Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (242)

Search Parameters:
Keywords = toxin antitoxin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 9566 KB  
Review
Protein–Protein Interactions as Promising Molecular Targets for Novel Antimicrobials Aimed at Gram-Negative Bacteria
by Piotr Maj and Joanna Trylska
Int. J. Mol. Sci. 2025, 26(22), 10861; https://doi.org/10.3390/ijms262210861 - 9 Nov 2025
Viewed by 303
Abstract
Antibiotic resistance, especially among Gram-negative bacterial strains, places a massive burden on global healthcare systems as resistance development has outpaced antibiotic discovery. Protein–protein interactions, successful in other therapeutic contexts, are emerging as promising, yet underexplored, targets for the development of novel classes of [...] Read more.
Antibiotic resistance, especially among Gram-negative bacterial strains, places a massive burden on global healthcare systems as resistance development has outpaced antibiotic discovery. Protein–protein interactions, successful in other therapeutic contexts, are emerging as promising, yet underexplored, targets for the development of novel classes of antibacterials. Pathogen-specific protein–protein interactions are attractive targets because they are often structurally and functionally distinct from host proteins and are less likely to elicit rapid resistance. This review summarizes recent developments in targeting protein–protein interactions in Gram-negative bacteria, focusing on the modulation of five critical cellular processes: membrane regulation, replication, transcription, translation, and toxin-antitoxin systems. We highlight the design and discovery of both small-molecule and peptide-based inhibitors. While many identified modulators exhibit potent in vitro activity against their respective targets, achieving effective penetration of the complex Gram-negative cell envelope remains a major challenge. Nevertheless, the diverse and essential nature of these bacteria-specific protein–protein interactions represents an attractive strategy for developing next-generation antimicrobials to combat drug-resistant pathogens. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

16 pages, 5499 KB  
Article
A Programmable Finite-Replicated Organism Framework for Balanced Safety and Functionality
by Mengyuan Wang, Pei Du, Fankang Meng, Wenhui Zhang, Yanhui Xiang, Qiong Wu and Chunbo Lou
Life 2025, 15(9), 1381; https://doi.org/10.3390/life15091381 - 1 Sep 2025
Viewed by 752
Abstract
Live-attenuated vaccines face a critical challenge in balancing immunogenicity with safety. To address this, we engineered programmable finite-replicated organisms (FROs) by depositing a limited number of indispensable components (such as noncanonical amino acids, ncAAs) within the cell, consuming the coenabling precise control of [...] Read more.
Live-attenuated vaccines face a critical challenge in balancing immunogenicity with safety. To address this, we engineered programmable finite-replicated organisms (FROs) by depositing a limited number of indispensable components (such as noncanonical amino acids, ncAAs) within the cell, consuming the coenabling precise control of bacterial replication capability while preserving antigenic breadth. Two strategies were adopted to achieve the following purposes: (1) encoding ncAA in essential genes; (2) encoding ncAA in antitoxin of toxin–antitoxin (TA) systems. As noncanonical amino acids, 3,5-dichlorotyrosine (Cl2Y) was encoded by the amber codon (TAG) and inserted into the essential genes (e.g., serS, murG, and dnaA) or antitoxin genes. After optimizing expression and the number of amber codons in the storage genes, the FRO cells can grow up to six generations, achieving amplification approaching 100 times after depletion of the ncAA in the growth medium. The escape frequencies are 10−5 to 10−7, which need to be optimized by combining multiple storage genes in the same genome in the future. This work holds the potential to amplify the amounts of antigens for vaccines, potentially accelerating the development of next-generation vaccines against antibiotic-resistant threats. Full article
(This article belongs to the Special Issue Synthetic Genetic Elements, Devices, and Systems: 2nd Edition)
Show Figures

