningsih; Jumali; Ardhiyanti, S.D.; Handoko, D.D.; Kusbiantoro, B. Physical, Milling quality and physicochemical properties of several local glutinous paddy varieties in west java, Indonesia. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019. [Google Scholar]
- Na Nakorn, K.; Tongdang, T.; Sirivongpaisal, P. Crystallinity and rheological properties of pregelatinized rice starches differing in amylose content. Starch-Starke 2009, 61, 101. [Google Scholar] [CrossRef]
- Chung, H.J.; Liu, Q.; Lee, L.; Wei, D. Relationship between the structure, physicochemical properties and in vitro digestibility of rice starches with different amylose contents. Food Hydrocoll. 2011, 25, 968–975. [Google Scholar] [CrossRef]
- Dang, Y.Z.; Lv, Q.Y.; Zhou, J. Research Progress on Special-purpose Rice for Glutinous Rice Products. Cereal Feed Ind. 2018, 23–27. [Google Scholar]
- Xu, Y.; Li, J.; Zhang, M.; Wang, D. Modified simultaneous saccharification and fermentation to enhance bioethanol titers and yields. Fuel 2018, 215, 647–654. [Google Scholar] [CrossRef]
- Koay, M.; Fan, H.Y.; Wong, C.M.V.L. An overview of fermentation in rice winemaking. Canrea J. Food Technol. Nutr. Culin. J. 2022, 12–37. [Google Scholar] [CrossRef]
- Chen, T.; Wu, F.; Guo, J.; Ye, M.; Hu, H.; Guo, J.; Liu, X. Effects of glutinous rice protein components on the volatile substances and sensory properties of Chinese rice wine. J. Sci. Food Agric. 2020, 100, 3297–3307. [Google Scholar] [CrossRef]
- Wang, C.; Yuan, G.; He, Y.; Tang, J.; Zhou, H.; Qiu, S. The formation of higher alcohols in rice wine fermentation using different rice cultivars. Front. Microbiol. 2022, 13, 978323. [Google Scholar] [CrossRef]
- Xiang, J.; Peng, Y.; Lu, L.; Xie, L.; Xie, Q.; Meng, G.; Xiao, R. Chemical composition of special glutinous rice and its effect on the quality of brewed wine. Asian Agric. Res. 2019, 11, 82–84. [Google Scholar]
- Zhang, J.; Zhang, H.; Botella, J.R.; Zhu, J. Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties. J. Integr. Plant Biol. 2017, 60, 369–375. [Google Scholar] [CrossRef]
- Zhang, C.; Yun, P.; Xia, J.; Zhou, K.; Wang, L.; Zhang, J.; Zhao, B.; Yin, D.; Fu, Z.; Wang, Y.; et al. CRISPR/Cas9-mediated editing of Wx and BADH2 genes created glutinous and aromatic two-line hybrid rice. Mol. Breed. 2023, 43, 24. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, Y.T.; Zhou, Y.; Zhang, Q. Determination of Polyphenolic Compounds in Red Rice Wine by High-performance Liquid Chromatography. Food Res. Dev. 2015, 36, 129–132. [Google Scholar]
- Yu, H.; Li, Q.; Guo, W.; Chen, C.; Ai, L.; Tian, H. Dynamic analysis of volatile metabolites and microbial community and their correlations during the fermentation process of traditional Huangjiu (Chinese rice wine) produced around Winter Solstice. Food Chem. X 2023, 18, 100620. [Google Scholar] [CrossRef]
- Yu, H.; Guo, W.; Xie, T.; Ai, L.; Tian, H.; Chen, C. Aroma characteristics of traditional Huangjiu produced around Winter Solstice revealed by sensory evaluation, gas chromatography–mass spectrometry and gas chromatography–ion mobility spectrometry. Food Res. Int. 2021, 145, 110421. [Google Scholar] [CrossRef] [PubMed]
