Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (137)

Search Parameters:
Keywords = tourmaline

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2671 KB  
Article
Mechanisms of Thermal Color Change in Brown Elbaite–Fluorelbaite Tourmaline: Insights from Trace Elements and Spectral Signatures
by Kun Li and Suwei Yue
Minerals 2025, 15(10), 1032; https://doi.org/10.3390/min15101032 - 29 Sep 2025
Abstract
This study investigates the mechanism behind the heat-induced color change (brown to yellowish green) in Mn- and Fe-rich elbaite tourmaline under reducing atmosphere at 500 °C. A combination of analytical techniques including gemological characterization, electron microprobe analysis (EMPA), laser ablation inductively coupled plasma [...] Read more.
This study investigates the mechanism behind the heat-induced color change (brown to yellowish green) in Mn- and Fe-rich elbaite tourmaline under reducing atmosphere at 500 °C. A combination of analytical techniques including gemological characterization, electron microprobe analysis (EMPA), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, and ultraviolet–visible (UV-Vis) spectroscopy was employed. Chemical analysis confirmed the samples as intermediate members of the elbaite–fluorelbaite series, with an average formula of X(Na0.660.26 Ca0.08) Σ1.00Y(Li1.29Al1.10Mn0.31 Fe2+0.15Ti0.01Zn0.01) Σ2.87 ZAl6T[Si6O18] (BO3)3V(OH)3.00W(OH0.51F0.49) Σ1.00, enriched in Mn (17,346–20,669 μg/g) and Fe (8396–10,750 μg/g). Heat treatment enhanced transparency and induced strong pleochroism (yellowish green parallel c-axis, brown perpendicular c-axis). UV-Vis spectroscopy identified the brown color origin in the parallel c-axis direction: absorption bands at 730 nm (Fe2+ dd transition, 5T2g5Eg), 540 nm (Fe2+→Fe3+ intervalence charge transfer, IVCT), and 415 nm (Fe2+→Ti4+ IVCT + possible Mn2+ contribution). Post-treatment, the 540 nm band vanished, creating a green transmission window and causing the color shift parallel the c-axis. The spectra perpendicular to the c-axis remained largely unchanged. The disappearance of the 540 nm band, attributed to the reduction of Fe3+ to Fe2+ eliminating the Fe2+–Fe3+ pair interaction required for IVCT, is the primary color change mechanism. The parallel c-axis section of the samples shows brown and yellow-green dichroism after heat treatment. A decrease in the IR intensity at 4170 cm−1 indicates a reduced Fe3+ concentration. The weakening or disappearance of the 4721 cm−1 absorption band of the infrared spectrum and the near-infrared 976 nm absorption band of the ultraviolet–visible spectrum provides diagnostic indicators for identifying heat treatment in similar brown elbaite–fluorelbaite. Full article
Show Figures

Figure 1

25 pages, 46515 KB  
Article
Parental Affinities and Environments of Bauxite Genesis in the Salt Range, Northwestern Himalayas, Pakistan
by Muhammad Khubab, Michael Wagreich, Andrea Mindszenty, Shahid Iqbal, Katerina Schöpfer and Matee Ullah
Minerals 2025, 15(9), 993; https://doi.org/10.3390/min15090993 - 19 Sep 2025
Viewed by 342
Abstract
As the residual products of severe chemical weathering, bauxite deposits serve both as essential economic Al-Fe resources and geochemical archives that reveal information about the parent rocks’ composition, paleoenvironments and paleoclimates, and the tectonic settings responsible for their genesis. The well-developed Early Paleocene [...] Read more.
As the residual products of severe chemical weathering, bauxite deposits serve both as essential economic Al-Fe resources and geochemical archives that reveal information about the parent rocks’ composition, paleoenvironments and paleoclimates, and the tectonic settings responsible for their genesis. The well-developed Early Paleocene bauxite deposits of the Salt Range, Pakistan, provide an opportunity for deciphering their ore genesis and parental affinities. The deposits occur as lenticular bodies and are typically composed of three consecutive stratigraphic facies from base to top: (1) massive dark-red facies (L-1), (2) composite conglomeratic–pisolitic facies (L-2), and (3) Kaolinite-rich clayey facies (L-3). Results from optical microscopy, X-ray powder diffraction (XRPD), and scanning electron microscopy with Energy-Dispersive X-Ray Spectroscopy (SEM-EDS) reveal that facies L-1 contains kaolinite, hematite, and goethite as major minerals, with minor amounts of muscovite, quartz, anatase, and rutile. In contrast, facies L-2 primarily consists of kaolinite, boehmite, hematite, gibbsite, goethite, alunite/natroalunite, and zaherite, with anatase, rutile, and quartz as minor constituents. L-3 is dominated by kaolinite, quartz, and anatase, while hematite and goethite exist in minor concentrations. Geochemical analysis reveals elevated concentrations of Al2O3, Fe2O3, SiO2, and TiO2. Trace elements, including Th, U, Ga, Y, Zr, Nb, Hf, V, and Cr, exhibit a positive trend across all sections when normalized to Upper Continental Crust (UCC) values. Field observations and analytical data suggest a polygenetic origin of these deposits. L-1 suggests in situ lateritization of some sort of precursor materials, with enrichment in stable and ultra-stable heavy minerals such as zircon, tourmaline, rutile, and monazite. This facies is mineralogically mature with bauxitic components, but lacks the typical bauxitic textures. In contrast, L-2 is texturally and mineralogically mature, characterized by various-sized pisoids and ooids within a microgranular-to-microclastic matrix. The L-3 mineralogy and texture suggest that the conditions were still favorable for bauxite formation. However, the ongoing tectonic activities and wet–dry climate cycles post-depositionally disrupted the bauxitization process. The accumulation of highly stable detrital minerals, such as zircon, rutile, tourmaline, and monazite, indicates prolonged weathering and multiple cycles of sedimentary reworking. These deposits have parental affinity with acidic-to-intermediate/-argillaceous rocks, resulting from the weathering of sediments derived from UCC sources, including cratonic sandstone and shale. Full article
Show Figures