Figure 1

13 pages, 6695 KB  
Article
Features of the First Case of Foodborne Botulism Caused by Dual-Toxin Clostridium parabotulinum Subtype A1(B5) in Spain
by Sylvia Valdezate, Mónica Valiente, Gema Carrasco, María J. Medina-Pascual, María Isabel Hurtado, Maite Ruiz de Pipaón, Noelia Garrido, Carmen Paradas, José Ramón Hernández-Bello and Pilar Villalón
Toxins 2025, 17(9), 429; https://doi.org/10.3390/toxins17090429 - 27 Aug 2025
Viewed by 998
Abstract
The neurotoxin BoNT/B2 is the predominant Clostridium parabotulinum subtype in foodborne and infant botulism cases in Spain. This study characterizes a novel case of foodborne botulism in Spain caused by a dual-toxin A1(B5) strain. A 64-year-old male presented with acute, progressive flaccid paralysis [...] Read more.
The neurotoxin BoNT/B2 is the predominant Clostridium parabotulinum subtype in foodborne and infant botulism cases in Spain. This study characterizes a novel case of foodborne botulism in Spain caused by a dual-toxin A1(B5) strain. A 64-year-old male presented with acute, progressive flaccid paralysis including diplopia, dysphagia, and respiratory failure. Although botulism was not initially suspected, the patient recovered with supportive care and without antitoxin administration. Genomic characterization confirmed the presence of both bont/A1 and silent bont/B5 genes. The bont/A1 gene was associated with an orfX+ neurotoxin gene cluster, while the silent bont/B5 gene was in an ha+ cluster. Phylogenetic analysis of both bont/A1 and bont/B5 sequences showed 100% amino acid identity, respectively, to previously reported A1(B5) strains (e.g., CDC_69094, FE9504ACG). Multi-locus sequence typing (MLST) assigned the ST10, a genotype previously undetected in Spanish botulism cases, yet found in other European countries. This case highlights the importance of considering botulism in differential diagnosis due to its varied presentation and the significance of timely laboratory confirmation for effective management. The identification of this dual-toxin BoNT/A1(B5) orfX+/ha+ ST10 strain expands our understanding of C. botulinum epidemiology and genetic diversity in Spain. Full article
(This article belongs to the Special Issue Foodborne Toxigenic Organisms: A Tribute to Professor Hannu Korkeala)
Show Figures

Graphical abstract

25 pages, 2090 KB  
Article
Microcystis aeruginosa msoT1/msoA1 Locus Displays Features of a Type I Toxin–Antitoxin System
by Matija Ruparčič and Marko Dolinar
Toxins 2025, 17(8), 360; https://doi.org/10.3390/toxins17080360 - 22 Jul 2025
Viewed by 704
Abstract
Type I toxin–antitoxin (TA) systems consist of a protein toxin that exerts a cytostatic or cytotoxic effect and an antisense RNA antitoxin that prevents translation of the toxin. Although well studied, type I TA systems have so far only been discovered in bacteria [...] Read more.
Type I toxin–antitoxin (TA) systems consist of a protein toxin that exerts a cytostatic or cytotoxic effect and an antisense RNA antitoxin that prevents translation of the toxin. Although well studied, type I TA systems have so far only been discovered in bacteria from the phyla Proteobacteria, Firmicutes, and Tenericutes. We hypothesized that type I systems could also be present in Cyanobacteria. Through bioinformatic analysis of the Microcystis aeruginosa PCC 7806SL genome, we discovered ten putative type I TA loci and characterized six of them experimentally. Two of the six putative type I toxins, BH695_0320 and MsoT1 (BH695_4017), were observed to negatively affect Escherichia coli cell growth, with MsoT1 exerting a phenotype similar to SrnB, a known type I toxin. We focused on the MsoT1/MsoA1 TA system and confirmed the expression of MsoT1 and MsoA1 in our assay. Additionally, we found that MsoA1 delays the toxic effects of MsoT1, indicating its role as a cognate antitoxin of MsoT1. Our results suggest that MsoT1/MsoA1 represents a novel candidate type I TA system, the first to be discovered in the Cyanobacteria phylum. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

