Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,670)

Search Parameters:
Keywords = tradition/innovation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1029 KiB  
Article
Lattice-Based Certificateless Proxy Re-Signature for IoT: A Computation-and-Storage Optimized Post-Quantum Scheme
by Zhanzhen Wei, Gongjian Lan, Hong Zhao, Zhaobin Li and Zheng Ju
Sensors 2025, 25(15), 4848; https://doi.org/10.3390/s25154848 (registering DOI) - 6 Aug 2025
Abstract
Proxy re-signature enables transitive authentication of digital identities across different domains and has significant application value in areas such as digital rights management, cross-domain certificate validation, and distributed system access control. However, most existing proxy re-signature schemes, which are predominantly based on traditional [...] Read more.
Proxy re-signature enables transitive authentication of digital identities across different domains and has significant application value in areas such as digital rights management, cross-domain certificate validation, and distributed system access control. However, most existing proxy re-signature schemes, which are predominantly based on traditional public-key cryptosystems, face security vulnerabilities and certificate management bottlenecks. While identity-based schemes alleviate some issues, they introduce key escrow concerns. Certificateless schemes effectively resolve both certificate management and key escrow problems but remain vulnerable to quantum computing threats. To address these limitations, this paper constructs an efficient post-quantum certificateless proxy re-signature scheme based on algebraic lattices. Building upon algebraic lattice theory and leveraging the Dilithium algorithm, our scheme innovatively employs a lattice basis reduction-assisted parameter selection strategy to mitigate the potential algebraic attack vectors inherent in the NTRU lattice structure. This ensures the security and integrity of multi-party communication in quantum-threat environments. Furthermore, the scheme significantly reduces computational overhead and optimizes signature storage complexity through structured compression techniques, facilitating deployment on resource-constrained devices like Internet of Things (IoT) terminals. We formally prove the unforgeability of the scheme under the adaptive chosen-message attack model, with its security reducible to the hardness of the corresponding underlying lattice problems. Full article
(This article belongs to the Special Issue IoT Network Security (Second Edition))
22 pages, 6687 KiB  
Article
Research on Anti-Lock Braking Performance Based on CDOA-SENet-CNN Neural Network and Single Neuron Sliding Mode Control
by Yufeng Wei, Wencong Huang, Yichi Zhang, Yi Xie, Xiankai Huang, Yanlei Gao and Yan Chen
Processes 2025, 13(8), 2486; https://doi.org/10.3390/pr13082486 - 6 Aug 2025
Abstract
Traditional vehicle emergency braking research suffers from inaccurate maximum road adhesion coefficient identification and suboptimal wheel slip ratio control. To address these challenges in electronic hydraulic braking systems’ anti-lock braking technology, firstly, this paper proposes a CDOA-SENet-CNN neural network to precisely estimate the [...] Read more.
Traditional vehicle emergency braking research suffers from inaccurate maximum road adhesion coefficient identification and suboptimal wheel slip ratio control. To address these challenges in electronic hydraulic braking systems’ anti-lock braking technology, firstly, this paper proposes a CDOA-SENet-CNN neural network to precisely estimate the maximum road adhesion coefficient by monitoring and analyzing the braking process. Secondly, correlation curves between peak adhesion coefficients and ideal slip ratios are established using the Burckhardt model and CarSim 2020, and the estimated maximum adhesion coefficient from the CDOA-SENet-CNN network is used with these curves to determine the optimal slip ratio for the single-neuron integral sliding mode control (SNISMC) algorithm. Finally, an SNISMC control strategy is developed to adjust the wheel slip ratio to the optimal value, achieving stable wheel control across diverse road surfaces. Results indicate that the CDOA-SENet-CNN network rapidly and accurately estimates the peak braking surface adhesion coefficient. The SNISMC control strategy significantly enhances wheel slip ratio control, consequently increasing the effectiveness of vehicle brakes. This paper introduces an innovative, stable, and efficient solution for enhancing vehicle braking safety. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