Graphical abstract

25 pages, 12500 KB  
Article
Gemmological, Spectroscopic, and Origin Description Studies of Tourmaline from Yunnan, China
by Qishen Zhou, Fangmin Zhan, Haochi Yu, Zhuo Lu and Xin Wan
Molecules 2025, 30(18), 3680; https://doi.org/10.3390/molecules30183680 - 10 Sep 2025
Viewed by 312
Abstract
The Nujiang region of Yunnan is by far the richest tourmaline-producing mining area in China. Since the discovery of the tourmaline-bearing deposit in Yunnan Province in 1980, there have been few comprehensive gemmological studies of this deposit. Therefore, the results of tests on [...] Read more.
The Nujiang region of Yunnan is by far the richest tourmaline-producing mining area in China. Since the discovery of the tourmaline-bearing deposit in Yunnan Province in 1980, there have been few comprehensive gemmological studies of this deposit. Therefore, the results of tests on 32 tourmaline samples from the Fugong and Gongshan regions of Yunnan are reported in this paper. The chemical composition of the Yunnan tourmalines was analyzed, and the contents of major trace elements were compared with those of tourmaline samples from different localities reported in the literature to highlight their specific provenance characteristics. Microscopic observation revealed the presence of liquid, gas, and solid inclusions; Raman spectra indicated the presence of constitutional water and CH4-C2H6 dihydrate in the Yunnan tourmalines and also pointed to the influence pattern of the Fe content. The infrared spectrum in the range of 4000–4800 cm−1 showed the frequency of metal cations and hydroxyl groups. Based on the characteristic peaks at 4343 cm−1 and 4600 cm−1, a quick distinction between elbaite and dravite could be made. UV–Vis absorption spectroscopy analysis showed that in yellow tourmalines, Mn2+-Ti4+ IVCT is the main cause of color, while green coloration occurs due to Fe2+–Fe3+ interactions or Cr3+ and V3+, and the pink color is caused by Mn3+ d-d transitions. The three-dimensional fluorescence spectra revealed the presence of the main fluorescence peaks at λex280/λem320 nm and λex265/λem510 nm in the tourmaline samples analyzed and the fluorescence intensity with Ti and Fe contents. Full article
Show Figures

