Assessment of Winery By-Products as Ingredients as a Base of “3S” (Safe, Salubrious, and Sustainable) Fermented Beverages Rich in Bioactive Anthocyanins
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material Selection, Processing, and Beverage Development
2.3. Physicochemical Parameters
2.4. Microbiological Tests
2.5. Qualitative and Quantitative Analysis of Anthocyanins
2.6. Colour Analysis
2.7. Radical Scavenging Capacity and Reducing Power
2.8. Statistical Analysis
3. Results and Discussion
3.1. Infusion Design as a Basis for Developing Fermented Beverages
3.2. Physicochemical Parameters
3.3. Microbiological Tests
3.4. Qualitative and Quantitative Analysis of Anthocyanins by HPLC-DAD-ESI/MSn and HPLC-DAD
3.5. Colour Analysis
3.6. Antioxidant Capacity of Kombucha-like Beverages
3.7. Global Overview of Changes in Quality Parameters of Kombucha-like Beverages by Multivariate Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AAB | Acetic acid bacteria |
F | Fermentation |
SL | Shelf-life |
KC | Kombucha control |
KWL | Kombucha of wine less |
KGP | Kombucha of grape pomace |
LAB | Lactic acid bacteria |
LSD | Least significant difference |
Appendix A
Beverage | Day | Delphinidin 3-O-Glucoside | Petunidin 3-O-Glucoside | Peonidin 3-O-Glucoside | Malvidin 3-O-Glucoside | Total Anthocyanins |
---|---|---|---|---|---|---|
KWL | 0 F | 2.11 ± 0.25 | 3.08 ± 0.39 | 2.26 ± 0.23 | 12.35 ± 1.88 | 19.80 ± 1.53 |
10 F | <LOQ | <LOQ | <LOQ | 5.62 ± 0.04 | 5.62 ± 0.04 | |
21 SL | <LOQ | <LOQ | <LOQ | 6.34 ± 0.07 | 6.34 ± 0.07 | |
KGP | 0 F | <LOQ | <LOQ | <LOQ | 1.90 ± 0.04 | 1.90 ± 0.04 |
10 F | <LOQ | <LOQ | <LOQ | 1.69 ± 0.08 | 1.69 ± 0.08 | |
21 SL | <LOQ | <LOQ | <LOQ | 1.82 ± 0.03 | 1.82 ± 0.03 |
References
- De Melo Pereira, G.V.; De Carvalho Neto, D.P.; Junqueira, A.C.D.O.; Karp, S.G.; Letti, L.A.J.; Magalhães Júnior, A.I.; Soccol, C.R. A Review of Selection Criteria for Starter Culture Development in the Food Fermentation Industry. Food Rev. Int. 2020, 36, 135–167. [Google Scholar] [CrossRef]
- Miglioranza, M.V.; Lodi, K.Z.; Minello, L.; Aver, I.; Magrini, F.E.; Paesi, S.; Branco, C.S. Innovative Applications Based on Agro-Industrial Residues of Pitahaya for Improving Antioxidant and Biological Performance in Kombuchas. Food Biosci. 2024, 61, 104780. [Google Scholar] [CrossRef]
- Diez-Ozaeta, I.; Astiazaran, O.J. Fermented Foods: An Update on Evidence-Based Health Benefits and Future Perspectives. Food Res. Int. 2022, 156, 111133. [Google Scholar] [CrossRef] [PubMed]
- Morales, D.; Gutiérrez-Pensado, R.; Bravo, F.I.; Muguerza, B. Novel Kombucha Beverages with Antioxidant Activity Based on Fruits as Alternative Substrates. LWT 2023, 189, 115482. [Google Scholar] [CrossRef]
- Barros, V.C.; Botelho, V.A.; Chisté, R.C. Alternative Substrates for the Development of Fermented Beverages Analogous to Kombucha: An Integrative Review. Foods 2024, 13, 1768. [Google Scholar] [CrossRef] [PubMed]