- Chiodetti, M.; Tuccio, M.G.; Carini, E. Effect of water content on gelatinization functionality of flour from sprouted sorghum. Curr. Res. Food Sci. 2024, 8, 100780. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Yu, Y.; Zhang, Y.-Y.; Jiang, S.; Li, Q.; Hu, H.-S.; Li, G.; Zhao, Z.; Wang, C.; Xie, H.; et al. Infrared spectroscopy of neutral water clusters at finite temperature: Evidence for a noncyclic pentamer. Proc. Natl. Acad. Sci. USA 2020, 117, 15423–15428. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Nie, X.; Wang, G.; Teng, F.; Xu, T. Analysis of the distribution and seasonal variability of the South China sea water masses based on the k-means cluster method. J. Mar. Sci. Eng. 2023, 11, 485. [Google Scholar] [CrossRef]
- Wang, J.; Liu, L.; Ball, T.; Yu, L.; Li, Y.; Xing, F. Revealing a 5,000-y-old beer recipe in China. Proc. Natl. Acad. Sci. USA 2016, 113, 6444–6448. [Google Scholar] [CrossRef]
- Zhang, J.; Li, T.; Zou, G.; Wei, Y.; Qu, L. Advancements and future directions in yellow rice wine production research. Fermentation 2024, 10, 40. [Google Scholar] [CrossRef]
- Aredes, R.S.; Peixoto, F.C.; Sphaier, L.A.; Silva, V.N.H.; Duarte, L.M.; Marques, F.F.d.C. Analysis of Sugar Distributions in Barley Wort Saccharification via Capillary Electrophoresis. ACS Food Sci. Technol. 2025, 5, 558–568. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, H.T.; Xiong, W.; Hu, J.; Xu, B.; Lin, C.-C.; Xu, L.; Jiang, L. Effect of Temperature on Chinese Rice Wine Brewing with High Concentration Presteamed Whole Sticky Rice. BioMed Res. Int. 2014, 2014, 426929. [Google Scholar] [CrossRef]
- Wei, X.L.; Liu, S.P.; Yu, J.S.; Yu, Y.J.; Zhu, S.H.; Zhou, Z.L.; Hu, J.; Mao, J. Innovation Chinese rice wine brewing technology by bi-acidification to exclude rice soaking process. J. Biosci. Bioeng. 2017, 123, 460–465. [Google Scholar] [CrossRef]
- Yan, Y.; Liang, Z.; Huo, Y.; Wu, Q.; Ni, L.; Lv, X. A Comparative study of microbial communities, biogenic amines, and volatile profiles in the brewing process of rice wines with Hongqu and Xiaoqu as fermentation starters. Foods 2024, 13, 2452. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xiao, Z.; Ye, J.; Li, J.; Zhang, X.; Li, T.; Wang, L. Effect of Superheated Steam Treatment on Rice Quality, Structure, and Physicochemical Properties of Starch. Foods 2025, 14, 626. [Google Scholar] [CrossRef] [PubMed]
- Ammari, A.; Schroen, K. Flavor Retention and Release from Beverages: A Kinetic and Thermodynamic Perspective. J. Agric. Food Chem. 2018, 66, 9869–9881. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.H.; Shieh, C.J.; Huang, S.M.; Wang, H.M.D.; Huang, C.Y. The effect of extrusion puffing on the physicochemical properties of brown rice used for saccharification and Chinese rice wine fermentation. Food Hydrocoll. 2019, 94, 363–370. [Google Scholar] [CrossRef]
- Shukla, A.; Kumar, D.; Girdhar, M.; Kumar, A.; Goyal, A.; Malik, T.; Mohan, A. Strategies of pretreatment of feedstocks for optimized bio-ethanol production: Distinct and integrated approaches. Biotechnol. Biofuels Bioprod. 2023, 16, 44. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, H.; Lin, C.C.; Xu, B.; Lian, Z. Optimization of rice wine fermentation process based on the simultaneous saccharification and fermentation kinetic model. Chin. J. Chem. Eng. 2016, 24, 1406–1412. [Google Scholar] [CrossRef]