15 pages, 871 KiB  
Article
Analogical Reasoning with Multimodal Knowledge Graphs: Fine-Tuning Model Performance Based on LoRA
by Zhenglong Zhang, Sijia Zhang, Zongshi An, Zhenglin Li and Chun Zhang
Electronics 2025, 14(15), 3140; https://doi.org/10.3390/electronics14153140 - 6 Aug 2025
Abstract
Multimodal knowledge graphs have recently been successfully applied to tasks such as those relating to information retrieval, question and answer, and recommender systems. In this study, we propose a dual-path fine-tuning mechanism technique with a low-rank adapter and an embedded cueing layer, aiming [...] Read more.
Multimodal knowledge graphs have recently been successfully applied to tasks such as those relating to information retrieval, question and answer, and recommender systems. In this study, we propose a dual-path fine-tuning mechanism technique with a low-rank adapter and an embedded cueing layer, aiming to improve the generalization and accuracy of the model in analogical reasoning tasks. The low-rank fine-tuning (LoRA) technique with rank-stable scaling factor is used to fine-tune the MKGformer model, and a cue-embedding layer is innovatively added to the input layer, which enables the model to better grasp the scale of the relationship between entities according to the dynamic cue vectors during the fine-tuning process and ensures that the model achieves the best results during training. The experimental results show that the R-MKG model improves several evaluation indexes by more than 20%, which is significantly better than the traditional DoRA and FA-LoRA methods. This research provides technical support for multimodal knowledge graph analogical reasoning. We hope that our work will bring benefits and inspire future research. Full article
Show Figures

Figure 1

13 pages, 286 KiB  
Review
Drug Repurposing and Artificial Intelligence in Multiple Sclerosis: Emerging Strategies for Precision Therapy
by Pedro Henrique Villar-Delfino, Paulo Pereira Christo and Caroline Maria Oliveira Volpe
Sclerosis 2025, 3(3), 28; https://doi.org/10.3390/sclerosis3030028 - 6 Aug 2025
Abstract
Multiple sclerosis (MS) is a chronic, immune-mediated disorder of the central nervous system (CNS) characterized by inflammation, demyelination, axonal degeneration, and gliosis. Its pathophysiology involves a complex interplay of genetic susceptibility, environmental triggers, and immune dysregulation, ultimately leading to progressive neurodegeneration and functional [...] Read more.
Multiple sclerosis (MS) is a chronic, immune-mediated disorder of the central nervous system (CNS) characterized by inflammation, demyelination, axonal degeneration, and gliosis. Its pathophysiology involves a complex interplay of genetic susceptibility, environmental triggers, and immune dysregulation, ultimately leading to progressive neurodegeneration and functional decline. Although significant advances have been made in disease-modifying therapies (DMTs), many patients continue to experience disease progression and unmet therapeutic needs. Drug repurposing—the identification of new indications for existing drugs—has emerged as a promising strategy in MS research, offering a cost-effective and time-efficient alternative to traditional drug development. Several compounds originally developed for other diseases, including immunomodulatory, anti-inflammatory, and neuroprotective agents, are currently under investigation for their efficacy in MS. Repurposed agents, such as selective sphingosine-1-phosphate (S1P) receptor modulators, kinase inhibitors, and metabolic regulators, have demonstrated potential in promoting neuroprotection, modulating immune responses, and supporting remyelination in both preclinical and clinical settings. Simultaneously, artificial intelligence (AI) is transforming drug discovery and precision medicine in MS. Machine learning and deep learning models are being employed to analyze high-dimensional biomedical data, predict drug–target interactions, streamline drug repurposing workflows, and enhance therapeutic candidate selection. By integrating multiomics and neuroimaging data, AI tools facilitate the identification of novel targets and support patient stratification for individualized treatment. This review highlights recent advances in drug repurposing and discovery for MS, with a particular emphasis on the emerging role of AI in accelerating therapeutic innovation and optimizing treatment strategies. Full article
Show Figures