Figure 1

14 pages, 2536 KB  
Article
Geochemistry and Genetic Significance of Scheelite in the Nanwenhe Tungsten Deposit, Yunnan Province, Southwestern China
by Wei Wang, Shao-Yong Jiang, Kexin Wang, Yu-Ying Che and Shugang Xiao
Minerals 2025, 15(8), 875; https://doi.org/10.3390/min15080875 - 20 Aug 2025
Viewed by 422
Abstract
The Nanwenhe tungsten deposit is located in the southeastern Yunnan Laojunshan mineral district and is hosted in the Paleoproterozoic Mengsong Group strata. It can be divided into two periods and four stages: skarn (early and late) and the vein type (feldspar–quartz–scheelite–tourmaline and calcite. [...] Read more.
The Nanwenhe tungsten deposit is located in the southeastern Yunnan Laojunshan mineral district and is hosted in the Paleoproterozoic Mengsong Group strata. It can be divided into two periods and four stages: skarn (early and late) and the vein type (feldspar–quartz–scheelite–tourmaline and calcite. There are two types of scheelite occurrences: one in skarn (Sch-1) and the other in feldspar–quartz–scheelite–tourmaline veins (Sch-2). The latter is further divided into two types: Sch-2a and Sch-2b. The REE content and Eu anomaly of skarn scheelite (Sch-1) are affected by early mineral crystallization; Sch-2a in feldspar–quartz–scheelite–tourmaline veins forms in a Na+-rich environment, and Eu2+ released into the fluid through hydrolysis may have largely entered tourmaline, resulting in the weak positive Eu anomaly of Sch-2a; the negative Eu anomaly of Sch-2b is likely inherited from the metamorphic fluid. The mineralization is likely closely related to the metamorphic fluid activity generated by the tensional structural environment at the end and after the regional uplift, forming ore by reducing fluids associated with regional metamorphism. The Laojunshan mineral district hosts several tungsten and tin polymetallic deposits and occurrences that share similar geological characteristics with the Nanwenhe tungsten deposit. No granite bodies related to mineralization have been identified within the mining area. Therefore, research on the genesis of the Nanwenhe tungsten deposit holds significant value for guiding exploration efforts. Full article
(This article belongs to the Special Issue Recent Developments in Rare Metal Mineral Deposits)
Show Figures

Figure 1

39 pages, 13361 KB  
Article
Mineralogical, Petrological, 3D Modeling Study and Geostatistical Mineral Resources Estimation of the Zone C Gold Prospect, Kofi (Mali)
by Jean-Jacques Royer and Niakalé Camara
Minerals 2025, 15(8), 843; https://doi.org/10.3390/min15080843 - 8 Aug 2025
Viewed by 1272
Abstract
A 3D model integrating mineralogical, petrological, and geostatistical resource estimation was developed for Zone C of the Kofi Birimian gold deposit in Western Mali. Petrographic analysis identified two forms of gold mineralization: (i) native gold or electrum inclusions within pyrite, and (ii) disseminated [...] Read more.
A 3D model integrating mineralogical, petrological, and geostatistical resource estimation was developed for Zone C of the Kofi Birimian gold deposit in Western Mali. Petrographic analysis identified two forms of gold mineralization: (i) native gold or electrum inclusions within pyrite, and (ii) disseminated native gold along pyrite fractures. Four types of hydrothermal alteration–epidotization, chloritization, carbonatization, and albitization were observed microscopically. Statistical analysis of geochemical data classified five lithologies: mafic dyke, felsic dyke, diabase, faulted breccia, and intermediate quartz diorite. Minerals identified petrographically were corroborated by multivariate correlations among elements (Cr, Fe, Ni, Al, Ti, Na, and Ca), as revealed by Principal Component Analysis (PCA). A 3D borehole-based model revealed spatial correlations between hydrothermal alteration zones and associated geochemical anomalies, notably tourmalinization (B) and albitization (Na), with the latter serving as a key indicator for new exploration targets. The spatial associations of anomalous Ag, B, Hg, As, and Na commonly linked to tourmalinization suggest favorable zones for gold and silver mineralization. Geostatistical analysis identified isotropic continuous mineralized structures for most elements, including gold. Spherical isotropic variograms with ranges from 35 to 75 m were fitted for in situ resource estimation (e.g., silver ≈ 40 m; gold ≈ 60 m). The resulting estimated resources (indicated + inferred), based on a 1.0 g/t Au cut-off, are 2.476 Mt at 3.5 g/t Au indicated (0.278 Moz or 8.67 t), and 1.254 Mt at 2.78 g/t Au inferred (0.112 Moz or 3.49 t). This study provides a framework for identifying new mineralized zones, and the multidisciplinary approach demonstrates the connections between mineralogy and the information embedded in geochemical datasets, which are revealed through appropriate tools and an understanding of the underlying processes. Full article
Show Figures

