Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,153)

Search Parameters:
Keywords = torque improvement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4726 KiB  
Article
Modeling and Adaptive Neural Control of a Wheeled Climbing Robot for Obstacle-Crossing
by Hongbo Fan, Shiqiang Zhu, Cheng Wang and Wei Song
Machines 2025, 13(8), 674; https://doi.org/10.3390/machines13080674 (registering DOI) - 1 Aug 2025
Viewed by 106
Abstract
The dynamic model of a wheeled wall-climbing robot exhibits stage-specific changes when traversing different types of obstacles and during various stages of obstacle negotiation. Previous studies often employed remote control methods for obstacle-crossing control, which fail to dynamically adjust the torque distribution of [...] Read more.
The dynamic model of a wheeled wall-climbing robot exhibits stage-specific changes when traversing different types of obstacles and during various stages of obstacle negotiation. Previous studies often employed remote control methods for obstacle-crossing control, which fail to dynamically adjust the torque distribution of magnetic wheels in response to real-time changes in the dynamic model. This limitation makes it challenging to precisely control the robot’s speed and attitude angles during the obstacle-crossing process. To address this issue, this paper first establishes a staged dynamic model for the wall-climbing robot under typical obstacle-crossing scenarios, including steps, 90° concave corners, 90° convex corners, and thin plates. Secondly, an adaptive controller based on a radial basis function neural network (RBFNN) is designed to effectively compensate for variations and uncertainties during the obstacle-crossing process. Finally, comparative simulations and physical experiments demonstrate the effectiveness of the proposed method. The experimental results show that this method can quickly respond to the dynamic changes in the model and accurately track the trajectory, thereby improving the control precision and stability during the obstacle-crossing process. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

18 pages, 6130 KiB  
Article
Multi-Objective Optimization Design of Bearingless Interior Permanent Magnet Synchronous Motor Based on MOWOA
by Jianan Wang, Yizhou Hua, Boyan Xu and Yuchen Zhu
Electronics 2025, 14(15), 3080; https://doi.org/10.3390/electronics14153080 (registering DOI) - 31 Jul 2025
Viewed by 145
Abstract
Bearingless interior permanent magnet synchronous motors (BIPMSMs) have received considerable attention in recent research due to their advantages of high speed, high power density, and absence of mechanical wear. In order to improve the torque and suspension performance of the BIPMSM, an optimization [...] Read more.
Bearingless interior permanent magnet synchronous motors (BIPMSMs) have received considerable attention in recent research due to their advantages of high speed, high power density, and absence of mechanical wear. In order to improve the torque and suspension performance of the BIPMSM, an optimization design method of BIPMSM is proposed in this paper based on sensitivity analysis, response surface fitting, and the multi-objective whale optimization algorithm (MOWOA). Firstly, the structure and operation principle of the BIPMSM are introduced. Secondly, significant variables are extracted based on sensitivity analysis. Then, regression equations of the significant variables and optimization objectives are fitted by the response surface method, and global optimization is performed with MOWOA. Finally, the motor performance before and after optimization is compared. The results demonstrate that the proposed multi-objective optimization design scheme can significantly improve the performance of the BIPMSM and effectively shorten the design cycle. Full article
Show Figures

Figure 1

20 pages, 10604 KiB  
Article
A Safety-Based Approach for the Design of an Innovative Microvehicle
by Michelangelo-Santo Gulino, Susanna Papini, Giovanni Zonfrillo, Thomas Unger, Peter Miklis and Dario Vangi
Designs 2025, 9(4), 90; https://doi.org/10.3390/designs9040090 (registering DOI) - 31 Jul 2025
Viewed by 109
Abstract
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper [...] Read more.
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper presents the design and development of an innovative self-balancing microvehicle under the H2020 LEONARDO project, which aims to address these challenges through advanced engineering and user-centric design. The vehicle combines features of monowheels and e-scooters, integrating cutting-edge technologies to enhance safety, stability, and usability. The design adheres to European regulations, including Germany’s eKFV standards, and incorporates user preferences identified through representative online surveys of 1500 PLEV users. These preferences include improved handling on uneven surfaces, enhanced signaling capabilities, and reduced instability during maneuvers. The prototype features a lightweight composite structure reinforced with carbon fibers, a high-torque motorized front wheel, and multiple speed modes tailored to different conditions, such as travel in pedestrian areas, use by novice riders, and advanced users. Braking tests demonstrate deceleration values of up to 3.5 m/s2, comparable to PLEV market standards and exceeding regulatory minimums, while smooth acceleration ramps ensure rider stability and safety. Additional features, such as identification plates and weight-dependent motor control, enhance compliance with local traffic rules and prevent misuse. The vehicle’s design also addresses common safety concerns, such as curb navigation and signaling, by incorporating large-diameter wheels, increased ground clearance, and electrically operated direction indicators. Future upgrades include the addition of a second rear wheel for enhanced stability, skateboard-like rear axle modifications for improved maneuverability, and hybrid supercapacitors to minimize fire risks and extend battery life. With its focus on safety, regulatory compliance, and rider-friendly innovations, this microvehicle represents a significant advancement in promoting safe and sustainable urban mobility. Full article
(This article belongs to the Section Vehicle Engineering Design)
Show Figures

