Friction–Vibration Interactions

A special issue of Lubricants (ISSN 2075-4442).

Deadline for manuscript submissions: 31 December 2025 | Viewed by 10496

Special Issue Editors


E-Mail Website
Guest Editor
1. Department of Mechanical Engineering, Technion, Haifa 32000, Israel
2. School of Mechanical and Power Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
Interests: interficial mechanics; wear modelling; contact mechanics; water-lubricated bearing
Key Laboratory of Marine Power Engineering and Technology, Ministry of Transportation, Wuhan 430063, China
Interests: friction-induced vibration; noise; dynamic analysis; fault diagnosis

Special Issue Information

Dear Colleagues,

The study of friction–vibration interactions is crucial to understanding the vibration behavior of various mechanical components and systems. It explores the intricate relationship between friction and vibration, shedding light on the underlying mechanisms implicated and their effects on the performance and reliability of key components in mechanical systems. This Special Issue, entitled "Friction–Vibration Interactions," focuses on employing theoretical and experimental methods in order to reveal the coupling interaction between the interface mechanics of tribo-components in mechanical systems, such as lubrication, asperity contact, interfacial deformation, temperature rise, and the vibration behaviors of tribo-components and mechanical systems.

This Special Issue encompasses both numerical and experimental studies, aiming to provide a comprehensive exploration of the subject matter. Researchers and engineers from diverse backgrounds have contributed their expertise to this Special Issue, making it a valuable resource for anyone interested in interfacing mechanics, friction-induced vibration, tribodynamics, and mechanical system dynamics, among others.

This Special Issue also explores the role of lubrication, including fluid and solid lubrication, in mitigating friction-induced vibration and its noise. Lubricants play a crucial role in reducing friction and wear, thereby minimizing the occurrence of vibration-induced failure and vibration noise. This Special Issue highlights the mechanism by which interfacial lubrication affects the suppression of vibrations in components and systems. It also aims to optimize lubrication strategies in order to enhance the performance and longevity of mechanical systems.

In summary, this Special Issue, entitled "Friction–Vibration Interactions", offers a comprehensive exploration of the field of interfacial science. It addresses various aspects, including interfacing mechanics, friction-induced vibration, tribodynamics, vibration noise, and more. It is antipacted that this Special Issue will provide valuable insights for researchers and engineers in related fields.

Dr. Guo Xiang
Dr. Yong Jin
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Lubricants is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • interficial mechanics
  • friction-indcued vibration
  • tribo-dynamic
  • mechanical system
  • key components
  • numerical study
  • experimental study

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 4011 KiB  
Article
Experimental Analysis of a Turbocharger: Influence of Oil Supply Temperature and Pressure on the Bifurcation Phenomenon in Subsynchronous Frequencies
by Márk Pesthy, Máté Boros and Csaba Tóth-Nagy
Lubricants 2025, 13(3), 133; https://doi.org/10.3390/lubricants13030133 - 19 Mar 2025
Viewed by 139
Abstract
This study presents an experimental analysis of a turbocharger equipped with a semi-floating bearing system, with a particular focus on the bifurcation phenomenon within the subsynchronous vibration spectrum. A predefined design of experiments (DoE) methodology was employed to determine the measurement domains to [...] Read more.
This study presents an experimental analysis of a turbocharger equipped with a semi-floating bearing system, with a particular focus on the bifurcation phenomenon within the subsynchronous vibration spectrum. A predefined design of experiments (DoE) methodology was employed to determine the measurement domains to be analyzed, where the primary input parameters included the lubricant supply temperature and pressure values. The bifurcation phenomenon in relation to the physical parameters of the system is observed via vibration and displacement sensors in two directions, enabling the collection of subsynchronous frequency data for further insights into the influence of lubricant parameters on the rotor system. While the nonlinear effect of oil temperature is well studied in the literature. However, the combined effect of oil supply temperature and pressure was not yet examined, which was the focus of the present study. This paper aims to investigate its coupled effects on the bifurcation phenomenon associated with both lubricant temperature and pressure. The occurrence of the introduced phenomenon is further examined to enhance the understanding of the uncharted behavior of turbocharger rotors and other rotor-bearing-based machinery. Full article
(This article belongs to the Special Issue Friction–Vibration Interactions)
Show Figures