- European Union. Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers; European Union: Brussels, Belgium, 2011. [Google Scholar]
- Zou, C.; Li, R.Y.; Chen, J.X.; Wang, F.; Gao, Y.; Fu, Y.Q.; Xu, Y.Q.; Yin, J.F. Zijuan Tea- Based Kombucha: Physicochemical, Sensorial, and Antioxidant Profile. Food Chem. 2021, 363, 130322. [Google Scholar] [CrossRef] [PubMed]
- Cánovas, B.M.; García-Viguera, C.; Medina, S.; Domínguez-Perles, R. ‘Kombucha’-like Beverage of Broccoli By-Products: A New Dietary Source of Bioactive Sulforaphane. Beverages 2023, 9, 88. [Google Scholar] [CrossRef]
- Balmaseda, A.; Romeu, E.; Mas, A.; Portillo, M.C. Production of Grape Marc Kombucha: Valorization of a Wine by-Product. LWT-Food Sci. Technol. 2024, 210, 116882. [Google Scholar] [CrossRef]
- Costa-Pérez, A.; Medina, S.; Sánchez-Bravo, P.; Domínguez-Perles, R.; García-Viguera, C. The (Poly)Phenolic Profile of Separate Winery By-Products Reveals Potential Antioxidant Synergies. Molecules 2023, 28, 2081. [Google Scholar] [CrossRef] [PubMed]
- Barakat, N.; Bouajila, J.; Beaufort, S.; Rizk, Z.; Taillandier, P.; El Rayess, Y. Development of a New Kombucha from Grape Pomace: The Impact of Fermentation Conditions on Composition and Biological Activities. Beverages 2024, 10, 29. [Google Scholar] [CrossRef]
- De Iseppi, A.; Lomolino, G.; Marangon, M.; Curioni, A. Current and Future Strategies for Wine Yeast Lees Valorization. Food Res. Int. 2020, 137, 109352. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Wu, X.; Hu, X.; Li, X.; Lv, S.; Zhan, C.; Chen, Y.; Wang, C.; Xu, J. Phenolic Features and Anthocyanin Profiles in Winemaking Pomace and Fresh Berries of Grapes with Different Pedigrees. Food Sci. Biotechnol. 2023, 32, 145–156. [Google Scholar] [CrossRef] [PubMed]
- De Iseppi, A.; Curioni, A.; Marangon, M.; Invincibile, D.; Slaghenaufi, D.; Ugliano, M. Chemical and Electrochemical Assessment of Wine Lees Extracts Tested as Novel Antioxidant Additives in Model Wine. J. Agric. Food Chem. 2024, 72, 1969–1977. [Google Scholar] [CrossRef] [PubMed]
- Balmaseda, A.; Miot-Sertier, C.; Lytra, G.; Poulain, B.; Reguant, C.; Lucas, P.; Nioi, C. Application of White Wine Lees for Promoting Lactic Acid Bacteria Growth and Malolactic Fermentation in Wine. Int. J. Food Microbiol. 2024, 413, 110583. [Google Scholar] [CrossRef] [PubMed]
- Jara-Palacios, M.J. Wine Lees as a Source of Antioxidant Compounds. Antioxidants 2019, 8, 45. [Google Scholar] [CrossRef] [PubMed]
- Gordillo, B.; Sigurdson, G.T.; Lao, F.; González-Miret, M.L.; Heredia, F.J.; Giusti, M.M. Assessment of the Color Modulation and Stability of Naturally Copigmented Anthocyanin-Grape Colorants with Different Levels of Purification. Food Res. Int. 2018, 106, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Salar, F.J.; Periago, P.M.; Agulló, V.; García-viguera, C.; Fernández, P.S. High Hydrostatic Pressure vs. Thermal Pasteurization: The Effect on the Bioactive Compound Profile of a Citrus Maqui Beverage. Foods 2021, 10, 2416. [Google Scholar] [CrossRef] [PubMed]
