The Characterization of a Gonococcal HicAB Toxin–Antitoxin System Capable of Causing Bacteriostatic Growth Arrest
Abstract
1. Introduction
2. Materials and Methods
2.1. Bioinformatics
2.2. Bacterial Strains, Media, and Growth Conditions
2.3. Inducible Expression of Gonococcal HicA, HicB, and HicAB in E. coli
2.4. Generation of a Gonococcal hicAB Mutant
2.5. Complementation of hicA, hicB, and hicAB
2.6. Gonococcal Growth Experiments
2.7. Total RNA Purification and RT-PCR
2.8. Biofilm Formation Assay
2.9. Statistical Analysis
3. Results
3.1. Identification, Prevalence, and Conservation of Gonococcal HicAB
3.2. Overexpression of Gonococcal HicA in E. coli Is Bacteriostatic
3.3. HicA Amino Acid Residues Required for Toxicity
3.4. Characterization of the HicAB System in N. gonorrhoeae FA1090
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kirkcaldy, R.D.; Weston, E.; Segurado, A.C.; Hughes, G. Epidemiology of gonorrhoea: A global perspective. Sex. Health 2019, 16, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Unemo, M.; Seifert, H.S.; Hook, E.W., 3rd; Hawkes, S.; Ndowa, F.; Dillon, J.R. Gonorrhoea. Nat. Rev. Dis. Primers 2019, 5, 79. [Google Scholar] [CrossRef]
- Woods, C.R. Gonococcal infections in neonates and young children. Semin. Pediatr. Infect. Dis. 2005, 16, 258–270. [Google Scholar] [CrossRef]
- Adachi, K.; Klausner, J.D.; Bristow, C.C.; Xu, J.; Ank, B.; Morgado, M.G.; Watts, D.H.; Weir, F.; Persing, D.; Mofenson, L.M.; et al. Chlamydia and gonorrhea in HIV-infected pregnant women and infant HIV transmission. Sex. Transm. Dis. 2015, 42, 554–565. [Google Scholar] [CrossRef]
- Allan-Blitz, L.T.; Fifer, H.; Klausner, J.D. Managing treatment failure in Neisseria gonorrhoeae infection: Current guidelines and future directions. Lancet Infect. Dis. 2024, 24, e532–e538. [Google Scholar] [CrossRef] [PubMed]
- Raccagni, A.R.; Ranzenigo, M.; Bruzzesi, E.; Maci, C.; Castagna, A.; Nozza, S. Neisseria gonorrhoeae antimicrobial resistance: The future of antibiotic therapy. J. Clin. Med. 2023, 12, 7767. [Google Scholar] [CrossRef]
- Qiu, J.; Zhai, Y.; Wei, M.; Zheng, C.; Jiao, X. Toxin-antitoxin systems: Classification, biological roles, and applications. Microbiol. Res. 2022, 264, 127159. [Google Scholar] [CrossRef]
- Pizzolato-Cezar, L.R.; Spira, B.; Machini, M.T. Bacterial toxin-antitoxin systems: Novel insights on toxin activation across populations and experimental shortcomings. Curr. Res. Microb. Sci. 2023, 5, 100204. [Google Scholar] [CrossRef]
- Sonika, S.; Singh, S.; Mishra, S.; Verma, S. Toxin-antitoxin systems in bacterial pathogenesis. Heliyon 2023, 9, e14220. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Wu, A.Y.; Iredell, J.R. Biological functions of type II toxin-antitoxin systems in bacteria. Microorganisms 2021, 9, 1276. [Google Scholar] [CrossRef]
- Jurėnas, D.; Fraikin, N.; Goormaghtigh, F.; Van Melderen, L. Biology and evolution of bacterial toxin-antitoxin systems. Nat. Rev. Microbiol. 2022, 20, 335–350. [Google Scholar] [CrossRef]
- Leplae, R.; Geeraerts, D.; Hallez, R.; Guglielmini, J.; Drèze, P.; Van Melderen, L. Diversity of bacterial type II toxin-antitoxin systems: A comprehensive search and functional analysis of novel families. Nucleic Acids Res. 2011, 39, 5513–5525. [Google Scholar] [CrossRef]