16 pages, 3313 KB  
Article
Phosphoproteome Reveals the Role of Baicalin in Alleviating rPVL-Induced Cell Cycle Arrest in BMECs
by Ling Hou, Jun Li, Juqing Wang, Qin You, Dongtao Zhang and Xuezhang Zhou
Microorganisms 2025, 13(7), 1673; https://doi.org/10.3390/microorganisms13071673 - 16 Jul 2025
Viewed by 595
Abstract
Panton–Valentine leukocidin (PVL) is a pore-forming toxin secreted by Staphylococcus aureus (S. aureus) and a significant virulence factor that plays a crucial role in the pathogenesis of dairy mastitis. Previous studies by our research group demonstrated that baicalin inhibits the apoptosis [...] Read more.
Panton–Valentine leukocidin (PVL) is a pore-forming toxin secreted by Staphylococcus aureus (S. aureus) and a significant virulence factor that plays a crucial role in the pathogenesis of dairy mastitis. Previous studies by our research group demonstrated that baicalin inhibits the apoptosis and hyperphosphorylation of cytoskeletal proteins induced by recombinant Panton–Valentine leukocidin (rPVL) in bovine mammary epithelial cells (BMECs). However, the effects of baicalin on the proliferation of BMECs and the underlying mechanism remain unclear. Consequently, this study aimed to explore this underlying mechanism through an LC-MS/MS analysis performed in 4D data-independent acquisition (DIA) mode. Quantitative analysis identified 757 differentially expressed phosphoproteins, among which phosphorylation levels of proteins involved in BMEC proliferation and cell cycle regulation exhibited significant alterations (p < 0.05). rPVL inhibited BMEC proliferation in a dose-dependent manner and induced G0/G1 phase arrest and dephosphorylation of the cell-cycle-related proteins BCLAF1S285, CDK7T170, NF2S518, and PKM2S37. Preintervention with baicalin significantly upregulated the expression and phosphorylation of these proteins and alleviated the G0/G1 phase arrest induced by rPVL in BMECs in vitro. The establishment of the mitotic state in BMECs due to the effect of baicalin appears to be closely related to the regulation of the phosphorylation of CDK7, PKM2, BCLAF1, and NF2. Moreover, in vivo analysis revealed that S. aureus ATCC49775 and rPVL induced dramatic structural destruction and pathological impairment of mammary gland tissues in mice and that these histopathological changes were ameliorated after baicalin intervention. Quantitative immunohistochemical analysis revealed that baicalin mitigated the rPVL-induced dephosphorylation of the aforementioned cell-cycle-related proteins and increased their phosphorylation. Both in vitro and in vivo experimental evidence demonstrated that baicalin effectively reversed rPVL-induced G0/G1 phase arrest in BMECs (p < 0.01) by significantly increasing the phosphorylation levels of cell cycle regulatory proteins (p < 0.05). Additionally, baicalin alleviates pathological damage to mammary gland tissues in mouse models. These data suggest that baicalin possesses antibacterial and antitoxin effects, indicating that it is an effective preventive agent against bovine mastitis. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

21 pages, 1308 KB  
Article
Mechanisms of Cefiderocol Resistance in Carbapenemase-Producing Enterobacterales: Insights from Comparative Genomics
by Alexander Tristancho-Baró, Ana Isabel López-Calleja, Ana Milagro, Mónica Ariza, Víctor Viñeta, Blanca Fortuño, Concepción López, Miriam Latorre-Millán, Laura Clusa, David Badenas-Alzugaray, Rosa Martínez, Carmen Torres and Antonio Rezusta
Antibiotics 2025, 14(7), 703; https://doi.org/10.3390/antibiotics14070703 - 12 Jul 2025
Cited by 2 | Viewed by 1869
Abstract
Background/Objectives: Cefiderocol is a novel siderophore cephalosporin with potent in vitro activity against a broad spectrum of Gram-negative bacteria, including carbapenemase-producing Enterobacterales (CPE). However, the recent emergence of resistance in clinical settings raises important concerns regarding its long-term effectiveness. This study aims [...] Read more.
Background/Objectives: Cefiderocol is a novel siderophore cephalosporin with potent in vitro activity against a broad spectrum of Gram-negative bacteria, including carbapenemase-producing Enterobacterales (CPE). However, the recent emergence of resistance in clinical settings raises important concerns regarding its long-term effectiveness. This study aims to investigate the genomic determinants associated with cefiderocol resistance in CPE isolates of human origin. Methods: Comparative genomic analyses were conducted between cefiderocol-susceptible and -resistant CPE isolates recovered from human clinical and epidemiological samples at a tertiary care hospital. Whole-genome sequencing, variant annotation, structural modelling, and pangenome analysis were performed to characterize resistance mechanisms. Results: A total of 59 isolates (29 resistant and 30 susceptible) were analyzed, predominantly comprising Klebsiella pneumoniae, Escherichia coli, and Enterobacter cloacae. The most frequent carbapenemase gene among the resistant isolates was blaNDM, which was also present in a subset of susceptible strains. The resistant isolates exhibited a significantly higher burden of non-synonymous mutations in their siderophore receptor genes, notably within fecR, fecA, fiu, and cirA. Structural modelling predicted deleterious effects for mutations such as fecR:G104S and fecA:A190T. Additionally, porin loss and loop 3 insertions (e.g., GD/TD) in OmpK36, as well as OmpK35 truncations, were more frequent in the resistant isolates, particularly in high-risk clones such as ST395 and ST512. Genes associated with toxin–antitoxin systems (chpB2, pemI) and a hypothetical metalloprotease (group_2577) were uniquely found in the resistant group. Conclusions: Cefiderocol resistance in CPE appears to be multifactorial. NDM-type metallo-β-lactamases and missense mutations in siderophore uptake systems—especially in those encoded by fec, fhu, and cir operons—play a central role. These may be further potentiated by alterations in membrane permeability, such as porin disruption and efflux deregulation. The integration of genomic and structural approaches provides valuable insights into emerging resistance mechanisms and may support the development of diagnostic tools and therapeutic strategies. Full article
Show Figures