- Baenas, N.; Gómez-Jodar, I.; Moreno, D.A.; García-Viguera, C.; Periago, P.M. Broccoli and Radish Sprouts Are Safe and Rich in Bioactive Phytochemicals. Postharvest Biol. Technol. 2017, 127, 60–67. [Google Scholar] [CrossRef]
- Salar, F.J.; Agulló, V.; García-Viguera, C.; Domínguez-Perles, R. Stevia vs. Sucrose: Influence on the Phytochemical Content of a Citrus–Maqui Beverage—A Shelf Life Study. Foods 2020, 9, 219. [Google Scholar] [CrossRef] [PubMed]
- Mena, P.; García-Viguera, C.; Navarro-Rico, J.; Moreno, D.A.; Bartual, J.; Saura, D.; Martí, N. Phytochemical Characterisation for Industrial Use of Pomegranate (Punica granatum L.) Cultivars Grown in Spain. J. Sci. Food Agric. 2011, 91, 1893–1906. [Google Scholar] [CrossRef] [PubMed]
- Migues, I.; Baenas, N.; Gironés-Vilaplana, A.; Cesio, M.V.; Heinzen, H.; Moreno, D.A. Phenolic Profiling and Antioxidant Capacity of Eugenia uniflora L. (Pitanga) Samples Collected in Different Uruguayan Locations. Foods 2018, 7, 67. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Bravo, P.; Costa-Pérez, A.; García-Viguera, C.; Domínguez-Perles, R.; Medina, S. Prevention of Inflammation and Oxidative Stress by New Ingredients Based on High (Poly)Phenols Winery by-Products. JSFA Rep. 2025, 5, 40–49. [Google Scholar] [CrossRef]
- Kokkinomagoulos, E.; Stamkopoulos, A.; Michaelidou, A.M.; Goula, A.M.; Kandylis, P. Valorization of the Solid Fraction of Wine Lees through Optimized Accelerated Autolysis: Effect of Temperature, pH and Solid Concentration on Free-Amino Acid Concentration. Sustain. Chem. Pharm. 2024, 42, 101780. [Google Scholar] [CrossRef]
- Da Silva, G.V.; Machado, B.A.S.; de Oliveira, W.P.; da Silva, C.F.G.; de Quadros, C.P.; Druzian, J.I.; de Souza Ferreira, E.; Umsza-Guez, M.A. Effect of Drying Methods on Bioactive Compounds and Antioxidant Capacity in Grape Skin Residues from the New Hybrid Variety “BRS Magna”. Molecules 2020, 25, 3701. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Rutherfurd-Markwick, K.; Zhang, X.X.; Mutukumira, A.N. Isolation and Characterisation of Dominant Acetic Acid Bacteria and Yeast Isolated from Kombucha Samples at Point of Sale in New Zealand. Curr. Res. Food Sci. 2022, 5, 835–844. [Google Scholar] [CrossRef] [PubMed]
- Neffe-Skocińska, K.; Sionek, B.; Ścibisz, I.; Kołożyn-Krajewska, D. Acid Contents and the Effect of Fermentation Condition of Kombucha Tea Beverages on Physicochemical, Microbiological and Sensory Properties. CYTA–J. Food 2017, 15, 601–607. [Google Scholar] [CrossRef]