- Maxwell, K.E.; Krantz, A.L.; Banerjee, S. Cationic Polyacrylamides Increase the Rate of Liquefaction and Hydrolysis of Cornstarch. AIChE J. 2013, 59, 79–83. [Google Scholar] [CrossRef]
- Xu, Y.; Qiao, X.; He, L.; Wan, W.; Xu, Z.; Shu, X.; Yang, C.; Tang, Y. Airborne microbes in five important regions of Chinese traditional distilled liquor (Baijiu) brewing: Regional and seasonal variations. Front. Microbiol. 2024, 14, 1324722. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Shen, C.; Wang, X.; Ye, X.; Zhou, J.; Qian, B.; Tian, R.; Xiao, C.; Lu, W.; Yang, H. Influence of different baking temperatures of red kojic rice on the physi-cochemical properties, antioxidant capacity, and functional components of red starter wine. J. Sci. Food Agric. 2024, 104, 3027–3038. [Google Scholar] [CrossRef]
- Zhu, F.; Li, S.; Guan, X.; Huang, K.; Li, Q. Influence of vacuum soaking on the brewing properties of japonica rice and the quality of Chinese rice wine. J. Biosci. Bioeng. 2020, 130, 159–165. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, S.; Han, X.; Zhou, Z.; Mao, J. Combined effects of fermentation temperature and Saccharomyces cerevisiae strains on free amino acids, flavor substances, and undesirable secondary metabolites in huangjiu fermentation. Food Microbiol. 2022, 108, 104091. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xia, Y.; Wang, G.; Tao, L.; Yu, J.; Ai, L. Effects of boiling, ultra-high temperature and high hydrostatic pressure on free amino acids, flavor characteristics and sensory profiles in Chinese rice wine. Food Chem. 2019, 275, 407–416. [Google Scholar] [CrossRef]
- Cha, J.; Cho, K.M.; Kwon, S.J.; Park, S.E.; Kim, E.J.; Seo, S.H.; Son, H.S. Investigation of lactic acid bacterial profiles in commercial rice wine and their effect on metabolites during low-temperature storage. Food Chem. X 2023, 17, 100552. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, L.; Ren, X.; Chen, S.; Zhang, Z. Metabolomic fingerprinting based on network analysis of volatile aroma compounds during the forced aging of Huangjiu: Effects of dissolved oxygen and temperature. Front. Nutr. 2023, 10, 1114880. [Google Scholar] [CrossRef]
- Yuan, C.; Zhang, H.; Cao, Y.; Du, H.; Xu, Y. Heap fermentation modes of sauce-flavored Baijiu: Microbial metabolic differences and optimization strategies for mechanized fermentation. Food Biosci. 2025, 68, 106449. [Google Scholar] [CrossRef]
- Xiong, D.M.; Liu, L.Z.; Yang, L.H.; Wang, S.Y. Preliminary Study on New Fermentation Technology of Huangjiu. J. Wuhan Polytech. Univ. 2010, 29, 4–6. [Google Scholar]
- Li, Y.P.; Xiang, Z.F.; Cao, M.T.; Sun, Y.T.; Jin, X.Q. Research Progress on the Correlation between Baijiu Cellar Mud and Its Microor-ganisms and Flavor. China Brew. 2025, 44, 6–12. [Google Scholar]
- Tian, S.F.; Li, Y.B.; Li, Y.D.; Du, G.C. Effect of two starters (Jiu Yao) on Chinese rice wine microbial community and flavour. Int. J. Food Sci. Technol. 2023, 58, 2391–2399. [Google Scholar] [CrossRef]
- Cai, H.; Zhang, Q.; Shen, L.; Luo, J.; Zhu, R.; Mao, J.; Zhao, M.; Cai, C. Phenolic profile and antioxidant activity of Chinese rice wine fermented with different rice materials and starters. LWT 2019, 111, 226–234. [Google Scholar] [CrossRef]