Graphical abstract

14 pages, 1987 KB  
Article
The Characterization of a Gonococcal HicAB Toxin–Antitoxin System Capable of Causing Bacteriostatic Growth Arrest
by Salwa S. Bagabas, Jorge Trujillo-Mendoza, Michael J. Stocks, David P. J. Turner and Neil J. Oldfield
Microorganisms 2025, 13(7), 1619; https://doi.org/10.3390/microorganisms13071619 - 9 Jul 2025
Cited by 1 | Viewed by 934
Abstract
Neisseria gonorrhoeae is the causative agent of the sexually transmitted infection gonorrhea. Preventative vaccines or novel treatments based on a better understanding of the molecular basis of N. gonorrhoeae infection are required as resistance to current antibiotics is widespread. Toxin–antitoxin (TA) systems modulate [...] Read more.
Neisseria gonorrhoeae is the causative agent of the sexually transmitted infection gonorrhea. Preventative vaccines or novel treatments based on a better understanding of the molecular basis of N. gonorrhoeae infection are required as resistance to current antibiotics is widespread. Toxin–antitoxin (TA) systems modulate bacterial physiology by interfering with vital cellular processes; type II TA systems, where both toxin and antitoxin are proteins, are the best-studied. Bioinformatics analysis revealed genes encoding an uncharacterized type II HicAB TA system in the N. gonorrhoeae strain FA1090 chromosome, which were also present in >83% of the other gonococcal genome sequences examined. Gonococcal HicA overproduction inhibited bacterial growth in Escherichia coli, an effect that could be counteracted by the co-expression of HicB. Kill/rescue assays showed that this effect was bacteriostatic rather than bactericidal. The site-directed mutagenesis of key histidine and glycine residues (Gly22, His24, His29) abolished HicA-mediated growth arrest. N. gonorrhoeae FA1090∆hicAB and complemented derivatives that expressed IPTG-inducible hicA, hicB, or hicAB, respectively, grew as wild type, except for IPTG-induced FA1090∆hicAB::hicA. RT-PCR demonstrated that hicAB are transcribed in vitro under the culture conditions used. The deletion of hicAB had no effect on biofilm formation. Our study describes the first characterization of a HicAB TA system in N. gonorrhoeae. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