Figure 1

57 pages, 42873 KB  
Article
The Mazenod–Sue–Dianne IOCG District of the Great Bear Magmatic Zone Northwest Territories, Canada
by A. Hamid Mumin and Mark Hamilton
Minerals 2025, 15(7), 726; https://doi.org/10.3390/min15070726 - 11 Jul 2025
Viewed by 300
Abstract
The Mazenod Lake region of the southern Great Bear Magmatic Zone (GBMZ) of the Northwest Territories, Canada, comprises the north-central portion of the Faber volcano-plutonic belt. Widespread and abundant surface exposure of several coalescing hydrothermal systems enables this paper to document, without ambiguity, [...] Read more.
The Mazenod Lake region of the southern Great Bear Magmatic Zone (GBMZ) of the Northwest Territories, Canada, comprises the north-central portion of the Faber volcano-plutonic belt. Widespread and abundant surface exposure of several coalescing hydrothermal systems enables this paper to document, without ambiguity, the relationships between geology, structure, alteration, and mineralization in this well exposed iron-oxide–copper–gold (IOCG) mineral system. Mazenod geology comprises rhyodacite to basaltic-andesite ignimbrite sheets with interlayered volcaniclastic sedimentary rocks dominated by fine-grained laminated tuff sequences. Much of the intermediate to mafic nature of volcanic rocks is masked by low-intensity but pervasive metasomatism. The region is affected by a series of coalescing magmatic–hydrothermal systems that host the Sue–Dianne magnetite–hematite IOCG deposit and several related showings including magnetite, skarn, and iron oxide apatite (IOA) styles of alteration ± mineralization. The mid to upper levels of these systems are exposed at surface, with underlying batholith, pluton and stocks exposed along the periphery, as well as locally within volcanic rocks associated with more intense alteration and mineralization. Widespread alteration includes potassic and sodic metasomatism, and silicification with structurally controlled giant quartz complexes. Localized tourmaline, skarn, magnetite–actinolite, and iron-oxide alteration occur within structural breccias, and where most intense formed the Sue–Dianne Cu-Ag-Au diatreme-like breccia deposit. Magmatism, volcanism, hydrothermal alteration, and mineralization formed during a negative tectonic inversion within the Wopmay Orogen. This generated a series of oblique offset rifted basins with continental style arc magmatism and extensional structures unique to GBMZ rifting. All significant hydrothermal centers in the Mazenod region occur along and at the intersections of crustal faults either unique to or put under tension during the GBMZ inversion. Full article
Show Figures

Figure 1

15 pages, 3237 KB  
Article
A Simple Fabrication of Tourmaline-Supported Ni-NiAl2O4 Nanocomposites for Enhanced Methane Dry Reforming Activity
by Jin Wang, Xianku Wang, Pengfei Zhou, Liang Bian and Fei Wang
Catalysts 2025, 15(7), 658; https://doi.org/10.3390/catal15070658 - 6 Jul 2025
Viewed by 477
Abstract
Ni-based catalysts have been widely used in catalytic reactions by researchers due to their advantages such as abundant resources, high catalytic activity and lower prices than precious metals. However, the problems of easy agglomeration and poor dispersion of Ni-based catalysts have hindered their [...] Read more.
Ni-based catalysts have been widely used in catalytic reactions by researchers due to their advantages such as abundant resources, high catalytic activity and lower prices than precious metals. However, the problems of easy agglomeration and poor dispersion of Ni-based catalysts have hindered their large-scale application. Therefore, it is necessary to select a suitable preparation method to reduce the agglomeration of the catalyst and improve its dispersion. In this paper, the Ni-NiAl2O4/tourmaline composite material was prepared by using the microwave hydrothermal reduction method. The most favorable conditions for preparing NiAl2O4/tourmaline are as follows: using TEOA as the additive, the microwave hydrothermal temperature is 220 °C, the calcination temperature is 800 °C, and the addition amount of tourmaline is 7.4 wt.%. NiAl2O4 has a good dispersion over the surface of tourmaline support and the optimal NiAl2O4/tourmaline catalyst exhibits a specific surface area of 106.5 m2/g. Metallic nickel was reduced at 650 °C to further obtain Ni-NiAl2O4/tourmaline composites. Finally, the Ni-NiAl2O4/tourmaline composites showed significantly improved catalytic dry reforming of methane (DRM) activity compared to Ni-NiAl2O4 sample under low-temperature conditions (500–600 °C), meaning that the tourmaline carrier could effectively optimize the low-temperature catalytic performance of Ni-NiAl2O4. Full article
Show Figures

Graphical abstract

21 pages, 52990 KB  
Article
Identification of Alteration Minerals and Lithium-Bearing Pegmatite Deposits Using Remote Sensing Satellite Data in Dahongliutan Area, Western Kunlun, NW China
by Yong Bai, Jinlin Wang, Guo Jiang, Kefa Zhou, Shuguang Zhou, Wentian Mi and Yu An
Minerals 2025, 15(7), 671; https://doi.org/10.3390/min15070671 - 22 Jun 2025
Cited by 1 | Viewed by 667
Abstract
Remote sensing technology has significant technical advantages over traditional geological methods in geological mapping and mineral resource exploration, especially in high-altitude and steep topography areas. Geochemical sampling and geological mapping methods in these areas are difficult to use directly in mountainous regions such [...] Read more.
Remote sensing technology has significant technical advantages over traditional geological methods in geological mapping and mineral resource exploration, especially in high-altitude and steep topography areas. Geochemical sampling and geological mapping methods in these areas are difficult to use directly in mountainous regions such as West Kunlun. Therefore, in the face of Li-Be-Nb-Ta mineralization of the Dahongliutan rare-metal pegmatite deposit in West Kunlun, remote sensing has become an effective means to identify areas of interest for exploration in the early stage of the exploration campaigns. Several methods have been developed to detect pegmatites. Still, in this study, this methodology is based on spectral analysis to select bands of the ASTER and Landsat-8 OLI satellites, and methods, such as principal component analysis (PCA) and mixture tuned matched filtering (MTMF), to delineate the prospective areas of pegmatite. The results proved that PCA could map the hydrothermal alteration and structure information for pegmatites. To define new locations of interest for exploration, we introduced the spectra of spodumene-bearing pegmatites and tourmaline-bearing pegmatites as endmembers for the MTMF approach. The results indicate that the location of pegmatite areas on the ASTER and Landsat-8 OLI images overlaps with the ore deposits, and the location of potential ore-bearing pegmatites is delineated using remote sensing and geological sampling. Although this does not guarantee that all prospective areas have the mining value of ore-bearing pegmatites, it can provide basic data and technical references for early exploration of Li. Full article
Show Figures