- Sun, X.X.; Liu, C.H.; Shi, F.; Wang, Y.H.; Zhang, H. Effect of Sweet Jiuqu Addition Amount on the Quality of Rice Wine and Rice Wine Steamed Bread. J. Chin. Inst. Food Sci. Technol. 2020, 20, 187–192. [Google Scholar]
- Yang, T.; Jia, D.Y.; Ma, H.R.; Zhao, J.Y.; Chi, Y.L.; Yao, K. Study on the Effect of Chemical Composition of Glutinous Rice on Rice Wine Fermentation and Its Quality. Food Sci. Technol. 2015, 40, 119–123. [Google Scholar]
- Gong, M.; Zhou, Z.; Jin, J.; Yu, Y.; Liu, S.; Han, X.; Zhong, F.; Mao, J. Effects of soaking on physicochemical properties of four kinds of rice used in Huangjiu brewing. J. Cereal Sci. 2020, 91, 102855. [Google Scholar] [CrossRef]
- Liu, S.; Chen, Q.; Zou, H.; Yu, Y.; Zhou, Z.; Mao, J.; Zhang, S. A metagenomic analysis of the relationship between microorganisms and flavor development in Shaoxing mechanized huangjiu fermentation mashes. Int. J. Food Microbiol. 2019, 303, 9–18. [Google Scholar] [CrossRef]
- Li, S.; Liang, J.; Ma, Y.; Ding, Y.; Luo, J.; Yu, H.; Sun, J.; Liu, Y. Physicochemical properties of red millet: A novel Chinese rice wine brewing material. J. Food Process. Preserv. 2021, 45, e15556. [Google Scholar] [CrossRef]
- Tian, P.; Wan, J.; Yin, T.; Liu, L.; Ren, H.; Cai, H.; Liu, X.; Zhang, H. Acidity, sugar, and alcohol contents during the fermentation of Osmanthus-flavored sweet rice wine and microbial community dynamics. PeerJ 2025, 13, e18826. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.H.; Zhang, D.Y.; Xie, L.; Chen, C. Research Progress on the Relationship between Rice Wine Microorganisms and the Formation of Flavor and Quality. Food Sci. 2024, 45, 358–366. [Google Scholar]
- Li, Q.H. Study on Fermentation Process of Pueraria Rice Wine. Liquor.-Mak. Sci. Technol. 2009, 85–87. [Google Scholar]
- Mizuma, T.; Kiyokawa, Y.; Wakai, Y. Water Absorption Characteristics and Structural Properties of Rice for Sake Brewing. J. Biosci. Bioeng. 2008, 106, 258–262. [Google Scholar] [CrossRef]
- Ma, W.; Shan, J.; Wang, M.; Xie, J.; Chen, Y.; Liang, L.; Feng, J.; Hu, X.; Yu, Q. Effects of improver on the quality of frozen Chinese sweet rice wine dough: Water status, protein structure and flavor properties. Food Chem. 2024, 445, 138713. [Google Scholar] [CrossRef]
- Shen, C.; Zhu, H.; Zhu, W.; Zhu, Y.; Peng, Q.; Elsheery, N.I.; Fu, J.; Xie, G.; Zheng, H.; Han, J.; et al. The sensory and flavor characteristics of Shaoxing Huangjiu (Chinese rice wine) were significantly influenced by micro-oxygen and electric field. Food Sci. Nutr. 2021, 9, 6006–6019. [Google Scholar] [CrossRef]
- Krusong, W.; Vichitraka, A.; Sriphochanart, W.; Pornpukdeewattana, S. Increasing the acetification rate of Acetobacter aceti adsorbed on luffa sponge using recycle of incremental oxygenated medium. 3 Biotech 2020, 10, 95. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Wu, Z.; Liu, H.; He, X.; Liao, Z.; Luo, W.; Li, L.; Yin, L.; Wu, F.; Zhang, L.; et al. Screening, identification, and characterization of molds for brewing rice wine: Scale-up production in a bioreactor. PLoS ONE 2024, 19, e0300213. [Google Scholar] [CrossRef] [PubMed]
- Shigematsu, T.; Kuwabara, T.; Asama, Y.; Suzuki, R.; Ikezaki, M.; Nomura, K.; Hori, S.; Iguchi, A. Importance of Intracellular Energy Status on High-Hydrostatic-Pressure Inactivation of sake Yeast Saccharomyces cerevisiae. Foods 2024, 13, 770. [Google Scholar] [CrossRef]