27 pages, 3232 KB  
Article
Genomic and Functional Characterization of Multidrug-Resistant E. coli: Insights into Resistome, Virulome, and Signaling Systems
by Vijaya Bharathi Srinivasan, Naveenraj Rajasekar, Karthikeyan Krishnan, Mahesh Kumar, Chankit Giri, Balvinder Singh and Govindan Rajamohan
Antibiotics 2025, 14(7), 667; https://doi.org/10.3390/antibiotics14070667 - 30 Jun 2025
Viewed by 1375
Abstract
Introduction: Genetic plasticity and adaptive camouflage in critical pathogens have contributed to the global surge in multidrug-resistant (MDR) infections, posing a serious threat to public health and therapeutic efficacy. Antimicrobial resistance, now a leading cause of global mortality, demands urgent action through diagnostics, [...] Read more.
Introduction: Genetic plasticity and adaptive camouflage in critical pathogens have contributed to the global surge in multidrug-resistant (MDR) infections, posing a serious threat to public health and therapeutic efficacy. Antimicrobial resistance, now a leading cause of global mortality, demands urgent action through diagnostics, vaccines, and therapeutics. In India, the Indian Council of Medical Research’s surveillance network identifies Escherichia coli as a major cause of urinary tract infections, with increasing prevalence in human gut microbiomes, highlighting its significance across One Health domains. Methods: Whole-genome sequencing of E. coli strain ECG015, isolated from a human gut sample, was performed using the Illumina NextSeq platform. Results: Genomic analysis revealed multiple antibiotic resistance genes, virulence factors, and efflux pump components. Phylogenomic comparisons showed close relatedness to pathovars from both human and animal origins. Notably the genome encoded protein tyrosine kinases (Etk/Ptk and Wzc) and displayed variations in the envelope stress-responsive CpxAR two-component system. Promoter analysis identified putative CpxR-binding sites upstream of genes involved in resistance, efflux, protein kinases, and the MazEF toxin–antitoxin module, suggesting a potential regulatory role of CpxAR in stress response and persistence. Conclusions: This study presents a comprehensive genomic profile of E. coli ECG015, a gut-derived isolate exhibiting clinically significant resistance traits. For the first time, it implicates the CpxAR two-component system as a potential central regulator coordinating antimicrobial resistance, stress kinase signaling, and programmed cell death. These findings lay the groundwork for future functional studies aimed at targeting stress-response pathways as novel intervention strategies against antimicrobial resistance. Full article
(This article belongs to the Special Issue Genomic Analysis of Drug-Resistant Pathogens)
Show Figures

Figure 1

11 pages, 5852 KB  
Article
Structural Insights into the Regulatory Mechanisms of the Toxic Activity of Sofic in Anti-Phage Defense Systems
by Zhuoxi Wu, Guodong Chen, Libang He, Hao Guo, Ruifang Yuan, Huiling Su, Zhenyang Xie and Faxiang Li
Int. J. Mol. Sci. 2025, 26(13), 6074; https://doi.org/10.3390/ijms26136074 - 24 Jun 2025
Cited by 1 | Viewed by 1069
Abstract
The FIC domain-containing protein Sofic has recently been shown to provide robust protection to bacteria against phage infection. Sofic acts as a toxic protein, inducing abortive infection through the AMPylation of target proteins during phage invasion. However, the molecular mechanisms regulating Sofic’s toxic [...] Read more.
The FIC domain-containing protein Sofic has recently been shown to provide robust protection to bacteria against phage infection. Sofic acts as a toxic protein, inducing abortive infection through the AMPylation of target proteins during phage invasion. However, the molecular mechanisms regulating Sofic’s toxic activity remain elusive. In this study, we identified a small gene encoding a short protein located downstream of Sofic in the genome, named AS1 (anti-Sofic1), which functions as an antitoxic protein to counteract Sofic’s toxicity. The crystal structure of Sofic revealed that the protein functions as a dimer in solution, with dimerization being indispensable for its toxic activity. Importantly, structural analysis indicated that ATP binding induces a conformational change in the C-terminal domain (CTD) of Sofic, underscoring the critical role of the CTD in mediating its toxic effects. In vitro colony-forming assays confirmed that the interaction between the CTD and the Amylase domain is crucial for Sofic’s toxic activity. Overall, our results provide molecular insights into the regulatory mechanisms of Sofic in antiviral immunity. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