Graphical abstract

24 pages, 1684 KiB  
Article
Beyond Assistance: Embracing AI as a Collaborative Co-Agent in Education
by Rena Katsenou, Konstantinos Kotsidis, Agnes Papadopoulou, Panagiotis Anastasiadis and Ioannis Deliyannis
Educ. Sci. 2025, 15(8), 1006; https://doi.org/10.3390/educsci15081006 - 6 Aug 2025
Abstract
The integration of artificial intelligence (AI) in education offers novel opportunities to enhance critical thinking while also posing challenges to independent cognitive development. In particular, Human-Centered Artificial Intelligence (HCAI) in education aims to enhance human experience by providing a supportive and collaborative learning [...] Read more.
The integration of artificial intelligence (AI) in education offers novel opportunities to enhance critical thinking while also posing challenges to independent cognitive development. In particular, Human-Centered Artificial Intelligence (HCAI) in education aims to enhance human experience by providing a supportive and collaborative learning environment. Rather than replacing the educator, HCAI serves as a tool that empowers both students and teachers, fostering critical thinking and autonomy in learning. This study investigates the potential for AI to become a collaborative partner that assists learning and enriches academic engagement. The research was conducted during the 2024–2025 winter semester within the Pedagogical and Teaching Sufficiency Program offered by the Audio and Visual Arts Department, Ionian University, Corfu, Greece. The research employs a hybrid ethnographic methodology that blends digital interactions—where students use AI tools to create artistic representations—with physical classroom engagement. Data was collected through student projects, reflective journals, and questionnaires, revealing that structured dialog with AI not only facilitates deeper critical inquiry and analytical reasoning but also induces a state of flow, characterized by intense focus and heightened creativity. The findings highlight a dialectic between individual agency and collaborative co-agency, demonstrating that while automated AI responses may diminish active cognitive engagement, meaningful interactions can transform AI into an intellectual partner that enriches the learning experience. These insights suggest promising directions for future pedagogical strategies that balance digital innovation with traditional teaching methods, ultimately enhancing the overall quality of education. Furthermore, the study underscores the importance of integrating reflective practices and adaptive frameworks to support evolving student needs, ensuring a sustainable model. Full article
(This article belongs to the Special Issue Unleashing the Potential of E-learning in Higher Education)
Show Figures

Figure 1

28 pages, 930 KiB  
Review
Financial Development and Energy Transition: A Literature Review
by Shunan Fan, Yuhuan Zhao and Sumin Zuo
Energies 2025, 18(15), 4166; https://doi.org/10.3390/en18154166 - 6 Aug 2025
Abstract
Under the global context of climate governance and sustainable development, low-carbon energy transition has become a strategic imperative. As a critical force in resource allocation, the financial system’s impact on energy transition has attracted extensive academic attention. This paper presents the first comprehensive [...] Read more.
Under the global context of climate governance and sustainable development, low-carbon energy transition has become a strategic imperative. As a critical force in resource allocation, the financial system’s impact on energy transition has attracted extensive academic attention. This paper presents the first comprehensive literature review on energy transition research in the context of financial development. We develop a “Financial Functions-Energy Transition Dynamics” analytical framework to comprehensively examine the theoretical and empirical evidence regarding the relationship between financial development (covering both traditional finance and emerging finance) and energy transition. The understanding of financial development’s impact on energy transition has progressed from linear to nonlinear perspectives. Early research identified a simple linear promoting effect, whereas current studies reveal distinctly nonlinear and multidimensional effects, dynamically driven by three fundamental factors: economy, technology, and resources. Emerging finance has become a crucial driver of transition through technological innovation, risk diversification, and improved capital allocation efficiency. Notable disagreements persist in the existing literature on conceptual frameworks, measurement approaches, and empirical findings. By synthesizing cutting-edge empirical evidence, we identify three critical future research directions: (1) dynamic coupling mechanisms, (2) heterogeneity of financial instruments, and (3) stage-dependent evolutionary pathways. Our study provides a theoretical foundation for understanding the complex finance-energy transition relationship and informs policy-making and interdisciplinary research. Full article
Show Figures