- Zhang, S.-P.; Wang, Q.; Quan, S.-W.; Yu, X.-Q.; Wang, Y.; Guo, D.-D.; Peng, L.; Feng, H.-Y.; He, Y.-X. Type II toxin–antitoxin system in bacteria: Activation, function, and mode of action. Biophys. Rep. 2020, 6, 68–79. [Google Scholar] [CrossRef]
- Arbing, M.A.; Handelman, S.K.; Kuzin, A.P.; Verdon, G.; Wang, C.; Su, M.; Rothenbacher, F.P.; Abashidze, M.; Liu, M.; Hurley, J.M.; et al. Crystal structures of Phd-Doc, HigA, and YeeU establish multiple evolutionary links between microbial growth-regulating toxin-antitoxin systems. Structure 2010, 18, 996–1010. [Google Scholar] [CrossRef] [PubMed]
- Guglielmini, J.; Van Melderen, L. Bacterial toxin-antitoxin systems: Translation inhibitors everywhere. Mob. Genet. Elem. 2011, 1, 283–290. [Google Scholar] [CrossRef]
- Makarova, K.S.; Grishin, N.V.; Koonin, E.V. The HicAB cassette, a putative novel, RNA-targeting toxin-antitoxin system in archaea and bacteria. Bioinformatics 2006, 22, 2581–2584. [Google Scholar] [CrossRef]
- Jørgensen, M.G.; Pandey, D.P.; Jaskolska, M.; Gerdes, K. HicA of Escherichia coli defines a novel family of translation-independent mRNA interferases in bacteria and archaea. J. Bacteriol. 2009, 191, 1191–1199. [Google Scholar] [CrossRef] [PubMed]
- Encina-Robles, J.; Perez-Villalobos, V.; Bustamante, P. The HicAB system: Characteristics and biological roles of an underappreciated toxin-antitoxin system. Int. J. Mol. Sci. 2024, 25, 12165. [Google Scholar] [CrossRef]
- Hou, B.; Wang, C.-Y.; Li, S.-W.; Zhou, L.-J.; Che, Y.-L.; Chen, Q.-Y. Effects of toxin-antitoxin system HicAB on biofilm formation by extraintestinal pathogenic E. coli. Curr. Microbiol. 2023, 80, 50. [Google Scholar] [CrossRef]
- Butt, A.; Müller, C.; Harmer, N.; Titball, R.W. Identification of type II toxin–antitoxin modules in Burkholderia pseudomallei. FEMS Microbiol. Lett. 2013, 338, 86–94. [Google Scholar] [CrossRef]
- Butt, A.; Higman, V.A.; Williams, C.; Crump, M.P.; Hemsley, C.M.; Harmer, N.; Titball, R.W. The HicA toxin from Burkholderia pseudomallei has a role in persister cell formation. Biochem. J. 2014, 459, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Bibi-Triki, S.; de la Sierra-Gallay, I.L.; Lazar, N.; Leroy, A.; Van Tilbeurgh, H.; Sebbane, F.; Pradel, E. Functional and structural analysis of HicA3-HicB3, a novel toxin-antitoxin system of Yersinia pestis. J. Bacteriol. 2014, 196, 3712–3723. [Google Scholar] [CrossRef]
- Kim, D.-H.; Kang, S.-M.; Park, S.J.; Jin, C.; Yoon, H.-J.; Lee, B.-J. Functional insights into the Streptococcus pneumoniae HicBA toxin-antitoxin system based on a structural study. Nucleic Acids Res. 2018, 46, 6371–6386. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.T.; Espinosa, M.; Yeo, C.C. Keeping the wolves at bay: Antitoxins of prokaryotic type II toxin-antitoxin systems. Front. Mol. Biosci. 2016, 3, 9. [Google Scholar] [CrossRef]
- Gerdes, K. Diverse genetic contexts of HicA toxin domains propose a role in anti-phage defense. mBio 2024, 15, e0329323. [Google Scholar] [CrossRef]
- Xie, Y.; Wei, Y.; Shen, Y.; Li, X.; Zhou, H.; Tai, C.; Deng, Z.; Ou, H.-Y. TADB 2.0: An updated database of bacterial type II toxin-antitoxin loci. Nucleic Acids Res. 2018, 46, D749–D753. [Google Scholar] [CrossRef] [PubMed]