17 pages, 1760 KB  
Article
Effect of Pefloxacin on Clostridioides difficile R20291 Persister Cells Formation
by Camila Queraltó, Iván L. Calderón, Isidora Flores, José Rodríguez, Osvaldo Inostroza, Ruth González, Daniel Paredes-Sabja, Jorge A. Soto, Juan A. Fuentes and Fernando Gil
Antibiotics 2025, 14(7), 628; https://doi.org/10.3390/antibiotics14070628 - 20 Jun 2025
Viewed by 766
Abstract
Clostridioides difficile is a Gram-positive bacterium recognized for its ability to produce toxins and form spores. It is mainly accountable for the majority of instances of antibiotic-related diarrhea. Background. Bacterial persister represent a minor fraction of the population that shows temporary tolerance to [...] Read more.
Clostridioides difficile is a Gram-positive bacterium recognized for its ability to produce toxins and form spores. It is mainly accountable for the majority of instances of antibiotic-related diarrhea. Background. Bacterial persister represent a minor fraction of the population that shows temporary tolerance to bactericidal agents, and they pose considerable medical issues because of their link to the rise of antibiotic resistance and challenging chronic or recurrent infections. Our previous research has shown a persister-like phenotype associated with treatments that include pefloxacin. Nonetheless, the mechanism is still mostly unclear, mainly because of the difficulty in isolating this small group of cells. Objectives. To enhance the understanding of C. difficile persister cells, we made an enrichment and characterization of these cells from bacterial cultures during the exponential phase under pefloxacin treatment and lysis treatment. Results. We demonstrate the appearance of cells with lower metabolism and DNA damage. Furthermore, we noted the participation of toxin–antitoxin systems and Clp proteases in the generation of persister cells. Conclusions. This work demonstrates the formation of C. difficile persister cells triggered by a lethal concentration of pefloxacin. Full article
(This article belongs to the Section Antibiotic Therapy in Infectious Diseases)
Show Figures

Figure 1

22 pages, 3090 KB  
Article
Genomic and Pangenomic Insights into Aeromonas salmonicida subsp. oncorhynchi subsp. nov.
by Nihed Ajmi, Muhammed Duman, Hilal Ay and Izzet Burcin Saticioglu
Pathogens 2025, 14(6), 523; https://doi.org/10.3390/pathogens14060523 - 23 May 2025
Cited by 1 | Viewed by 1329
Abstract
The strain A-9T, isolated from Oncorhynchus mykiss (rainbow trout) in a Turkish aquaculture facility, was characterized through integrated phenotypic, phylogenetic, and genomic analyses. Whole-genome sequencing revealed a 5.21 Mb circular chromosome (GC content: 58.16%) and three plasmids encoding proteins for mobilization [...] Read more.
The strain A-9T, isolated from Oncorhynchus mykiss (rainbow trout) in a Turkish aquaculture facility, was characterized through integrated phenotypic, phylogenetic, and genomic analyses. Whole-genome sequencing revealed a 5.21 Mb circular chromosome (GC content: 58.16%) and three plasmids encoding proteins for mobilization and toxin–antitoxin systems. Multilocus phylogenetic analysis (MLPA) using seven housekeeping genes supported the distinct lineage of A-9T. Digital DNA–DNA hybridization (77.6–78.6%) and average nucleotide identity values (96.59–97.58%) confirmed taxonomic divergence from all currently recognized A. salmonicida subspecies. Comparative proteomic and pangenomic analyses identified 328 strain-specific genes, including virulence factors, secretion system components (Type II and Type VI), and efflux-related proteins. Although genes encoding Type III secretion systems and biofilm formation were absent, A-9T harbored a broad virulence gene repertoire and resistance determinants, including OXA-956, cphA5, and FOX-20, supporting a multidrug-resistant phenotype. Based on its genomic, phenotypic, and functional distinctiveness, we propose the novel taxon Aeromonas salmonicida subsp. oncorhynchi subsp. nov. (type strain A-9T = LMG 33538T = DSM 117494T), expanding the taxonomic landscape of the A. salmonicida complex and offering insights into fish-associated bacterial evolution. Full article
(This article belongs to the Special Issue Aeromonas: Genome, Transmission, Pathogenesis, and Treatment)
Show Figures