Figure 1

13 pages, 13107 KiB  
Article
Ceramic Isolated High-Torque Permanent Magnet Coupling for Deep-Sea Applications
by Liying Sun, Xiaohui Gao and Yongguang Liu
J. Mar. Sci. Eng. 2025, 13(8), 1474; https://doi.org/10.3390/jmse13081474 - 31 Jul 2025
Viewed by 115
Abstract
Permanent magnetic couplings provide critical advantages for deep-sea systems through static-sealed, contactless power transmission. However, conventional metallic isolation sleeves incur significant eddy current losses, limiting efficiency and high-speed operation. Limited torque capacities fail to meet the operational demands of harsh marine environments. This [...] Read more.
Permanent magnetic couplings provide critical advantages for deep-sea systems through static-sealed, contactless power transmission. However, conventional metallic isolation sleeves incur significant eddy current losses, limiting efficiency and high-speed operation. Limited torque capacities fail to meet the operational demands of harsh marine environments. This study presents a novel permanent magnet coupling featuring a ceramic isolation sleeve engineered for deep-sea cryogenic ammonia submersible pumps. The ceramic sleeve eliminates eddy current losses and provides exceptional corrosion resistance in acidic/alkaline environments. To withstand 3.5 MPa hydrostatic pressure, a 6-mm-thick sleeve necessitates a 10 mm operational air gap, challenging magnetic circuit efficiency. To address this limitation, an improved 3D magnetic equivalent circuit (MEC) model was developed that explicitly accounts for flux leakage and axial end-effects, enabling the accurate characterization of large air gap fields. Leveraging this model, a Taguchi method-based optimization framework was implemented by balancing key parameters to maximize the torque density. This co-design strategy achieved a 21% increase in torque density, enabling higher torque transfer per unit volume. Experimental validation demonstrated a maximum torque of 920 Nm, with stable performance under simulated deep-sea conditions. This design establishes a new paradigm for high-power leak-free transmission in corrosive, high-pressure marine environments, advancing applications from deep-sea propulsion to offshore energy systems. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 3473 KiB  
Article
Reinforcement Learning for Bipedal Jumping: Integrating Actuator Limits and Coupled Tendon Dynamics
by Yudi Zhu, Xisheng Jiang, Xiaohang Ma, Jun Tang, Qingdu Li and Jianwei Zhang
Mathematics 2025, 13(15), 2466; https://doi.org/10.3390/math13152466 - 31 Jul 2025
Viewed by 141
Abstract
In high-dynamic bipedal locomotion control, robotic systems are often constrained by motor torque limitations, particularly during explosive tasks such as jumping. One of the key challenges in reinforcement learning lies in bridging the sim-to-real gap, which mainly stems from both inaccuracies in simulation [...] Read more.
In high-dynamic bipedal locomotion control, robotic systems are often constrained by motor torque limitations, particularly during explosive tasks such as jumping. One of the key challenges in reinforcement learning lies in bridging the sim-to-real gap, which mainly stems from both inaccuracies in simulation models and the limitations of motor torque output, ultimately leading to the failure of deploying learned policies in real-world systems. Traditional RL methods usually focus on peak torque limits but ignore that motor torque changes with speed. By only limiting peak torque, they prevent the torque from adjusting dynamically based on velocity, which can reduce the system’s efficiency and performance in high-speed tasks. To address these issues, this paper proposes a reinforcement learning jump-control framework tailored for tendon-driven bipedal robots, which integrates dynamic torque boundary constraints and torque error-compensation modeling. First, we developed a torque transmission coefficient model based on the tendon-driven mechanism, taking into account tendon elasticity and motor-control errors, which significantly improves the modeling accuracy. Building on this, we derived a dynamic joint torque limit that adapts to joint velocity, and designed a torque-aware reward function within the reinforcement learning environment, aimed at encouraging the policy to implicitly learn and comply with physical constraints during training, effectively bridging the gap between simulation and real-world performance. Hardware experimental results demonstrate that the proposed method effectively satisfies actuator safety limits while achieving more efficient and stable jumping behavior. This work provides a general and scalable modeling and control framework for learning high-dynamic bipedal motion under complex physical constraints. Full article
Show Figures