Figure 1

15 pages, 1337 KiB  
Article
Application of Prefabricated Public Buildings in Rural Areas with Extreme Hot–Humid Climate: A Case Study of the Yongtai County Digital Industrial Park, Fuzhou, China
by Xin Wu, Jiaying Wang, Ruitao Zhang, Qianru Bi and Jinghan Pan
Buildings 2025, 15(15), 2767; https://doi.org/10.3390/buildings15152767 - 6 Aug 2025
Abstract
Accomplishing China’s national targets of carbon peaking and carbon neutrality necessitates proactive solutions, hinging critically on fundamentally transforming rural construction models. Current construction practices in rural areas are characterized by inefficiency, high resource consumption, and reliance on imported materials. These shortcomings not only [...] Read more.
Accomplishing China’s national targets of carbon peaking and carbon neutrality necessitates proactive solutions, hinging critically on fundamentally transforming rural construction models. Current construction practices in rural areas are characterized by inefficiency, high resource consumption, and reliance on imported materials. These shortcomings not only jeopardize the attainment of climate objectives, but also hinder equitable development between urban and rural regions. Using the Digital Industrial Park in Yongtai County, Fuzhou City, as a case study, this study focuses on prefabricated public buildings in regions with extreme hot–humid climate, and innovatively integrates BIM (Building Information Modeling)-driven carbon modeling with the Gaussian Two-Step Floating Catchment Area (G2SFCA) method for spatial accessibility assessment to investigate the carbon emissions and economic benefits of prefabricated buildings during the embodied stage, and analyzes the spatial accessibility of prefabricated building material suppliers in Fuzhou City and identifies associated bottlenecks, seeking pathways to promote sustainable rural revitalization. Compared with traditional cast-in-situ buildings, embodied carbon emissions of prefabricated during their materialization phase significantly reduced. This dual-perspective approach ensures that the proposed solutions possess both technical rigor and logistical feasibility. Promoting this model across rural areas sharing similar climatic conditions would advance the construction industry’s progress towards the dual carbon goals. Full article
Show Figures

Figure 1

18 pages, 1974 KiB  
Article
GoSS-Rec: Group-Oriented Segment Sequence Recommendation
by Marco Aguirre, Lorena Recalde and Edison Loza-Aguirre
Information 2025, 16(8), 668; https://doi.org/10.3390/info16080668 - 6 Aug 2025
Abstract
In recent years, the advancement of various applications, data mining, technologies, and socio-technical systems has led to the development of interactive platforms that enhance user experiences through personalization. In the sports domain, users can access training plans, routes and healthy habits, all in [...] Read more.
In recent years, the advancement of various applications, data mining, technologies, and socio-technical systems has led to the development of interactive platforms that enhance user experiences through personalization. In the sports domain, users can access training plans, routes and healthy habits, all in a personalized way thanks to sports recommender systems. These recommendation engines are fueled by rich datasets that are collected through continuous monitoring of users’ activities. However, their potential to address user profiling is limited to single users and not to the dynamics of groups of sportsmen. This paper introduces GoSS-Rec, a Group-oriented Segment Sequence Recommender System, which is designed for groups of cyclists who participate in fitness activities. The system analyzes collective preferences and activity records to provide personalized route recommendations that encourage exploration of diverse cycling paths and also enhance group activities. Our experiments show that GoSS-Rec, which is based on Prod2vec, consistently outperforms other models on diversity and novelty, regardless of the group size. This indicates the potential of our model to provide unique and customized suggestions, making GoSS-Rec a remarkable innovation in the field of sports recommender systems. It also expands the possibilities of personalized experiences beyond traditional areas. Full article
Show Figures