Figure 1

23 pages, 2849 KB  
Article
Comprehensive Genomic Analysis of Klebsiella pneumoniae and Its Temperate N-15-like Phage: From Isolation to Functional Annotation
by Reham Yahya, Aljawharah Albaqami, Amal Alzahrani, Suha M. Althubaiti, Moayad Alhariri, Eisa T. Alrashidi, Nada Alhazmi, Mohammed A. Al-Matary and Najwa Alharbi
Microorganisms 2025, 13(4), 908; https://doi.org/10.3390/microorganisms13040908 - 15 Apr 2025
Viewed by 3143
Abstract
Antibiotic resistance to Klebsiella pneumoniae poses a major public health threat, particularly in intensive care unit (ICU) settings. The emergence of extensively drug-resistant (XDR) strains complicates treatment options, requiring a deeper understanding of their genetic makeup and potential therapeutic targets. This research delineated [...] Read more.
Antibiotic resistance to Klebsiella pneumoniae poses a major public health threat, particularly in intensive care unit (ICU) settings. The emergence of extensively drug-resistant (XDR) strains complicates treatment options, requiring a deeper understanding of their genetic makeup and potential therapeutic targets. This research delineated an extensively drug-resistant (XDR) Klebsiella pneumoniae strain obtained from an ICU patient and telomeric temperate phage derived from hospital effluent. The bacteria showed strong resistance to multiple antibiotics, including penicillin (≥16 μg/mL), ceftriaxone (≥32 μg/mL), and meropenem (≥8 μg/mL), which was caused by SHV-11 beta-lactamase, NDM-1 carbapenemase, and porin mutations (OmpK37, MdtQ). The strain was categorized as K46 and O2a types and carried virulence genes involved in iron acquisition, adhesion, and immune evasion, as well as plasmids (IncHI1B_1_pNDM-MAR, IncFIB) and eleven prophage regions, reflecting its genetic adaptability and resistance dissemination. The 172,025 bp linear genome and 46.3% GC content of the N-15-like phage showed strong genomic similarities to phages of the Sugarlandvirus genus, especially those that infect K. pneumoniae. There were structural proteins (11.8%), DNA replication and repair enzymes (9.3%), and a toxin–antitoxin system (0.4%) encoded by the phage genome. A protelomerase and ParA/B partitioning proteins indicate that the phage is replicating and maintaining itself in a manner similar to the N15 phage, which is renowned for maintaining a linear plasmid prophage throughout lysogeny. Understanding the dynamics of antibiotic resistance and pathogen development requires knowledge of phages like this one, which are known for their temperate nature and their function in altering bacterial virulence and resistance profiles. The regulatory and structural proteins of the phage also provide a model for research into the biology of temperate phages and their effects on microbial communities. The importance of temperate phages in bacterial genomes and their function in the larger framework of microbial ecology and evolution is emphasized in this research. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

16 pages, 3078 KB  
Article
The VapBC-4 Characterization Indicates It Is a Bona Fide Toxin-Antitoxin Module of Leptospira interrogans: Initial Evidence for a Role in Bacterial Adaptation
by Bruna Oliveira Pigatto Azevedo, Deborah Kohn Damiano, Aline Florencio Teixeira, Ana Lucia Tabet Oller Nascimento, Luis Guilherme Virgilio Fernandes and Alexandre Paulo Yague Lopes
Microorganisms 2025, 13(4), 879; https://doi.org/10.3390/microorganisms13040879 - 11 Apr 2025
Viewed by 860
Abstract
Toxin-antitoxin (TA) systems are one of the bacterial adaptation mechanisms to adverse conditions. Leptospira interrogans serovar Copenhageni contains nine putative TA systems. To date, only VapBC-3 and VapBC-1 have been experimentally characterized and considered functional modules. This study shows that the VapBC-4 module [...] Read more.
Toxin-antitoxin (TA) systems are one of the bacterial adaptation mechanisms to adverse conditions. Leptospira interrogans serovar Copenhageni contains nine putative TA systems. To date, only VapBC-3 and VapBC-1 have been experimentally characterized and considered functional modules. This study shows that the VapBC-4 module is a novel bona fide TA system constituted by VapB-4 antitoxin and VapC-4 toxin. Overexpression of the recombinant toxin in Escherichia coli resulted in growth inhibition, which was rescued by co-expression of the VapB-4 antitoxin. The toxin-antitoxin binding capability, essential to TA functionality, was demonstrated by dot blot assay in vitro, while the pull-down assay indicates that the toxin and antitoxin interact in vivo. In addition, we confirmed that VapC-4 is a PIN domain endoribonuclease capable of degrading viral MS2 substrate. The transcriptional studies suggest that vapC-4 may be involved in the virulence and adaptability of L. interrogans serovar Copenhageni for adverse environmental conditions. Taken together, these results show that the VapBC-4 module is functional and can be considered a bona fide module. Full article
(This article belongs to the Special Issue Advances in the Research on Leptospira and Leptospirosis)
Show Figures