Figure 1

16 pages, 3379 KiB  
Article
Research on Electric Vehicle Differential System Based on Vehicle State Parameter Estimation
by Huiqin Sun and Honghui Wang
Vehicles 2025, 7(3), 80; https://doi.org/10.3390/vehicles7030080 - 30 Jul 2025
Viewed by 162
Abstract
To improve the stability and safety of electric vehicles during medium-to-high-speed cornering, this paper investigates torque differential control for dual rear-wheel hub motor drive systems, extending beyond traditional speed control based on the Ackermann steering model. A nonlinear three-degree-of-freedom vehicle dynamics model incorporating [...] Read more.
To improve the stability and safety of electric vehicles during medium-to-high-speed cornering, this paper investigates torque differential control for dual rear-wheel hub motor drive systems, extending beyond traditional speed control based on the Ackermann steering model. A nonlinear three-degree-of-freedom vehicle dynamics model incorporating the Dugoff tire model was established. By introducing the maximum correntropy criterion, an unscented Kalman filter was developed to estimate longitudinal velocity, sideslip angle at the center of mass, and yaw rate. Building upon the speed differential control achieved through Ackermann steering model-based rear-wheel speed calculation, improvements were made to the conventional exponential reaching law, while a novel switching function was proposed to formulate a new sliding mode controller for computing an additional yaw moment to realize torque differential control. Finally, simulations conducted on the Carsim/Simulink platform demonstrated that the maximum correntropy criterion unscented Kalman filter effectively improves estimation accuracy, achieving at least a 22.00% reduction in RMSE metrics compared to conventional unscented Kalman filter. With torque control exhibiting higher vehicle stability than speed control, the RMSE values of yaw rate and sideslip angle at the center of mass are reduced by at least 20.00% and 4.55%, respectively, enabling stable operation during medium-to-high-speed cornering conditions. Full article
Show Figures

Figure 1

24 pages, 2070 KiB  
Article
Reinforcement Learning-Based Finite-Time Sliding-Mode Control in a Human-in-the-Loop Framework for Pediatric Gait Exoskeleton
by Matthew Wong Sang and Jyotindra Narayan
Machines 2025, 13(8), 668; https://doi.org/10.3390/machines13080668 - 30 Jul 2025
Viewed by 183
Abstract
Rehabilitation devices such as actuated lower-limb exoskeletons can provide essential mobility assistance for pediatric patients with gait impairments. Enhancing their control systems under conditions of user variability and dynamic disturbances remains a significant challenge, particularly in active-assist modes. This study presents a human-in-the-loop [...] Read more.
Rehabilitation devices such as actuated lower-limb exoskeletons can provide essential mobility assistance for pediatric patients with gait impairments. Enhancing their control systems under conditions of user variability and dynamic disturbances remains a significant challenge, particularly in active-assist modes. This study presents a human-in-the-loop control architecture for a pediatric lower-limb exoskeleton, combining outer-loop admittance control with robust inner-loop trajectory tracking via a non-singular terminal sliding-mode (NSTSM) controller. Designed for active-assist gait rehabilitation in children aged 8–12 years, the exoskeleton dynamically responds to user interaction forces while ensuring finite-time convergence under system uncertainties. To enhance adaptability, we augment the inner-loop control with a twin delayed deep deterministic policy gradient (TD3) reinforcement learning framework. The actor–critic RL agent tunes NSTSM gains in real-time, enabling personalized model-free adaptation to subject-specific gait dynamics and external disturbances. The numerical simulations show improved trajectory tracking, with RMSE reductions of 27.82% (hip) and 5.43% (knee), and IAE improvements of 40.85% and 10.20%, respectively, over the baseline NSTSM controller. The proposed approach also reduced the peak interaction torques across all the joints, suggesting more compliant and comfortable assistance for users. While minor degradation is observed at the ankle joint, the TD3-NSTSM controller demonstrates improved responsiveness and stability, particularly in high-load joints. This research contributes to advancing pediatric gait rehabilitation using RL-enhanced control, offering improved mobility support and adaptive rehabilitation outcomes. Full article
Show Figures