Figure 1

19 pages, 8020 KB  
Article
Homrit Akarem Post-Collisional Intrusion, Southeastern Desert, Egypt: Petrogenesis of Greisen Formed in a Cupola Structure and Enrichment in Strategic Minerals
by Mokhles K. Azer, Adel A. Surour, Hilmy E. Moussa, Ayman E. Maurice, Mabrouk Sami, Moustafa A. Abou El Maaty, Adel I. M. Akarish, Mohamed Th. S. Heikal, Ahmed A. Elnazer, Mustafa A. Elsagheer, Heba S. Mubarak, Amany M. A. Seddik, Hadeer Sobhy and Mohamed O. Osama
Geosciences 2025, 15(6), 200; https://doi.org/10.3390/geosciences15060200 - 26 May 2025
Cited by 1 | Viewed by 681
Abstract
The greisens discussed in the present study are associated with the Homrit Akarem post-collisional granites, which are exposed near the western edge of the Egyptian Nubian Shield in the Southeastern Desert of Egypt. The Homrit Akarem granites intruded into Neoproterozoic country rocks, with [...] Read more.
The greisens discussed in the present study are associated with the Homrit Akarem post-collisional granites, which are exposed near the western edge of the Egyptian Nubian Shield in the Southeastern Desert of Egypt. The Homrit Akarem granites intruded into Neoproterozoic country rocks, with sharp intrusive contacts. The marginal parts of the Homrit Akarem intrusion underwent extensive post-magmatic metasomatism, resulting in the formation of albitized granite and greisens. The Homrit Akarem greisens occur as veins and stockworks, which can be classified into four types: muscovite-rich, cassiterite-rich, topaz-rich, and beryl-rich greisens. Based on petrographic inspection, we identified ore minerals (cassiterite, beryl, topaz, muscovite, Nb-Ta oxides, tourmaline, fluorite, and corundum) in the greisens using electron probe microanalysis. The Homrit Akarem mineralized greisens were formed in a magmatic cupola above A-type magma, where fluid–rock interactions played a significant role in their formation. The accumulation of residual volatile-rich melt and exsolved fluids in the apical part of the magma chamber produced albitized granite, greisens, and quartz veins that intruded into the peripheries of the granitic intrusion and its surrounding country rocks. The variation in the mineralogy of the studied greisens indicates the diverse chemical composition of both the hydrothermal/magmatic fluids and the host granites. The simultaneous decrease in temperature and pressure is considered a crucial factor that controlled mineralization in the apical parts of the magma chamber. The occurrence of cassiterite, beryl, topaz, tourmaline, muscovite, and Nb-Ta oxides in the studied greisens suggests a potential polymetallic deposit of industrial minerals. Full article
Show Figures