- Krusong, W.; La China, S.; Pothimon, R.; Gullo, M. Defining Paenibacillus azoreducens (P8) and Acetobacter pasteurianus (UMCC 2951) strains performances in producing acetic acid. Front. Microbiol. 2022, 13, 991688. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.Q.; Fu, M.; Yang, T.T.; Zhang, Y.; Guo, Z.; Wang, Y.R. Study on Fungal Community and Isolation and Identification of Yeasts in Dazhu Rice Wine. China Brew. 2023, 42, 78–83. [Google Scholar]
- Xiang, F.S.; Zhu, Y.Y.; Deng, F.; Zhong, X.D.; Zhang, Z.D.; Guo, Z. Study on Bacterial and Fungal Diversity of Rice Wine Qu in Jianshi Area. Sci. Technol. Food Ind. 2021, 42, 126–131. [Google Scholar]
- Lü, Y.L.; Gong, Y.L.; Li, Y.J.; Pan, Z.J.; Yao, Y.; Li, N.; Guo, J.L.; Gong, D.C.; Tian, Y.H.; Peng, C.Y. Characterization of Microbial Communities in Chinese Rice Wine Collected at Yichang City and Suzhou City in China. J. Microbiol. Biotechnol. 2017, 27, 1409–1418. [Google Scholar] [CrossRef]
- Ling, X.I.; Xiaohui, G.O.; Chen, C.H. Analysis of Microbial Community Diversity of Jiuqu in Characteristic Rice Wine Producing Areas of Guizhou. China Brew. 2024, 43, 170–176. [Google Scholar]
- Xiang, F.S.; Zhe, M.N.; He, M.; Liao, H.; Zhao, H.J.; Guo, Z. Analysis of Bacterial Diversity in Enshi Rice Wine Based on DGGE and Illumina MiSeq Techniques. Food Ferment. Ind. 2019, 45, 41–46. [Google Scholar]
- Xiang, F.S.; Cai, W.C.; Guo, Z.; Liu, H.J.; Yu, H.Y.; Shan, C.H. Correlation Analysis between Taste Quality and Bacterial Community of Dazhu Rice Wine. Food Sci. 2023, 44, 231–238. [Google Scholar]
- Lei, Y.; Cai, W.; Wang, Y.; Guo, Z.; Shan, C. Fungal communities and their correlation with the sensory quality of rice wine from the Xiaogan and Dazhou regions in China. LWT 2024, 191, 115575. [Google Scholar] [CrossRef]
- Li, H.; Jin, Z.; Xu, X. Design and optimization of an efficient enzymatic extrusion pretreatment for Chinese rice wine fermentation. Food Control 2013, 32, 563–568. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, W.; Zheng, D.; Zhou, Z.; Yu, W.; Zhang, L.; Feng, L.; Liang, X.; Guan, W.; Zhou, J.; et al. Genomic Evolution of Saccharomyces cerevisiae under Chinese rice wine fermentation. Genome Biol. Evol. 2014, 6, 2516–2526. [Google Scholar] [CrossRef]
- Ferreira, A.M.; Mendes-Faia, A. The Role of Yeasts and Lactic Acid Bacteria on the Metabolism of Organic Acids during Winemaking. Foods 2020, 9, 1231. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Chen, X.; Wang, C.; Liu, Y.; Li, M.; Pan, X.; Chang, X. Microbial Communities and Correlation between Microbiota and Volatile Compounds in Fermentation Starters of Chinese Sweet Rice Wine from Different Regions. Foods 2023, 12, 2932. [Google Scholar] [CrossRef]
- Ly, S.; Kakahi, F.B.; Mith, H.; Phat, C.; Fifani, B.; Kenne, T.; Fauconnier, M.-L.; Delvigne, F. Engineering Synthetic Microbial Communities through a Selective Biofilm Cultivation Device for the Production of Fermented Beverages. Microorganisms 2019, 7, 206. [Google Scholar] [CrossRef]
- Wang, J.Z. The Chinese Wine Renaissance: A Wine Lover’s Companion; Random House: Westminster, MD, USA, 2019. [Google Scholar]