Figure 1

15 pages, 1812 KiB  
Article
Influence of Digital Manufacturing and Abutment Design on Full-Arch Implant Prostheses—An In Vitro Study
by Shahad Altwaijri, Hanan Alotaibi, Talal M. Alnassar and Alhanoof Aldegheishem
Materials 2025, 18(15), 3543; https://doi.org/10.3390/ma18153543 - 29 Jul 2025
Viewed by 189
Abstract
Achieving accurate fit in implant-supported prostheses is critical for avoiding mechanical complications; however, the influence of digital manufacturing techniques and abutment designs on misfit and preload remains unclear. This study evaluated the impact of different manufacturing techniques (CAD-cast and 3D printing) and abutment [...] Read more.
Achieving accurate fit in implant-supported prostheses is critical for avoiding mechanical complications; however, the influence of digital manufacturing techniques and abutment designs on misfit and preload remains unclear. This study evaluated the impact of different manufacturing techniques (CAD-cast and 3D printing) and abutment connection types (engaging [E], non-engaging [NE]) on the misfit and preload of implant-supported cantilevered fixed dental prostheses (ICFDPs). Misfit was measured at six points using scanning electron microscopy, and preload was assessed via eight strain gauges placed buccally and lingually on four implants. Frameworks were torqued to 35 Ncm, retorqued after 10 min, and subjected to 200,000 cycles of loading. Mean preload values ranged from 173.4 ± 79.5 Ncm (PF) to 330 ± 253.2 Ncm (3DP). Preload trends varied depending on the abutment type and manufacturing technique, with the 3DP group showing higher preload in engaging (E) abutments, whereas the CAD-cast group showed the opposite pattern. Although preload values varied numerically, these differences were not statistically significant (p = 0.5). In terms of misfit, significant differences were observed between groups (p < 0.05), except between CAD-cast E (86.4 ± 17.8 μm) and 3DP E (84.1 ± 19.2 μm). Additionally, E and NE abutments showed significant differences in misfit within both CAD-cast and 3DP groups. Overall, 3DP frameworks showed superior fit over CAD-cast. These findings suggest that 3DP may offer improved clinical outcomes in terms of implant–abutment fit. Full article
Show Figures

Figure 1

21 pages, 9715 KiB  
Article
Fault-Tolerant Control of Non-Phase-Shifted Dual Three-Phase PMSM Joint Motor for Open Phase Fault with Minimized Copper Loss and Reduced Torque Ripple
by Xian Luo, Guangyu Pu, Wenhao Han, Huaqi Li and Hanlin Zhan
Energies 2025, 18(15), 4020; https://doi.org/10.3390/en18154020 - 28 Jul 2025
Viewed by 221
Abstract
Dual three-phase PMSMs (DTP-PMSMs) have attracted increasing attention in the field of robotics industry for their higher power density and enhanced fault-tolerant ability. The non-phase-shifted DTP-PMSM (NPSDTP-PMSM), which shows naturally prevailed performance on zero-sequence current (ZSC) suppression, necessitates the investigation on the control [...] Read more.
Dual three-phase PMSMs (DTP-PMSMs) have attracted increasing attention in the field of robotics industry for their higher power density and enhanced fault-tolerant ability. The non-phase-shifted DTP-PMSM (NPSDTP-PMSM), which shows naturally prevailed performance on zero-sequence current (ZSC) suppression, necessitates the investigation on the control method with improved fault-tolerant performance. In this paper, a novel fault-tolerant control (FTC) method for NPSDTP-PMSM is proposed, which concurrently simultaneously reduces copper loss and suppresses torque ripple under single and dual open phase fault. Firstly, the mathematical model of NPSDTP-PMSM is established, where the ZSC self-suppressing mechanism is revealed. Based on which, investigations on open phase fault and the copper loss characteristics for NPSDTP-PMSM are conducted. Subsequently, a novel fault-tolerant control method is proposed for NPSDTP-PMSM, where the torque ripple is reduced by mutual cancellation of harmonic torques from two winding sets and minimized copper loss is achieved based on the convex characteristic of copper loss. Experimental validation on an integrated robotic joint motor platform confirms the effectiveness of the proposed method. Full article
Show Figures