Figure 1

15 pages, 2675 KB  
Article
Crystal Chemistry and Genetic Implications of Pink Tourmalines from Distinct Pegmatite Provinces
by Floriana Rizzo, Ferdinando Bosi, Gioacchino Tempesta, Federica Iommazzo and Giovanna Agrosì
Crystals 2025, 15(5), 415; https://doi.org/10.3390/cryst15050415 - 28 Apr 2025
Viewed by 668
Abstract
Borosilicate minerals of the tourmaline supergroup are valuable both for collectors and for geological research, as their chemical composition reflects the growth-medium conditions and their evolution. Tourmalines show a wide compositional variability, with pink tourmalines being particularly prized as gemstones. This study examines [...] Read more.
Borosilicate minerals of the tourmaline supergroup are valuable both for collectors and for geological research, as their chemical composition reflects the growth-medium conditions and their evolution. Tourmalines show a wide compositional variability, with pink tourmalines being particularly prized as gemstones. This study examines the crystal chemistry of pink tourmalines from Cruzeiro (Brazil), Nuristan (Afghanistan), and Malkhan (Russia) using Electron Microprobe Analysis, Micro Laser Induced Breakdown Spectroscopy (LIBS), and Single Crystal X-ray Diffraction. The results show that the pink tourmalines are Mn-rich elbaite, with the pink coloration linked to Mn at the Y site, indicating crystallization from Mn-rich pegmatitic fluids. LIBS spectra suggest a Li-rich pegmatite origin. The samples show differences: Cruzeiro exhibits strong chemical zoning, Nuristan has a uniform composition, and Malkhan shows slight zoning with high F content. A comparison with a pink tourmaline from Anjanabonoina (Madagascar) reveals that it is Ca-rich, belonging to the calcic group and crystallizing in an open system influenced by external Ca-rich fluids, contrasting with the closed system of the samples from Cruzeiro and Nuristan. The sample from Malkhan shows an anomalous chemical variation of Ca and requires further investigation. Full article
(This article belongs to the Section Mineralogical Crystallography and Biomineralization)
Show Figures

Figure 1

36 pages, 5338 KB  
Article
Fluid and Solid Inclusions from Accessory Host Minerals of Permian Pegmatites of the Eastern Alps (Austria)—Tracing Permian Fluid, Its Entrapment Process and Its Role During Crustal Anatexis
by Kurt Krenn and Martina Husar
Minerals 2025, 15(4), 423; https://doi.org/10.3390/min15040423 - 18 Apr 2025
Cited by 1 | Viewed by 455
Abstract
To understand the fluid evolution of Permian pegmatites, three pegmatite fields of the Austroalpine basement units located in the Rappold Complex at St. Radegund, the Millstatt Complex, and the Polinik Complex were investigated. To achieve this goal, fluid inclusions trapped in the magmatic [...] Read more.
To understand the fluid evolution of Permian pegmatites, three pegmatite fields of the Austroalpine basement units located in the Rappold Complex at St. Radegund, the Millstatt Complex, and the Polinik Complex were investigated. To achieve this goal, fluid inclusions trapped in the magmatic accessories of garnet, tourmaline, spodumene, and beryl were studied using host mineral chemistry combined with fluid inclusion microthermometry and Raman spectrometry. Taking into account the previous work by the authors on pegmatite fields in the Koralpe and Texel Mountains, Permian fluid was determined to have evolved from two stages: Stage 1 is characterized by the homogeneous entrapment of two cogenetic immiscible fluid assemblages, a CO2-N2 ± CH4-rich and a low-saline H2O-rich fluid. Both fluids are restricted to inclusions in the early-magmatic-garnet-core domains of the Koralpe Mountains. Stage 2 is linked with the CO2-N2-CH4-H2O-NaCl-CaCl2 ± MgCl2 fluid preserved as an inclusion in all the pegmatite accessories of the KWNS. It represents the mechanical mixture of the stage 1 fluid caused by compositional changes along the solvus, which is typical for a hydrothermal vein environment process. Increasing XCH4±N2 proportions from the eastern toward the western pegmatite fields of the KWNS results in a tectonic model that includes magmatic redox-controlled fluid flow along deep crustal normal faults during the anatexis of metasediments in Permian asymmetric graben structures. Because of a high number of solids within the inclusions as well as their irregular shapes, post-entrapment modifications have caused density changes that have to be considered with caution. However, the conditions in the range of 6–8 kbar at >670 °C for stage 1 and ca. 4 kbar at <670 °C for stage 2 represent the best approximations to explain the uprise of a two-stage Permian fluid associated with accessory mineral crystallization in close relation to fractionating melt. Full article
Show Figures