- Liu, S.P.; Mao, J.; Liu, Y.Y.; Meng, X.Y.; Ji, Z.W.; Zhou, Z.L.; Ai-Lati, A. Bacterial succession and the dynamics of volatile compounds during the fermentation of Chinese rice wine from Shaoxing region. World J. Microbiol. Biotechnol. 2015, 31, 1907–1921. [Google Scholar] [CrossRef]
- Chen, C.; Liu, Z.; Zhou, W.; Tian, H.; Huang, J.; Yuan, H.; Yu, H. Comparison of the Fermentation Activities and Volatile Flavor Profiles of Chinese Rice Wine Fermented Using an Artificial Starter, a Traditional JIUYAO and a Commercial Starter. Front. Microbiol. 2021, 12, 716281. [Google Scholar] [CrossRef]
- Yu, H.; Li, Z.; Zheng, D.; Chen, C.; Ge, C.; Tian, H. Exploring microbial dynamics and metabolic pathways shaping flavor profiles in Huangjiu through metagenomic analysis. Food Res. Int. 2024, 196, 115036. [Google Scholar] [CrossRef]
- Yang, Y.; Zhong, H.; Yang, T.; Lan, C.; Zhu, H. Characterization of the Key Aroma Compounds of a Sweet Rice Alcoholic Beverage Fermented with Saccharomycopsis fibuligera. J. Food Sci. Technol. 2021, 58, 3752–3764. [Google Scholar]
- Chen, Y.; Li, P.; Liao, L.; Qin, Y.; Jiang, L.; Liu, Y. Microbial Communities and Flavor Compounds during the Fermentation of Hong Qu Glutinous Rice Wine. Food Res. Int. 2022, 151, 110829. [Google Scholar]
- Chen, S.; Xu, Y.; Qian, M.C. Comparison of the Aromatic Profile of Traditional and Modern Types of Huang Jiu (Chinese Rice Wine) by Aroma Extract Dilution Analysis and Chemical Analysis. Flavour Fragr. J. 2018, 33, 24–34. [Google Scholar]
- Jin, Z.; Cai, G.; Wu, C.; Hu, Z.; Xu, X.; Xie, G.; Wu, D.; Lu, J. Profiling the key metabolites produced during the modern brewing process of Chinese rice wine. Food Res. Int. 2021, 139, 109955. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Zheng, H.; Xue, J.; Xu, Y.; Hou, Q.; Yang, K.; Xia, H.; Xie, G. Mechanism of Polygonum hydropiper reducing ethyl carbamate in Chinese rice wine (Huangjiu) brewing. Food Microbiol. 2025, 125, 104628. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, H.; Li, X.; Tian, S.; Wu, C.; Chen, Y.; Qian, S.; Zhao, S.; Zhang, W.; Cheng, F.; et al. A highly thermostable ethyl carbamate-degrading urethanase from Ther-moflavimicrobium dichotomicum. Int. J. Biol. Macromol. 2025, 307, 142245. [Google Scholar] [CrossRef]
- Liu, X.; Qian, M.; Dong, H.; Bai, W.; Zhao, W.; Li, X.; Liu, G. Effect of ageing process on carcinogen ethyl carbamate (EC), its main precursors and aroma compound variation in Hakka Huangjiu produced in southern China. Int. J. Food Sci. Technol. 2020, 55, 1773–1780. [Google Scholar] [CrossRef]
- Luo, Q.; Shi, R.; Gong, P.; Liu, Y.; Chen, W.; Wang, C. Biogenic amines in Huangjiu (Chinese rice wine): Formation, hazard, detection, and reduction. LWT 2022, 168, 113952. [Google Scholar] [CrossRef]
- Zhao, W.; Fu, Z.; Wang, X.; Mao, Q.; Luan, C.; Chen, S.; Zhang, F.; Yu, J.; Yao, Y.; Li, Y.; et al. The effects of biogenic amines in Chinese Huangjiu on the behavior of mice and hangover headache-related indices. Food Sci. Nutr. 2022, 10, 4226–4237. [Google Scholar] [CrossRef]
Factor | Specific Conditions | Effects | Optimization Strategies |
---|---|---|---|
Raw material | Rice variety, starch/protein content | Determines saccharification capacity and amino acid profile, affecting fermentation efficiency and flavor | Select high-starch, moderate-protein rice; optimize starch-to-protein ratio |