Figure 1

26 pages, 9128 KiB  
Article
Torque Ripple Reduction in BLDC Motors Using Phase Current Integration and Enhanced Zero Vector DTC
by Xingwei Sa, Han Wu, Guoqing Zhao and Zhenjun Zhao
Electronics 2025, 14(15), 2999; https://doi.org/10.3390/electronics14152999 - 28 Jul 2025
Viewed by 301
Abstract
To improve commutation accuracy and effectively suppress torque ripple in brushless DC motors (BLDCMs), this paper presents a novel commutation correction strategy integrated into an enhanced direct torque control (DTC) framework. The proposed method estimates the commutation angle error in real time by [...] Read more.
To improve commutation accuracy and effectively suppress torque ripple in brushless DC motors (BLDCMs), this paper presents a novel commutation correction strategy integrated into an enhanced direct torque control (DTC) framework. The proposed method estimates the commutation angle error in real time by analyzing the integral difference in phase currents across adjacent 30° conduction intervals, enabling dynamic and accurate commutation correction. This correction mechanism is seamlessly embedded into a modified DTC algorithm that employs a three-level torque hysteresis comparator and introduces a novel zero-voltage vector selection strategy to minimize torque ripple. Compared with conventional DTC approaches employing dual-loop control and standard zero vectors, the proposed method achieves up to a 58% reduction in torque ripple along with improved commutation precision, as demonstrated through both simulation and experimental validation. These results confirm the method’s effectiveness and its potential for application in high-performance BLDCMs drive systems. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

31 pages, 3629 KiB  
Article
Optimizing Assembly Error Reduction in Wind Turbine Gearboxes Using Parallel Assembly Sequence Planning and Hybrid Particle Swarm-Bacteria Foraging Optimization Algorithm
by Sydney Mutale, Yong Wang and De Tian
Energies 2025, 18(15), 3997; https://doi.org/10.3390/en18153997 - 27 Jul 2025
Viewed by 285
Abstract
This study introduces a novel approach for minimizing assembly errors in wind turbine gearboxes using a hybrid optimization algorithm, Particle Swarm-Bacteria Foraging Optimization (PSBFO). By integrating error-driven task sequencing and real-time error feedback with the PSBFO algorithm, we developed a comprehensive framework tailored [...] Read more.
This study introduces a novel approach for minimizing assembly errors in wind turbine gearboxes using a hybrid optimization algorithm, Particle Swarm-Bacteria Foraging Optimization (PSBFO). By integrating error-driven task sequencing and real-time error feedback with the PSBFO algorithm, we developed a comprehensive framework tailored to the unique challenges of gearbox assembly. The PSBFO algorithm combines the global search capabilities of PSO with the local refinement of BFO, creating a unified framework that efficiently explores task sequencing, minimizing misalignment and torque misapplication assembly errors. The methodology results in a 38% reduction in total assembly errors, improving both process accuracy and efficiency. Specifically, the PSBFO algorithm reduced errors from an initial value of 50 to a final value of 5 across 20 iterations, with components such as the low-speed shaft and planetary gear system showing the most substantial reductions. The 50 to 5 error reduction represents a significant decrease in assembly errors from an unoptimized (50) to an optimized (5) sequence, achieved through the PSBFO algorithm, by minimizing dimensional deviations, torque mismatches, and alignment errors across 26 critical gearbox components. While the primary focus is on wind turbine gearbox applications, this approach has the potential for broader applicability in error-prone assembly processes in industries such as automotive and aerospace, warranting further validation in future studies. Full article
(This article belongs to the Special Issue Novel Research on Renewable Power and Hydrogen Generation)
Show Figures