- Guzman, L.-M.; Belin, D.; Carson, M.J.; Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 1995, 177, 4121–4130. [Google Scholar] [CrossRef]
- Heeb, S.; Itoh, Y.; Nishijyo, T.; Schnider, U.; Keel, C.; Wade, J.; Walsh, U.; O’Gara, F.; Haas, D. Small, stable shuttle vectors based on the minimal pVS1 replicon for use in gram-negative, plant-associated bacteria. Mol. Plant-Microbe Interact. 2000, 13, 232–237. [Google Scholar] [CrossRef]
- van Vliet, A.H.; Wooldridge, K.G.; Ketley, J.M. Iron-responsive gene regulation in a Campylobacter jejuni fur mutant. J. Bacteriol. 1998, 180, 5291–5298. [Google Scholar] [CrossRef]
- Ambur, O.H.; Frye, S.A.; Tønjum, T. New functional identity for the DNA uptake sequence in transformation and its presence in transcriptional terminators. J. Bacteriol. 2007, 189, 2077–2085. [Google Scholar] [CrossRef]
- Callaghan, M.M.; Dillard, J.P. Transformation in Neisseria gonorrhoeae. Methods Mol. Biol. 2019, 1997, 143–162. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, M.E.; Hackett, K.T.; Kotha, C.; Dillard, J.P. New complementation constructs for inducible and constitutive gene expression in Neisseria gonorrhoeae and Neisseria meningitidis. Appl. Environ. Microbiol. 2012, 78, 3068–3078. [Google Scholar] [CrossRef]
- Mitchev, N.; Singh, R.; Ramsuran, V.; Ismail, A.; Allam, M.; Kwenda, S.; Mnyameni, F.; Garrett, N.; Swe Swe-Han, K.; Niehaus, A.J.; et al. Assessment of antibiotic resistance and efflux pump gene expression in Neisseria gonorrhoeae isolates from South Africa by quantitative real-time PCR and regression analysis. Int. J. Microbiol. 2022, 2022, 7318325. [Google Scholar] [CrossRef]
- Piekarowicz, A.; Kłyz, A.; Majchrzak, M.; Adamczyk-Popławska, M.; Maugel, T.K.; Stein, D.C. Characterization of the dsDNA prophage sequences in the genome of Neisseria gonorrhoeae and visualization of productive bacteriophage. BMC Microbiol. 2007, 7, 66. [Google Scholar] [CrossRef]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef]
- Manav, M.C.; Turnbull, K.J.; Jurėnas, D.; Garcia-Pino, A.; Gerdes, K.; Brodersen, D.E. The E. coli HicB antitoxin contains a structurally stable helix-turn-helix DNA binding domain. Structure 2019, 27, 1675–1685. [Google Scholar] [CrossRef] [PubMed]
- Ross, B.N.; Micheva-Viteva, S.; Hong-Geller, E.; Torres, A.G. Evaluating the role of Burkholderia pseudomallei K96243 toxins BPSS0390, BPSS0395, and BPSS1584 in persistent infection. Cell Microbiol. 2019, 21, e13096. [Google Scholar] [CrossRef]
- Li, G.; Shen, M.; Lu, S.; Le, S.; Tan, Y.; Wang, J.; Zhao, X.; Shen, W.; Guo, K.; Yang, Y.; et al. Identification and characterization of the HicAB toxin-antitoxin system in the opportunistic pathogen Pseudomonas aeruginosa. Toxins 2016, 8, 113. [Google Scholar] [CrossRef]
- Yarahmadi, A.; Najafiyan, H.; Yousefi, M.H.; Khosravi, E.; Shabani, E.; Afkhami, H.; Aghaei, S.S. Beyond antibiotics: Exploring multifaceted approaches to combat bacterial resistance in the modern era: A comprehensive review. Front. Cell Infect. Microbiol. 2025, 15, 1493915. [Google Scholar] [CrossRef]
- Ryter, J.M.; Schultz, S.C. Molecular basis of double-stranded RNA-protein interactions: Structure of a dsRNA-binding domain complexed with dsRNA. EMBO J. 1998, 17, 7505–7513. [Google Scholar] [CrossRef]