Graphical abstract

26 pages, 449 KiB  
Review
The Science of Aging: Understanding Phenolic and Flavor Compounds and Their Influence on Alcoholic Beverages Aged with Alternative Woods
by Tainá Francisca Cordeiro de Souza, Bruna Melo Miranda, Julio Cesar Colivet Briceno, Joaquín Gómez-Estaca and Flávio Alves da Silva
Foods 2025, 14(15), 2739; https://doi.org/10.3390/foods14152739 - 5 Aug 2025
Abstract
Aging in wooden barrels is a proven technique that enhances the sensory complexity of alcoholic beverages by promoting the extraction of volatile and phenolic compounds. While oak has been traditionally used, there is a growing interest in exploring alternative wood species that can [...] Read more.
Aging in wooden barrels is a proven technique that enhances the sensory complexity of alcoholic beverages by promoting the extraction of volatile and phenolic compounds. While oak has been traditionally used, there is a growing interest in exploring alternative wood species that can impart distinct sensory characteristics and promote innovative maturation processes. This review examines the impact of alternative woods on the aging of beverages, such as wine, cachaça, tequila, and beer, focusing on their influence on aroma, flavor, color, and chemical composition. A bibliometric analysis highlights the increasing scientific attention toward wood diversification and emerging aging technologies, including ultrasound and micro-oxygenation, which accelerate maturation while preserving sensory complexity. The role of toasting techniques in modulating the release of phenolic and volatile compounds is also discussed, emphasizing their contribution to unique sensory profiles. Additionally, regulatory aspects and sustainability considerations are explored, suggesting that alternative woods can expand flavor possibilities while supporting environmentally sustainable practices. This review underscores the potential of non-traditional wood species to drive innovation in the aging of alcoholic beverages and provide new sensory experiences that align with evolving consumer preferences and market trends. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
30 pages, 9435 KiB  
Article
Intelligent Fault Warning Method for Wind Turbine Gear Transmission System Driven by Digital Twin and Multi-Source Data Fusion
by Tiantian Xu, Xuedong Zhang and Wenlei Sun
Appl. Sci. 2025, 15(15), 8655; https://doi.org/10.3390/app15158655 (registering DOI) - 5 Aug 2025
Abstract
To meet the demands for real-time and accurate fault warning of wind turbine gear transmission systems, this study proposes an innovative intelligent warning method based on the integration of digital twin and multi-source data fusion. A digital twin system architecture is developed, comprising [...] Read more.
To meet the demands for real-time and accurate fault warning of wind turbine gear transmission systems, this study proposes an innovative intelligent warning method based on the integration of digital twin and multi-source data fusion. A digital twin system architecture is developed, comprising a high-precision geometric model and a dynamic mechanism model, enabling real-time interaction and data fusion between the physical transmission system and its virtual model. At the algorithmic level, a CNN-LSTM-Attention fault prediction model is proposed, which innovatively integrates the spatial feature extraction capabilities of a convolutional neural network (CNN), the temporal modeling advantages of long short-term memory (LSTM), and the key information-focusing characteristics of an attention mechanism. Experimental validation shows that this model outperforms traditional methods in prediction accuracy. Specifically, it achieves average improvements of 0.3945, 0.546 and 0.061 in Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and R-squared (R2) metrics, respectively. Building on the above findings, a monitoring and early warning platform for the wind turbine transmission system was developed, integrating digital twin visualization with intelligent prediction functions. This platform enables a fully intelligent process from data acquisition and status evaluation to fault warning, providing an innovative solution for the predictive maintenance of wind turbines. Full article
Show Figures

Figure 1

18 pages, 1289 KiB  
Article
Novel Film-Forming Spray: Advancing Shelf Life Extension and Post-Harvest Loss Reduction in Eggs
by Nagesh Sonale, Rokade J. Jaydip, Akhilesh Kumar, Monika Madheswaran, Rohit Kumar, Prasad Wadajkar and Ashok Kumar Tiwari
Polymers 2025, 17(15), 2142; https://doi.org/10.3390/polym17152142 - 5 Aug 2025
Abstract
This study explores the development of a topical film-forming spray infused with phytobiotic herbs to extend egg shelf life and maintain its quality. Unlike traditional surface treatments, film-forming sprays provide uniform drug distribution, better bioavailability, effective CO2 retention by sealing pores, and [...] Read more.
This study explores the development of a topical film-forming spray infused with phytobiotic herbs to extend egg shelf life and maintain its quality. Unlike traditional surface treatments, film-forming sprays provide uniform drug distribution, better bioavailability, effective CO2 retention by sealing pores, and antibacterial effects. The spray includes a polymer to encapsulate phytoconstituents and form the film. The resulting film is highly water-resistant, glossy, transparent, and dries within two minutes. SEM analysis showed a fine, uniform morphology, while zeta analysis revealed a negative potential of −0.342 mV and conductivity of 0.390 mS/cm, indicating stable dispersion. The spray’s effectiveness was tested on 640 chicken eggs stored at varying temperatures. Eggs treated and kept at 2–8 °C showed the best results, with smaller air cells, higher specific gravity, and superior quality indicators such as pH, albumen weight, albumen height and index, Haugh unit, yolk weight, and yolk index. Additionally, the spray significantly reduced microbial load, including total plate count and E. coli. Eggs stored at 28 °C remained safe for 24–30 days, while those at 2–8 °C lasted over 42 days. This innovative film-forming spray offers a promising approach for preserving internal and external egg quality during storage. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