- Ministério da Agricultura P e.A (mapa) Brasil. Instrução Normativa n. 41, de 17 de Setembro de 2019. Estabelece o Padrão de Identidade e Qualidade Da Kombucha Em Todo o Território Nacional; 2019 Ed. 181, Seção 1; Diário Ofcial da União: Brasilia, Brazil, 2019; p. 13. [Google Scholar]
- Sancho-Galán, P.; Amores-Arrocha, A.; Jiménez-Cantizano, A.; Palacios, V. Physicochemical and Nutritional Characterization of Winemaking Lees: A New Food Ingredient. Agronomy 2020, 10, 996. [Google Scholar] [CrossRef]
- Venegas, C.A.; Saona, L.A.; Urbina, K.; Quintrel, P.; Peña, T.A.; Mardones, W.; Cubillos, F.A. Addition of Saccharomyces eubayanus to SCOBY Fermentations Modulates the Chemical and Volatile Compound Profiles in Kombucha. Food Microbiol. 2023, 116, 104357. [Google Scholar] [CrossRef] [PubMed]
- Gülhan, M.F. A New Substrate and Nitrogen Source for Traditional Kombucha Beverage: Stevia Rebaudiana Leaves. Appl. Biochem. Biotechnol. 2023, 195, 4096–4115. [Google Scholar] [CrossRef] [PubMed]
- Ayed, L.; Ben Abid, S.; Hamdi, M. Development of a Beverage from Red Grape Juice Fermented with the Kombucha Consortium. Ann. Microbiol. 2017, 67, 111–121. [Google Scholar] [CrossRef]
- Da Silva, M.M.; de Souza, A.C.; Faria, E.R.; Molina, G.; de Andrade Neves, N.; Morais, H.A.; Dias, D.R.; Schwan, R.F.; Ramos, C.L. Use of Kombucha SCOBY and Commercial Yeast as Inoculum for the Elaboration of Novel Beer. Fermentation 2022, 8, 748. [Google Scholar] [CrossRef]
- Kokkinomagoulos, E.; Kandylis, P. Sustainable Exploitation of Wine Lees as Yeast Extract Supplement for Application in Food Industry and Its Effect on the Growth and Fermentative Ability of Lactiplantibacillus plantarum and Saccharomyces cerevisiae. Sustainability 2024, 16, 8449. [Google Scholar] [CrossRef]
- Vukmanović, S.; Vitas, J.; Malbaša, R. Valorization of Winery Effluent Using Kombucha Culture. J. Food Process Preserv. 2020, 44, e14627. [Google Scholar] [CrossRef]
- Tran, T.; Grandvalet, C.; Verdier, F.; Martin, A.; Alexandre, H.; Tourdot-Maréchal, R. Microbial Dynamics between Yeasts and Acetic Acid Bacteria in Kombucha: Impacts on the Chemical Composition of the Beverage. Foods 2020, 9, 963. [Google Scholar] [CrossRef] [PubMed]
- Czarnowska-Kujawska, M.; Klepacka, J.; Starowicz, M.; Lesińska, P. Functional Properties and Sensory Quality of Kombucha Analogs Based on Herbal Infusions. Antioxidants 2024, 13, 1191. [Google Scholar] [CrossRef] [PubMed]
- De Miranda, J.F.; Ruiz, L.F.; Silva, C.B.; Uekane, T.M.; Silva, K.A.; Gonzalez, A.G.M.; Fernandes, F.F.; Lima, A.R. Kombucha: A Review of Substrates, Regulations, Composition, and Biological Properties. J. Food Sci. 2022, 87, 503–527. [Google Scholar] [CrossRef] [PubMed]
- Morata, A.; Palomero, F.; Loira, I.; Suárez-Lepe, J.A. New Trends in Aging on Lees. In Red Wine Technology; Elsevier: Amsterdam, The Netherlands, 2018; pp. 163–176. [Google Scholar]