Figure 1

17 pages, 29728 KB  
Article
Development and Performance of Negative Ion Functional Blended Yarns and Double-Sided Knitted Fabrics Based on ZnO/TM/PET Fiber
by Yingzi Zhang, Mengxin Zhang, Jishu Zhang, Jianbing Wu and Jiajia Peng
Polymers 2025, 17(7), 905; https://doi.org/10.3390/polym17070905 - 27 Mar 2025
Viewed by 910
Abstract
Zinc oxide-modified tourmaline-based negative ion polyester fiber (ZnO/TM/PET), as a new functional fiber with excellent negative ion emission characteristics, is of great significance to human health, and its industrial application needs to be expanded and promoted. In this paper, using zinc oxide, tourmaline, [...] Read more.
Zinc oxide-modified tourmaline-based negative ion polyester fiber (ZnO/TM/PET), as a new functional fiber with excellent negative ion emission characteristics, is of great significance to human health, and its industrial application needs to be expanded and promoted. In this paper, using zinc oxide, tourmaline, and polyethylene terephthalate as the main raw materials, ZnO/TM/PET negative ion functional fiber with 5% ZnO/TM composites was prepared. Then, it was blended with cotton fiber and interknitted with wool yarn and spandex yarn, from which we developed five kinds of negative ion polyester/cotton-blended yarn and four different kinds of knitted double-sided fabric using different equipment and process parameters. The micromorphology of the fiber samples, the basic properties of the blended yarns, and the wearability and functional properties of the knitted fabrics were tested. The results show that the ZnO/TM negative ion additive is randomly dispersed in the polymer matrix without visible conglobation and the fiber has a good appearance. The blending ratio has an important effect on the properties of functional polyester/cotton blended yarn. The higher the ratio of negative ion polyester fiber in the blended yarn, the better the mechanical index of the blended yarn, the higher the negative ion emission, and the lower the hairiness index. The performances of fabric are influenced by the comprehensive action of fiber raw material type, yarn ratio, fabric tightness, and structure. The mechanical properties of the fabric knitted from negative ion polyester/cotton-blended yarn are lower than those made from negative ion polyester filament yarn. In the case of the same fabric structure, the negative ion emission performance, far-infrared emission performance, and antibacterial property of the fabric with a higher ratio of negative ion functional fiber is better than the lower ratio. With the same yarn composition, the negative ion emission performance and air permeability of the fabric with a loose structure are better than that of the fabric with a tight structure, but the moisture permeability, far-infrared emission properties, and antibacterial properties show little difference. Full article
(This article belongs to the Special Issue Technical Textile Science and Technology)
Show Figures

Figure 1

27 pages, 46975 KB  
Article
A Study of the Geochemical Characteristics of Tourmaline-Supergroup Minerals from the Bozhushan Composite Granite Body in Southeastern Yunnan
by Xianchao Chen, Liurunxuan Chen, Shitao Zhang, Xuelong Liu, Qiuyun Song, Linlong Sun, Ruohan Zuo, Bode Lu and Jiehu Zhou
Minerals 2025, 15(3), 316; https://doi.org/10.3390/min15030316 - 19 Mar 2025
Viewed by 1009
Abstract
The Bozhushan in southeastern Yunnan is a composite granite body that was formed by multi-phase magmatic intrusion. The genesis of the tourmaline-supergroup minerals occurring therein remains uncertain, as it has been the subject of only a limited number of studies. This investigation employs [...] Read more.
The Bozhushan in southeastern Yunnan is a composite granite body that was formed by multi-phase magmatic intrusion. The genesis of the tourmaline-supergroup minerals occurring therein remains uncertain, as it has been the subject of only a limited number of studies. This investigation employs an integrated analytical approach combining EPMA, LA-ICP-MS, and boron isotope geochemistry, supplemented by detailed field geological investigations and petrographic observations of tourmaline textural characteristics. This study aims to elucidate the genetic relationships between distinct tourmaline varieties, establish temporal correlations between mineral crystallization stages and magmatic–hydrothermal evolution processes, and evaluate the petrogenetic significance of tourmaline geochemical signatures for regional mineralization events. This study analyzes tourmaline-supergroup minerals in granitic pegmatites and aplites, which occur as nodular, radial, and columnar aggregates. Most tourmaline crystals exhibit well-defined rhythmic zoning patterns, which are clearly observable under cross-polarized light microscopy. Chemical composition analysis has identified two tourmaline species: schorl and dravite. The formation of tourmaline is primarily of magmatic origin and is characterized by a magmatic–hydrothermal transition. It predominantly belongs to the alkali subgroup and is formed in Li-poor granitoids and associated pegmatites and aplites, Ca-poor metapelites, metapsammites, and quartz-tourmaline rocks. The inter-ionic substitution mechanism in this system is predominantly governed by Fe2+Mg−1 and (XvacAl)(NaR2+)−1 exchange equilibria. Additionally, geochemical evidence indicates that the primary ore-forming fluids originate from granitic magmas, which are likely sourced from the partial melting of metasedimentary rocks. During the late Yanshan period, the upwelling of granitic magma in the Bozhushan area introduced a substantial heat source and mineralizing fluids, which interacted with the Cambrian units to form tungsten–tin mineralization. The geochemical data on tourmaline indicate that the Bozhushan granite body has considerable potential for ore mineralization. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