Figure 1

21 pages, 3802 KiB  
Article
Parameter Identification and Speed Control of a Small-Scale BLDC Motor: Experimental Validation and Real-Time PI Control with Low-Pass Filtering
by Ayman Ibrahim Abouseda, Resat Ozgur Doruk and Ali Amini
Machines 2025, 13(8), 656; https://doi.org/10.3390/machines13080656 - 27 Jul 2025
Viewed by 343
Abstract
This paper presents a structured and experimentally validated approach to the parameter identification, modeling, and real-time speed control of a brushless DC (BLDC) motor. Electrical parameters, including resistance and inductance, were measured through DC and AC testing under controlled conditions, respectively, while mechanical [...] Read more.
This paper presents a structured and experimentally validated approach to the parameter identification, modeling, and real-time speed control of a brushless DC (BLDC) motor. Electrical parameters, including resistance and inductance, were measured through DC and AC testing under controlled conditions, respectively, while mechanical and electromagnetic parameters such as the back electromotive force (EMF) constant and rotor inertia were determined experimentally using an AVL dynamometer. The back EMF was obtained by operating the motor as a generator under varying speeds, and inertia was identified using a deceleration method based on the relationship between angular acceleration and torque. The identified parameters were used to construct a transfer function model of the motor, which was implemented in MATLAB/Simulink R2024b and validated against real-time experimental data using sinusoidal and exponential input signals. The comparison between simulated and measured speed responses showed strong agreement, confirming the accuracy of the model. A proportional–integral (PI) controller was developed and implemented for speed regulation, using a low-cost National Instruments (NI) USB-6009 data acquisition (DAQ) and a Kelly controller. A first-order low-pass filter was integrated into the control loop to suppress high-frequency disturbances and improve transient performance. Experimental tests using a stepwise reference speed profile demonstrated accurate tracking, minimal overshoot, and robust operation. Although the modeling and control techniques applied are well known, the novelty of this work lies in its integration of experimental parameter identification, real-time validation, and practical hardware implementation within a unified and replicable framework. This approach provides a solid foundation for further studies involving more advanced or adaptive control strategies for BLDC motors. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

20 pages, 3474 KiB  
Article
Optimization of Structural Parameters for 304 Stainless Steel Specific Spiral Taps Based on Finite Element Simulation
by Jiajun Pi, Wenqiang Zhang and Hailong Yang
Machines 2025, 13(8), 655; https://doi.org/10.3390/machines13080655 - 26 Jul 2025
Viewed by 280
Abstract
To address the issues of large errors, low accuracy, and time-consuming simulations in finite element (FE) models of tapping processes, which hinder the identification of optimal structural parameters, this study integrates FE simulation with experimental testing to optimize the structural parameters of spiral [...] Read more.
To address the issues of large errors, low accuracy, and time-consuming simulations in finite element (FE) models of tapping processes, which hinder the identification of optimal structural parameters, this study integrates FE simulation with experimental testing to optimize the structural parameters of spiral taps specifically designed for stainless steel. Initially, single-factor experiments were conducted to analyze the influence of mesh parameters on experimental outcomes, leading to the identification of optimal mesh coefficients. Subsequently, the accuracy of the FE tapping simulation model was validated by comparing trends in axial force, torque, and chip morphology between simulations and actual tapping experiments. Orthogonal experimental design combined with entropy weight analysis and range analysis was then employed to conduct FE simulations. The results indicated that the optimal structural parameter combination is a helix angle of 43°, cone angle of 19°, and cutting edge relief amount of 0.18 mm. Finally, based on this combination, optimized spiral taps were manufactured and subjected to comparative performance testing. The results demonstrated significant improvements: the average maximum axial force decreased by 33.22%, average maximum torque decreased by 13.41%, average axial force decreased by 38.22%, and average torque decreased by 24.87%. Error analysis comparing corrected simulation results with actual tapping tests revealed axial force and torque error rates of 5.04% and 0.24%, respectively. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