24 pages, 7195 KiB  
Article
Research on Position-Feedback Control Strategy of Engineered Drilling Rig Hydro-Mechanical Composite Propulsion System
by Sibo Liu, Zhong Liu, Yuanzhou Li, Dandan Wu and Hongwang Zhao
Processes 2025, 13(8), 2470; https://doi.org/10.3390/pr13082470 - 4 Aug 2025
Abstract
To solve the problem of traditional engineering drilling rig propulsion systems being difficult to adapt to complex working conditions due to their bulky structure and poor load adaptability, this study proposes a new type of mechanical hydraulic composite electro-hydraulic proportional propulsion system. The [...] Read more.
To solve the problem of traditional engineering drilling rig propulsion systems being difficult to adapt to complex working conditions due to their bulky structure and poor load adaptability, this study proposes a new type of mechanical hydraulic composite electro-hydraulic proportional propulsion system. The system innovatively adopts a composite design of parallel hydraulic cylinders and movable pulley groups in mechanical structure, aiming to achieve system lightweighting through displacement multiplication effect. In terms of control strategy, a fuzzy adaptive PID controller based on position feedback was designed to improve the dynamic tracking performance and robustness of the system under nonlinear time-varying loads. The study established a multi physics domain mathematical model of the system and conducted joint simulation using AMESim and MATLAB/Simulink to deeply verify the overall performance of the proposed scheme. The simulation results show that the mechanical structure can stably achieve a 2:1 displacement multiplication effect, providing a feasible path for shortening the system size. Compared with traditional PID control, the proposed fuzzy adaptive PID control strategy significantly improves the positioning accuracy of the system. The maximum tracking errors of the master and slave hydraulic cylinders are reduced from 6.3 mm and 10.4 mm to 2.3 mm and 5.6 mm, respectively, and the accuracy is improved by 63.49% and 46.15%, providing theoretical support and technical reference for the design of engineering drilling rig propulsion control systems. Full article
(This article belongs to the Section Automation Control Systems)
Show Figures

Figure 1

19 pages, 29727 KiB  
Review
A Review of Methods for Increasing the Durability of Hot Forging Tools
by Jan Turek and Jacek Cieślik
Materials 2025, 18(15), 3669; https://doi.org/10.3390/ma18153669 - 4 Aug 2025
Abstract
The article presents a comprehensive review of key issues and challenges related to enhancing the durability of hot forging tools. It discusses modern strategies aimed at increasing tool life, including modifications to tool materials, heat treatment, surface engineering, tool and die design, die [...] Read more.
The article presents a comprehensive review of key issues and challenges related to enhancing the durability of hot forging tools. It discusses modern strategies aimed at increasing tool life, including modifications to tool materials, heat treatment, surface engineering, tool and die design, die geometry, tribological conditions, and lubrication. The review is based on extensive literature data, including recent publications and the authors’ own research, which has been implemented under industrial conditions at the modern forging facility in Forge Plant “Glinik” (Poland). The study introduces original design and technological solutions, such as an innovative concept for manufacturing forging dies from alloy structural steels with welded impressions, replacing traditional hot-work tool steel dies. It also proposes a zonal hardfacing approach, which involves applying welds with different chemical compositions to specific surface zones of the die impressions, selected according to the dominant wear mechanisms in each zone. General guidelines for selecting hardfacing material compositions are also provided. Additionally, the article presents technological processes for die production and regeneration. The importance and application of computer simulations of forging processes are emphasized, particularly in predicting wear mechanisms and intensity, as well as in optimizing tool and forging geometry. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