- Devi, A.; Konerira Aiyappaa, A.A.; Waterhouse, A.L. Adsorption and Biotransformation of Anthocyanin Glucosides and Quercetin Glycosides by Oenococcus oeni and Lactobacillus plantarum in Model Wine Solution. J. Sci. Food Agric. 2020, 100, 2110–2120. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Qin, Y.; Harrison, R.; Hider, R.; Bekhit, A.E.D.A. Characterization of Bioactive Compounds in Lees from New Zealand Wines with Different Vinification Backgrounds. Antioxidants 2022, 11, 2335. [Google Scholar] [CrossRef] [PubMed]
- Rocha-Guzmán, N.E.; González-Laredo, R.F.; Moreno-Jiménez, M.R.; Gallegos-Infante, J.A.; Mancera-Rodríguez, J.; Rosales-Villarreal, M.C. Kombucha Analogs from Maqui Juice: Consortium Age and Sugar Concentration Effects on Anthocyanin Stability and Its Relationship with Antioxidant Activity and Digestive Enzyme Inhibition. Food Chem. 2023, 421, 136158. [Google Scholar] [CrossRef] [PubMed]
- Yuan, K.; Wu, G.; Li, X.; Zeng, Y.; Wen, X.; Liu, R.; Jiang, X.; Tian, L.; Sun, J.; Bai, W. Anthocyanins Degradation Mediated by β-Glycosidase Contributes to the Color Loss during Alcoholic Fermentation in a Structure-Dependent Manner. Food Res. Int. 2024, 175, 113732. [Google Scholar] [CrossRef] [PubMed]
- You, Y.; Li, N.; Han, X.; Guo, J.; Zhao, Y.; Huang, W.; Zhan, J. The Effects of Six Phenolic Acids and Tannic Acid on Colour Stability and the Anthocyanin Content of Mulberry Juice during Refrigerated Storage. Int. J. Food Sci. Technol. 2019, 54, 2141–2150. [Google Scholar] [CrossRef]
- La Torre, C.; Fazio, A.; Caputo, P.; Plastina, P.; Caroleo, M.C.; Cannataro, R.; Cione, E. Effects of Long-term Storage on Radical Scavenging Properties and Phenolic Content of Kombucha from Black Tea. Molecules 2021, 26, 5474. [Google Scholar] [CrossRef] [PubMed]
- Bekhit, A.E.D.A.; Cheng, V.J.; McConnell, M.; Zhao, J.H.; Sedcole, R.; Harrison, R. Antioxidant Activities, Sensory and Anti-Influenza Activity of Grape Skin Tea Infusion. Food Chem. 2011, 129, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Baenas, N.; García-Viguera, C.; Domínguez-Perles, R.; Medina, S. Winery By-Products as Sources of Bioactive Tryptophan, Serotonin, and Melatonin: Contributions to the Antioxidant Power. Foods 2023, 12, 1571. [Google Scholar] [CrossRef] [PubMed]
- Kulhankova, M.; Prusova, B.; Baron, M. Study of Oxygen in Wines with Different Proportions of Yeast Lees. Ital. J. Food Sci. 2024, 36, 44–52. [Google Scholar] [CrossRef]
- Di Nicolantonio, L.; Ferrati, M.; Cristino, M.; Peregrina, D.V.; Zannotti, M.; Vitali, L.A.; Ciancia, S.I.; Giovannetti, R.; Ferraro, S.; Zara, S.; et al. Evaluation of Physicochemical and Microbial Properties of Extracts from Wine Lees Waste of Matelica’s Verdicchio and Their Applications in Novel Cosmetic Products. Antioxidants 2023, 12, 816. [Google Scholar] [CrossRef] [PubMed]
- Değirmencioğlu, N.; Yıldız, E.; Sahan, Y.; Güldas, M.; Gürbüz, O. Impact of Tea Leaves Types on Antioxidant Properties and Bioaccessibility of Kombucha. J. Food Sci. Technol. 2021, 58, 2304–2312. [Google Scholar] [CrossRef] [PubMed]