Saccharification | Temperature (50–60 °C), enzyme type | Governs starch hydrolysis efficiency and sugar yield | Use high-activity amylases; maintain optimal temperature range |
qu culture | Microbial diversity, alcohol tolerance | Impacts fermentation rate, alcohol content, and aroma compounds | Employ superior qu or alcohol-tolerant yeast strains |
Temperature | Low (10–15 °C), medium (15–25 °C), high (25–35 °C) | Low temp: floral notes; medium: full-bodied; high: risk of fusel alcohols | Match temperature to style (e.g., low for light rice wine, medium for huangjiu) |
Duration | Short (3–7 d), medium (10–15 d), long (>20 d) | Longer fermentation enhances flavor complexity but risks off-flavors | Extend moderately; monitor metabolite profiles |
Oxygen | Aerobic/anaerobic phases | Aerobic: yeast proliferation; anaerobic: ethanol production | Controlled aeration to balance yeast growth and avoid acetobacter Acetobacter contamination |
pH | 3.5–4.5 | Affects microbial activity; extremes hinder saccharification or invite spoilage | Adjust with food-grade acids (e.g., lactic acid) |
Microbial ecology | Lactic acid bacteria, molds | Beneficial microbes suppress pathogens; contamination causes off-flavors | Maintain balanced microbiota; use antimicrobial qu strains |
Vessel | Ceramic jars, wooden barrels, stainless steel | Influences oxidation and flavor exchange | Select based on target flavor (e.g., ceramic for oxidative aging) |
Hygiene | Equipment cleanliness, air quality | Critical for microbial purity and product safety | Sterilize tools with boiling water; use filtered air systems |
Fermentation Stage | Main Process | Key Reactions | Main Influencing Factors |
---|---|---|---|
Raw Material Preparation | Washing, soaking, and steaming of rice | Gelatinization of starch, improved enzyme hydrolysis efficiency | Rice variety, water quality, and steaming temperature |
Saccharification Stage | Addition of fermentation qu or molds, and enzymatic hydrolysis of starch | Starch → Glucoseglucose, maltose | Temperature (50–60 °C), enzyme activity, and pH value |
Early Fermentation (Aerobic) | Yeast proliferation, lactic acid bacteria regulating acidity | Lactic acid production by lactic acid bacteria, yeast proliferation | Appropriate aeration, temperature control (20–30 °C) |
Main Fermentation (Anaerobic) | Yeast fermentation of sugars, ethanol, and flavor compound production | C6H12O6 → 2C2H5OH + 2CO2 | Temperature (10–25 °C), fermentation time, and yeast activity |
Post-Fermentation and Maturation | Flavor compound formation, wine maturation | Esterification, oxidation of alcohols, and flavor integration | Low-temperature storage, oxygen control, and time (1–6 months) |
Filtration and Packaging | Separation of lees, clarification, bottling, and sealing | Removal of impurities, ensuring clarity of the wine | Filtration method, storage containers, and sealing conditions |
Compound Category | Representative Compounds | Main Source | Functions and Characteristics |
---|---|---|---|
Carbohydrates | Glucose, maltose, oligosaccharides | Starch hydrolysis by amylase | Provide substrates for fermentation, impart sweetness and viscosity to rice wine |
Alcohols | Ethanol, isoamyl alcohol, propanol, and isobutanol | Fermentation of sugars by yeast | Affect alcohol content and body of the wine; some higher alcohols impart fruity or spicy notes |