31 pages, 1583 KiB  
Article
Ensuring Zero Trust in GDPR-Compliant Deep Federated Learning Architecture
by Zahra Abbas, Sunila Fatima Ahmad, Adeel Anjum, Madiha Haider Syed, Saif Ur Rehman Malik and Semeen Rehman
Computers 2025, 14(8), 317; https://doi.org/10.3390/computers14080317 - 4 Aug 2025
Abstract
Deep Federated Learning (DFL) revolutionizes machine learning (ML) by enabling collaborative model training across diverse, decentralized data sources without direct data sharing, emphasizing user privacy and data sovereignty. Despite its potential, DFL’s application in sensitive sectors is hindered by challenges in meeting rigorous [...] Read more.
Deep Federated Learning (DFL) revolutionizes machine learning (ML) by enabling collaborative model training across diverse, decentralized data sources without direct data sharing, emphasizing user privacy and data sovereignty. Despite its potential, DFL’s application in sensitive sectors is hindered by challenges in meeting rigorous standards like the GDPR, with traditional setups struggling to ensure compliance and maintain trust. Addressing these issues, our research introduces an innovative Zero Trust-based DFL architecture designed for GDPR compliant systems, integrating advanced security and privacy mechanisms to ensure safe and transparent cross-node data processing. Our base paper proposed the basic GDPR-Compliant DFL Architecture. Now we validate the previously proposed architecture by formally verifying it using High-Level Petri Nets (HLPNs). This Zero Trust-based framework facilitates secure, decentralized model training without direct data sharing. Furthermore, we have also implemented a case study using the MNIST and CIFAR-10 datasets to evaluate the existing approach with the proposed Zero Trust-based DFL methodology. Our experiments confirmed its effectiveness in enhancing trust, complying with GDPR, and promoting DFL adoption in privacy-sensitive areas, achieving secure, ethical Artificial Intelligence (AI) with transparent and efficient data processing. Full article
Show Figures

Figure 1

16 pages, 3189 KiB  
Article
Improved Block Element Method for Simulating Rock Failure
by Yan Han, Qingwen Ren, Lei Shen and Yajuan Yin
Appl. Sci. 2025, 15(15), 8636; https://doi.org/10.3390/app15158636 (registering DOI) - 4 Aug 2025
Abstract
As a discontinuous deformation method, the block element method (BEM) characterizes a material’s elastoplastic behavior through the constitutive relation of thin-layer elements between adjacent blocks. To realistically simulate rock damage paths, this work improves the traditional BEM by using random Voronoi polygonal grids [...] Read more.
As a discontinuous deformation method, the block element method (BEM) characterizes a material’s elastoplastic behavior through the constitutive relation of thin-layer elements between adjacent blocks. To realistically simulate rock damage paths, this work improves the traditional BEM by using random Voronoi polygonal grids for discrete modeling. This approach mitigates the distortion of damage paths caused by regular grids through the randomness of the Voronoi grids. As the innovation of this work, the iterative algorithm is combined with polygonal geometric features so that the area–perimeter fractal dimension can be introduced to optimize random Voronoi grids. The iterative control index can effectively improve the geometric characteristics of the grid while maintaining the necessary randomness. On this basis, a constitutive relation model that considers both normal and tangential damage is proposed. The entire process from damage initiation to macroscopic fracture failure in rocks is described using two independent damage surfaces and a damage relationship based on geometric mapping relationships. The analysis results are in good agreement with existing experimental data. Furthermore, the sensitivity method is used to analyze the influence of key mechanical parameters in the constitutive model. Full article
Show Figures

Figure 1

Back to TopTop