18 pages, 3569 KiB  
Article
The Influence of Carbon Nanotube Additives on the Efficiency and Vibrations of Worm Gears
by Milan Bukvić, Aleksandar Vencl, Saša Milojević, Aleksandar Skulić, Sandra Gajević and Blaža Stojanović
Lubricants 2025, 13(8), 327; https://doi.org/10.3390/lubricants13080327 - 26 Jul 2025
Viewed by 234
Abstract
Worm gears are used in various mechanical constructions, especially in heavy industrial plants, where they are exposed to high operating loads, large torques, and high temperatures, particularly in conditions where it is necessary for the input and output shafts to be at an [...] Read more.
Worm gears are used in various mechanical constructions, especially in heavy industrial plants, where they are exposed to high operating loads, large torques, and high temperatures, particularly in conditions where it is necessary for the input and output shafts to be at an angle of 90°. Regarding tribological optimization, the application of carbon nanotube in lubricants can lead to significant improvements in the performance characteristics of worm gears, both in terms of increasing efficiency and reducing the coefficient of friction and wear, as well as minimizing mechanical losses, noise, and vibrations. The objective of this study is for the research results, through the use of oil with varying percentages of carbon nanotube additives (CNTs), to contribute to the optimization of worm gears by improving efficiency, extending service life, and reducing vibrations—both within the gearbox itself and within the industrial facility where it is applied. The research methodology involved laboratory testing of a worm gear using lubricants with varying concentrations of carbon nanotube. During the experiment, measurements of efficiency, vibrations, and noise levels were conducted in order to determine the impact of these additives on the operational performance of the gear system. The main contribution of this research is reflected in the experimental confirmation that the use of lubricants with optimized concentrations of carbon nanotube significantly enhances the operational performance of worm gears by increasing efficiency and reducing vibrations and noise, thereby enabling tribological optimization that contributes to improved reliability, extended service life, and enhanced workplace ergonomics under demanding industrial conditions. Furthermore, experimental investigations have shown that the efficiency of the gearbox increases from an initial value of 0.42–0.65, which represents an increase of 54%, the vibrations of the worm gear decrease from an initial value of 5.83–2.56 mm/s2, which represents an decrease of 56%, while the noise was reduced from 87.5 to 77.2 dB, which represents an decrease of 12% with the increasing percentage of carbon nanotube additives in the lubricant, up to a maximum value of 1%. However, beyond this experimentally determined threshold, a decrease in the efficiency of the tested worm gearbox, as well as an increase in noise and vibration levels was recorded. Full article
(This article belongs to the Special Issue Friction–Vibration Interactions)
Show Figures

Figure 1

8 pages, 1122 KiB  
Proceeding Paper
Recent Developments in Four-In-Wheel Electronic Differential Systems in Electrical Vehicles
by Anouar El Mourabit and Ibrahim Hadj Baraka
Comput. Sci. Math. Forum 2025, 10(1), 17; https://doi.org/10.3390/cmsf2025010017 - 25 Jul 2025
Viewed by 62
Abstract
This manuscript investigates the feasibility of Four-In-Wheel Electronic Differential Systems (4 IW-EDSs) within contemporary electric vehicles (EVs), emphasizing their benefits for stability regulation predicated on steering angles. Through an extensive literature review, we conduct a comparative analysis of various in-wheel-motor models in terms [...] Read more.
This manuscript investigates the feasibility of Four-In-Wheel Electronic Differential Systems (4 IW-EDSs) within contemporary electric vehicles (EVs), emphasizing their benefits for stability regulation predicated on steering angles. Through an extensive literature review, we conduct a comparative analysis of various in-wheel-motor models in terms of power output, efficiency, and torque characteristics. Furthermore, we explore the distinctions between IW-EDSs and steer-by-wire systems, as well as conventional systems, while evaluating recent research findings to determine their implications for the evolution of electric mobility. Moreover, this paper addresses the necessity for fault-tolerant methodologies to boost reliability in practical applications. The findings yield valuable insights into the challenges and impacts associated with the implementation of differential steering control in four-wheel independent-drive electric vehicles. This study aims to explore the interaction between these systems, optimize torque distribution, and discover the most ideal control strategy that will improve maneuverability, stability, and energy efficiency, thereby opening up new frontiers in the development of next-generation electric vehicles with unparalleled performance and safety features. Full article
Show Figures

Figure 1

Back to TopTop