Organic Acidsacids | Lactic acid, acetic acid, succinic acid, and malic acid | Metabolism by lactic acid bacteria and yeast | Influence acidity and flavor balance; some organic acids enhance the umami taste of rice wine |
Esters | Ethyl acetate, ethyl lactate, butyl acetate, and ethyl malate | Esters formed by microbial esterase activity, not just alcohol-acid reaction. | Confer fruity, floral, or dairy aromas, enhancing the complexity of rice wine’s bouquet |
Aldehydes and Ketonesketones | Acetaldehyde, furfural, and 3-methylbutanal | Produced during fermentation and aging | Acetaldehyde imparts grassy or fruity notes, while furfural contributes caramel or nutty aromas |
Phenolic Compoundscompounds | p-Coumaric acid, ferulic acid, and phenolic compounds | Metabolism of rice and microorganisms | Influence the color, bitterness, and aging flavor of rice wine |
Nitrogen-Containing containing Compounds | Glutamic acid, alanine, glycine, and peptides | Degradation of rice proteins | Enhance umami and body, improve the nutritional value of rice wine |
Other Trace trace components | Carbon dioxide, sulfides, and metal ions | Fermentation by-products and water sources | Affect the effervescence, mineral flavor, and stability of rice wine |
Compound Category | Representative Compounds | Flavor Characteristics | Functions |
---|---|---|---|
Alcohols | Ethanol, isoamyl alcohol, propanol, isobutanol | Fruity, spicy, alcoholic sensation | Affect alcohol content and enhance aromatic complexity |
Esters | Ethyl acetate, ethyl lactate, butyl acetate | Fruity, floral, dairy-like | Confer aroma to rice wine and soften the palate |
Organic acids | Lactic acid, acetic acid, succinic acid | Soft acidity, freshness, umami | Regulate acidity and enhance flavor balance and umami |
Aldehydes and ketones | Acetaldehyde, furfural | Grass-like, fruity, caramel-like | Influence the body and aging flavor of the wine |
Nitrogen-containing compounds | Glutamic acid, alanine, glycine | Umami, sweetness, full-bodied | Enhance the complexity of the wine and make the palate more rounded |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, B.; Huang, H.; Xu, J.; Xin, Y.; Hu, L.; Wen, L.; Li, L.; Chen, J.; Han, Y.; Li, C. Rice Wine Fermentation: Unveiling Key Factors Shaping Quality, Flavor, and Technological Evolution. Foods 2025, 14, 2544. https://doi.org/10.3390/foods14142544
Peng B, Huang H, Xu J, Xin Y, Hu L, Wen L, Li L, Chen J, Han Y, Li C. Rice Wine Fermentation: Unveiling Key Factors Shaping Quality, Flavor, and Technological Evolution. Foods. 2025; 14(14):2544. https://doi.org/10.3390/foods14142544
Chicago/Turabian StylePeng, Baoyu, Haiyang Huang, Jingjing Xu, Yuan Xin, Lang Hu, Lelei Wen, Li Li, Jinwen Chen, Yu Han, and Changchun Li. 2025. "Rice Wine Fermentation: Unveiling Key Factors Shaping Quality, Flavor, and Technological Evolution" Foods 14, no. 14: 2544. https://doi.org/10.3390/foods14142544
APA StylePeng, B., Huang, H., Xu, J., Xin, Y., Hu, L., Wen, L., Li, L., Chen, J., Han, Y., & Li, C. (2025). Rice Wine Fermentation: Unveiling Key Factors Shaping Quality, Flavor, and Technological Evolution. Foods, 14(14), 2544. https://doi.org/10.3390/foods14142544