28 pages, 2517 KB  
Article
Petrography and Geochemistry of Lower Jurassic Sandstones in the Eastern Junggar Basin: Implications for Provenance and Tectonic Setting
by Furong Li, Zhi Zhang, Can Zhao, Jinqi Han, Jiaye Liu, Yaoyun Guo, Xinyu Tang, Chang Su, Xu Chang and Tong Wu
Minerals 2025, 15(3), 279; https://doi.org/10.3390/min15030279 - 9 Mar 2025
Cited by 2 | Viewed by 1342
Abstract
The Junggar Basin basement comprises microcontinental blocks amalgamated through successive paleo-oceanic accretion events. Stratigraphic and provenance studies within the basin are crucial for reconstructing its evolution and understanding the closure of paleo-oceanic systems. This study presents an integrated petrographic and geochemical analysis of [...] Read more.
The Junggar Basin basement comprises microcontinental blocks amalgamated through successive paleo-oceanic accretion events. Stratigraphic and provenance studies within the basin are crucial for reconstructing its evolution and understanding the closure of paleo-oceanic systems. This study presents an integrated petrographic and geochemical analysis of the Lower Jurassic Badaowan Formation sandstones in the Dongdaohaizi Depression, located in the eastern Junggar Basin. The results reveal a progressive decrease in lithic fragment content and an increase in quartz content from older to younger strata within the Badaowan Formation, indicating an increase in compositional maturity. Provenance analysis indicates that the sandstones are predominantly derived from tuffaceous rocks, granites, basalts, and minor metamorphic rocks. Heavy mineral assemblages, including zircon, chromian spinel, tourmaline, and garnet, suggest parent rocks consisting primarily of intermediate to acidic igneous rocks, mafic igneous rocks, and metamorphic rocks. Integrated petrographic and geochemical data from the surrounding areas of the Dongdaohaizi Depression confirm that the Badaowan Formation sandstones are primarily sourced from the eastern Kelameili Mountain. The continued uplift and migration of the Kelameili Mountain during the Early Jurassic played a dominant role in shaping the sedimentary provenance. LA-ICP-MS analyses reveal that the rare earth element (REE) concentrations in the Lower Jurassic sandstones are slightly lower than the average REE content of the upper continental crust. The sandstones exhibit weak differentiation between light and heavy REEs, reflecting a depositional environment characterized by anoxic reducing conditions. Geochemical results indicate a tectonic setting dominated by a passive continental margin and continental island arc in the source area. Synthesizing these findings with related studies, we propose that the Kelameili Ocean, as part of the Paleo-Asian Ocean, underwent a complex evolution involving multiple oceanic basins and microcontinental subduction–collision systems. From the Middle Ordovician to Late Silurian, the Kelameili region evolved as a passive continental margin. With the onset of subduction during the Middle Devonian to Early Carboniferous, the eastern Junggar Basin transitioned into a continental island arc system. This tectonic transition was likely driven by episodic or bidirectional subduction of the Kelameili Ocean. Full article
Show Figures

Figure 1

20 pages, 5757 KB  
Article
Mineral Chemistry of Li-Bearing Minerals at the Giant Tanco Pegmatite, Canada
by Paul Alexandre and Stefano Salvi
Minerals 2025, 15(3), 221; https://doi.org/10.3390/min15030221 - 24 Feb 2025
Cited by 1 | Viewed by 1147
Abstract
The highly fractionated late Archean Tanco pegmatite (Bernic Lake, SE Manitoba, Canada) is a world-class producer of tantalum and cerium but is also a major source of lithium. In order to better understand the major Li hosts and the overall Li budget of [...] Read more.
The highly fractionated late Archean Tanco pegmatite (Bernic Lake, SE Manitoba, Canada) is a world-class producer of tantalum and cerium but is also a major source of lithium. In order to better understand the major Li hosts and the overall Li budget of the Tanco pegmatite, the lithium-bearing minerals present here were analyzed for major and trace elements by electron microprobe and laser ablation ICP-MS, respectively. The major Li-bearing minerals present in the Tanco pegmatite are eucryptite (approximately 11.0 wt% Li2O), montebrasite (~11.2 wt%), lithiophilite (9.1 wt%), spodumene (~8.8 wt%), petalite (5.45 wt%), lepidolite (4.36 wt%), and tancoite (5.2 wt%); Li is also present in lithiowodginite, tourmaline, muscovite, beryl, pollucite, and apatite (between 0.1 and 1.3 wt% Li2O). Most of the Li present in Tanco is contained in petalite (69.4% of all the Li present here), followed by spodumene (11.4%), montebrasite (11.1%), and eucryptite (4.0%); all remaining Li-bearing minerals contain 4.0% of the Li present in the Tanco pegmatite. Overall, the Tanco pegmatite contains approximately 0.71 wt% Li2O, on par with previous estimates. The major practical implications of these finding are that (1) all Li-bearing minerals have to be considered to properly estimate the Li endowment of any pegmatite; (2) the main Li-bearing mineral is not always spodumene; (3) the exact and detailed Li mineralogy of a pegmatite will directly affect extraction and processing; and (4) a significant proportion of Li in any pegmatite is contained in other minerals than the main one, be it spodumene of petalite. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

Back to TopTop