- Fegredo, J.A.; Meynell, R.; Lai, A.K.; Wong, M.C.; Martin, C.R.; Wiseman, H.; Preedy, V.R. The Antioxidant Capacity of Beer: Relationships Between Assays of Antioxidant Capacity, Color and Other Alcoholic and Non-Alcoholic Beverages. In Beer in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2009; pp. 475–481. [Google Scholar]
- Henríquez, C.; Almonacid, S.; Chiffelle, I.; Valenzuela, T.; Araya, M.; Cabezas, L.; Simpson, R.; Speisky, H. Determination of Antioxidant Capacity, Total Phenolic Content and Mineral Composition of Different Fruit Tissue of Five Apple Cultivars Grown in Chile. Chil. J. Agric. Res. 2010, 70, 523–536. [Google Scholar] [CrossRef]
Processed Oenological By-Product | Solid–Liquid Rate (g/L) | Total Anthocyanins |
---|---|---|
Oven-dried wine lees | 20 | 218.89 ± 4.04 a B |
40 | 215.33 ± 4.65 a B | |
60 | 147.20 ± 3.23 b B | |
Oven-dried grape pomace | 20 | 16.16 ± 0.00 b D |
40 | 17.60 ± 0.16 a D | |
60 | 13.33 ± 0.04 c D | |
Freeze-dried wine lees | 20 | 378.28 ± 4.46 a A |
40 | 382.27 ± 4.83 a A | |
60 | 281.43 ± 3.41 b A | |
Freeze-dried grape pomace | 20 | 44.03 ± 0.81 a C |
40 | 33.17 ± 0.37 b C | |
60 | 27.54 ± 0.86 c C |
Parameter | Days | KC | KWL | KGP | LSD (p < 0.05) |
---|---|---|---|---|---|
pH | 0 F | 6.77 a A | 3.64 a B | 3.90 a B | 0.25 |
10 F | 3.22 c A | 3.19 c A | 3.08 b B | 0.06 | |
21 SL | 3.52 b A | 3.31 b B | 3.27 b B | 0.11 | |
LSD (p < 0.05) | 0.02 | 0.06 | 0.27 | ||
°Brix | 0 F | 6.73 a B | 7.76 a A | 6.83 b B | 0.11 |
10 F | 6.83 a B | 6.25 b C | 7.04 a A | 0.11 | |
21 SL | 6.87 a A | 6.05 c B | 6.89 b A | 0.09 | |
LSD (p < 0.05) | 0.11 | 0.11 | 0.09 | ||
Ethanol | 0 F | 18.00 b C | 45.17 c B | 84.33 b A | 4.88 |
10 F | 75.00 a C | 5593.33 a A | 1363.50 a B | 236.05 | |
21 SL | 0.00 c C | 4456.00 b A | 1184.00 a B | 167.75 | |
LSD (p < 0.05) | 6.21 | 177.77 | 228.57 | ||
Acetic acid | 0 F | 0.00 c A | 0.02 b A | 0.06 b A | 0.06 |
10 F | 0.21 b C | 5.73 a A | 2.55 a B | 0.26 | |
21 SL | 0.25 a C | 5.84 a A | 2.46 a B | 0.13 | |
LSD (p < 0.05) | 0.02 | 0.25 | 0.14 |
Beverage | Days | Salmonella spp. | Listeria monocytogenes | Enterobacteriaceae | Escherichia coli | Staphylococcus aureus |
---|---|---|---|---|---|---|
KC | 10 F | Absent | Absent | <10 Y | <10 | <10 |
21 SL | Absent | Absent | <10 | <10 | <10 | |
KWL | 10 F | Absent | Absent | <10 | <10 | <10 |
21 SL | Absent | Absent | <10 | <10 | <10 | |
KGP | 10 F | Absent | Absent | <10 | <10 | <10 |
21 SL | Absent | Absent | <10 | <10 | <10 |
Parameter | Days | KC | KWL | KGP | LSD (p < 0.05) |
---|---|---|---|---|---|
CIEL* | 0 F | 99.94 b A | 97.50 a C | 99.42 a B | 0.21 |
10 F | 100.07 a A | 97.28 a C | 98.66 b B | 0.14 | |
21 SL | 100.07 a A | 96.31 b C | 98.46 c B | 0.06 | |