Figure 1

17 pages, 2761 KB  
Article
Evidence for a Functional HipBA Toxin–Antitoxin System in Acidovorax citrulli
by Hao Zhang, Mei Zhao, Lulu Cai, Wei Guan, Yuwen Yang, Ron Walcott, Wenjun Zhao and Tingchang Zhao
Int. J. Mol. Sci. 2025, 26(7), 3366; https://doi.org/10.3390/ijms26073366 - 3 Apr 2025
Viewed by 765
Abstract
Bacterial fruit blotch (BFB) is a highly destructive seed-borne and seed-transmitted disease caused by the Gram-negative bacterium Acidovorax citrulli that has caused substantial economic losses for the cucurbit industry in China. Despite its potential for economic damage, little is known about the bacterium’s [...] Read more.
Bacterial fruit blotch (BFB) is a highly destructive seed-borne and seed-transmitted disease caused by the Gram-negative bacterium Acidovorax citrulli that has caused substantial economic losses for the cucurbit industry in China. Despite its potential for economic damage, little is known about the bacterium’s molecular mechanisms of pathogenicity. Toxin–antitoxin (TA) systems are critical for the bacterial stress response. These systems are composed of two genes, toxin and antitoxin, that encode a stable toxin protein and a labile antitoxin protein, respectively. In this study, the genes for the putative HipBA TA system were identified in A. citrulli genomes through bioinformatic analysis. A series of molecular biology experiments have demonstrated that the HipBA TA system exists in A. citrulli Aac5. Furthermore, the transcription of hipA and hipB in A. citrulli Aac5 were induced by pH stress, chloramphenicol stress, and during plant infection. Overall, our results have revealed an active type II TA system, HipBA, in A. citrulli Aac5, and provided insights into its biological functions. These findings contribute to a better understanding of TA systems in plant pathogens. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

33 pages, 1201 KB  
Review
From Dormancy to Eradication: Strategies for Controlling Bacterial Persisters in Food Settings
by Susana Serrano, Mirjana Ž. Grujović, Katarina G. Marković, Maria Teresa Barreto-Crespo and Teresa Semedo-Lemsaddek
Foods 2025, 14(6), 1075; https://doi.org/10.3390/foods14061075 - 20 Mar 2025
Cited by 6 | Viewed by 2908
Abstract
Bacterial persistence, a dormant state that enables microorganisms to survive harsh conditions, is a significant concern in food-industry settings, where traditional antimicrobial treatments often fail to eliminate these resilient cells. This article goes beyond conventional review by compiling critical information aimed at providing [...] Read more.
Bacterial persistence, a dormant state that enables microorganisms to survive harsh conditions, is a significant concern in food-industry settings, where traditional antimicrobial treatments often fail to eliminate these resilient cells. This article goes beyond conventional review by compiling critical information aimed at providing practical solutions to combat bacterial persisters in food production environments. This review explores the primary mechanisms behind persister cell formation, including toxin–antitoxin systems, the alarmone guanosine tetraphosphate (ppGpp), stochastic processes (in which persistence occurs as a random event), and the SOS response. Given the serious implications for food safety and quality, the authors also report a range of physical, chemical, and biological methods for targeting and eradicating persister cells. The strategies discussed, whether applied individually or in combination, offer varying levels of availability and applicability within the industry and can serve as a guide for implementing microbial contamination control plans. While significant progress has been achieved, further research is crucial to fully understand the complex mechanisms underlying bacterial persistence in food and to develop effective and targeted strategies for its eradication in food-industry settings. Overall, the translation of these insights into practical applications aims to support the food industry in overcoming this persistent challenge, ensuring safer, more sustainable food production. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

Back to TopTop