- Geslewitz, W.E.; Seifert, H.S. CRISPRi-mediated repression of three cI repressors induces the expression of three related Neisseria gonorrhoeae bacteriophages. J. Bacteriol. 2025, 207, e0004925. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.T.; Byerly, L.; Apicella, M.A.; Seifert, H.S. Seminal plasma promotes Neisseria gonorrhoeae aggregation and biofilm formation. J. Bacteriol. 2016, 198, 2228–2235. [Google Scholar] [CrossRef]
- Steichen, C.T.; Shao, J.Q.; Ketterer, M.R.; Apicella, M.A. Gonococcal cervicitis: A role for biofilm in pathogenesis. J. Infect. Dis. 2008, 198, 1856–1861. [Google Scholar] [CrossRef]
- Hopper, S.; Wilbur, J.S.; Vasquez, B.L.; Larson, J.; Clary, S.; Mehr, I.J.; Seifert, H.S.; So, M. Isolation of Neisseria gonorrhoeae mutants that show enhanced trafficking across polarized T84 epithelial monolayers. Infect. Immun. 2000, 68, 896–905. [Google Scholar] [CrossRef] [PubMed]
- Wilbur, J.S.; Chivers, P.T.; Mattison, K.; Potter, L.; Brennan, R.G.; So, M. Neisseria gonorrhoeae FitA interacts with FitB to bind DNA through its ribbon-helix-helix motif. Biochemistry 2005, 44, 12515–12524. [Google Scholar] [CrossRef]
- Mattison, K.; Wilbur, J.S.; So, M.; Brennan, R.G. Structure of FitAB from Neisseria gonorrhoeae bound to DNA reveals a tetramer of toxin-antitoxin heterodimers containing PIN domains and ribbon-helix-helix motifs. J. Biol. Chem. 2006, 281, 37942–37951. [Google Scholar] [CrossRef] [PubMed]
- Pachulec, E.; van der Does, C. Conjugative plasmids of Neisseria gonorrhoeae. PLoS ONE 2010, 5, e9962. [Google Scholar] [CrossRef]
- Rocker, A.; Peschke, M.; Kittilä, T.; Sakson, R.; Brieke, C.; Meinhart, A. The ng_ζ1 toxin of the gonococcal epsilon/zeta toxin/antitoxin system drains precursors for cell wall synthesis. Nat. Commun. 2018, 9, 1686. [Google Scholar] [CrossRef]
- Mix, A.K.; Nguyen, T.H.N.; Schuhmacher, T.; Szamosvari, D.; Muenzner, P.; Haas, P.; Heeb, L.; Wami, H.T.; Dobrindt, U.; Delikkafa, Y.O.; et al. A quinolone N-oxide antibiotic selectively targets Neisseria gonorrhoeae via its toxin-antitoxin system. Nat. Microbiol. 2025, 10, 939–957. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bagabas, S.S.; Trujillo-Mendoza, J.; Stocks, M.J.; Turner, D.P.J.; Oldfield, N.J. The Characterization of a Gonococcal HicAB Toxin–Antitoxin System Capable of Causing Bacteriostatic Growth Arrest. Microorganisms 2025, 13, 1619. https://doi.org/10.3390/microorganisms13071619
Bagabas SS, Trujillo-Mendoza J, Stocks MJ, Turner DPJ, Oldfield NJ. The Characterization of a Gonococcal HicAB Toxin–Antitoxin System Capable of Causing Bacteriostatic Growth Arrest. Microorganisms. 2025; 13(7):1619. https://doi.org/10.3390/microorganisms13071619
Chicago/Turabian StyleBagabas, Salwa S., Jorge Trujillo-Mendoza, Michael J. Stocks, David P. J. Turner, and Neil J. Oldfield. 2025. "The Characterization of a Gonococcal HicAB Toxin–Antitoxin System Capable of Causing Bacteriostatic Growth Arrest" Microorganisms 13, no. 7: 1619. https://doi.org/10.3390/microorganisms13071619
APA StyleBagabas, S. S., Trujillo-Mendoza, J., Stocks, M. J., Turner, D. P. J., & Oldfield, N. J. (2025). The Characterization of a Gonococcal HicAB Toxin–Antitoxin System Capable of Causing Bacteriostatic Growth Arrest. Microorganisms, 13(7), 1619. https://doi.org/10.3390/microorganisms13071619