LSD (p < 0.05) | 0.01 | 0.25 | 0.09 | ||
CIEa* | 0 F | −0.06 b B | 2.43 c A | 0.16 c B | 0.36 |
10 F | −0.01 a C | 3.67 b A | 1.32 b B | 0.26 | |
21 SL | −0.01 a C | 5.41 a A | 1.54 a B | 0.22 | |
LSD (p < 0.05) | 0.01 | 0.49 | 0.11 | ||
CIEb* | 0 F | 0.42 a C | 2.36 a A | 0.67 b B | 0.19 |
10 F | 0.13 c C | 1.23 b A | 0.85 a B | 0.00 | |
21 SL | 0.16 b C | 1.01 b A | 0.74 b B | 0.01 | |
LSD (p < 0.05) | 0.01 | 0.18 | 0.09 | ||
Chroma | 0 F | 0.43 a B | 3.38 b A | 0.69 b B | 0.39 |
10 F | 0.13 c C | 3.87 b A | 1.57 a B | 0.26 | |
21 SL | 0.16 b C | 5.50 a A | 1.71 a B | 0.21 | |
LSD (p < 0.05) | 0.01 | 0.49 | 0.14 | ||
Hue angle | 0 F | 98.19 a A | 44.32 a C | 76.20 a B | 2.14 |
10 F | 95.31 b A | 18.58 b C | 32.90 b B | 1.91 | |
21 SL | 92.40 c A | 10.57 c C | 25.66 c B | 1.46 | |
LSD (p < 0.05) | 1.82 | 2.37 | 1.19 | ||
ΔE | F | 0.32 C | 1.70 A | 1.39 B | 0.09 |
SL | 0.03 C | 2.00 A | 0.33 B | 0.11 |
Antioxidant Test | Days | KC | KWL | KGP | LSD (p < 0.05) |
---|---|---|---|---|---|
ABTS | 0 F | 0.26 b C | 1.72 a A | 1.16 a B | 0.11 |
10 F | 0.37 a C | 1.30 b A | 1.09 a B | 0.06 | |
21 SL | 0.19 c C | 1.46 ab A | 1.15 a B | 0.22 | |
LSD (p < 0.05) | 0.00 | 0.24 | 0.06 | ||
FRAP | 0 F | 0.13 b C | 2.72 a A | 1.72 a B | 0.34 |
10 F | 0.21 a C | 2.43 ab A | 1.75 a B | 0.43 | |
21 SL | 0.17 ab C | 1.99 b A | 1.67 a B | 0.21 | |
LSD (p < 0.05) | 0.00 | 0.54 | 0.25 | ||
ORAC | 0 F | 0.25 a C | 2.81 a A | 2.13 a B | 0.29 |
10 F | 0.24 a C | 2.46 b A | 1.89 a B | 0.11 | |
21 SL | 0.20 a C | 2.24 b A | 1.86 a B | 0.16 | |
LSD (p < 0.05) | 0.06 | 0.20 | 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cánovas, B.M.; Pérez-Novas, I.; García-Viguera, C.; Domínguez-Perles, R.; Medina, S. Assessment of Winery By-Products as Ingredients as a Base of “3S” (Safe, Salubrious, and Sustainable) Fermented Beverages Rich in Bioactive Anthocyanins. Foods 2025, 14, 2514. https://doi.org/10.3390/foods14142514
Cánovas BM, Pérez-Novas I, García-Viguera C, Domínguez-Perles R, Medina S. Assessment of Winery By-Products as Ingredients as a Base of “3S” (Safe, Salubrious, and Sustainable) Fermented Beverages Rich in Bioactive Anthocyanins. Foods. 2025; 14(14):2514. https://doi.org/10.3390/foods14142514
Chicago/Turabian StyleCánovas, Berta María, Irene Pérez-Novas, Cristina García-Viguera, Raúl Domínguez-Perles, and Sonia Medina. 2025. "Assessment of Winery By-Products as Ingredients as a Base of “3S” (Safe, Salubrious, and Sustainable) Fermented Beverages Rich in Bioactive Anthocyanins" Foods 14, no. 14: 2514. https://doi.org/10.3390/foods14142514
APA StyleCánovas, B. M., Pérez-Novas, I., García-Viguera, C., Domínguez-Perles, R., & Medina, S. (2025). Assessment of Winery By-Products as Ingredients as a Base of “3S” (Safe, Salubrious, and Sustainable) Fermented Beverages Rich in Bioactive Anthocyanins. Foods, 14(14), 2514. https://doi.org/10.3390/foods14142514