Figure 1

23 pages, 6630 KiB  
Article
Investigation into the Dynamic Parameter Characterization of Water-Lubricated Bearings Under Vibration Coupling
by Hongtao Zhu, Yong Jin, Qilin Liu, Wu Ouyang and Tao He
Lubricants 2025, 13(3), 123; https://doi.org/10.3390/lubricants13030123 - 14 Mar 2025
Viewed by 217
Abstract
This study aims to investigate the dynamic behavior of water-lubricated stern bearings during service. A transient rotor dynamics numerical model is developed to research the effects of operating conditions and critical structural parameters on the variation patterns of the dynamic characteristic coefficients and [...] Read more.
This study aims to investigate the dynamic behavior of water-lubricated stern bearings during service. A transient rotor dynamics numerical model is developed to research the effects of operating conditions and critical structural parameters on the variation patterns of the dynamic characteristic coefficients and journal orbit of WLBs. The main stiffness and damping formulas for dimensionless bearings are fitted based on numerical results. Additionally, the accuracy of the model calculations is experimentally verified on a water-lubricated bearing test rig. The results demonstrate that the variation trends of the main stiffness and main damping coefficients in the horizontal and vertical directions of the bearings are proportional to the external load and inversely proportional to the rotational speed. Under eccentric excitation, the dynamic characteristic coefficients of the bearings change periodically with time as an approximately sinusoidal function. With the increase in the bearing length-to-diameter ratio or the decrease in the radial clearance-to-radius ratio, the main stiffness and the main damping coefficients in the horizontal direction increase, while the main stiffness coefficient in the vertical direction decreases. This study provides theoretical support for modeling the transient transverse vibration of a propulsion shaft system. Full article
(This article belongs to the Special Issue Friction–Vibration Interactions)
Show Figures

Figure 1

16 pages, 16986 KiB  
Article
Dynamic Analysis of Dual Parallel Spring-Supported Tilting Pad Journal Bearing
by Yingze Jin, Zhicai Wang and Xuefei Zhao
Lubricants 2025, 13(3), 120; https://doi.org/10.3390/lubricants13030120 - 12 Mar 2025
Viewed by 244
Abstract
The elastic-supported tilting pad journal bearing brings new momentum and opportunities for improving the lubrication performance and dynamic stability of high-speed bearing–rotor systems. The objective of this study is to investigate the dynamic and lubrication characteristics of a dual parallel spring-supported tilting pad [...] Read more.
The elastic-supported tilting pad journal bearing brings new momentum and opportunities for improving the lubrication performance and dynamic stability of high-speed bearing–rotor systems. The objective of this study is to investigate the dynamic and lubrication characteristics of a dual parallel spring-supported tilting pad journal bearing (DPSTPJB) system under unbalanced journal excitation. Considering the tilting angle and radial displacement of the pads, a 10-DOF dynamic model of the four-pad DPSTPJB system is established, accounting for the effects of unbalanced load, nonlinear fluid film force, and parallel spring force/moment. Numerical solutions are obtained for the dynamic responses of the journal and pads as well as the minimum film thickness and maximum film pressure. The effects of spring stiffness, stiffness ratio, and included angle on journal vibration, minimum film thickness, and maximum film pressure are revealed. The results show that the parallel spring parameters have a positive effect on the optimization of bearing performance with an optimal stiffness ratio that minimizes journal vibration and optimizes fluid film thickness and pressure. This research provides a theoretical basis for the optimization design and application of the DPSTPJB. Full article
(This article belongs to the Special Issue Friction–Vibration Interactions)
Show Figures

Figure 1

20 pages, 8410 KiB  
Article
A Study on the Lubrication Characteristics and Parameter Influence of a High-Speed Train Herringbone Gearbox
by Shuai Shao, Kailin Zhang, Yuan Yao, Yi Liu, Jieren Yang, Zhuangzhuang Xin and Kuangzhou He
Lubricants 2024, 12(8), 270; https://doi.org/10.3390/lubricants12080270 - 29 Jul 2024
Cited by 5 | Viewed by 1225
Abstract
To investigate the lubrication characteristics in high-speed train gearboxes, a two-stage herringbone gearbox with an idle gear was analyzed. The lubricant flow and distribution were shown using the moving particle semi-implicit (MPS) method. A liquid film flow model was brought in to enhance [...] Read more.
To investigate the lubrication characteristics in high-speed train gearboxes, a two-stage herringbone gearbox with an idle gear was analyzed. The lubricant flow and distribution were shown using the moving particle semi-implicit (MPS) method. A liquid film flow model was brought in to enhance the non-slip wall boundary conditions, enabling MPS to predict the film flow characteristics. This study investigates the influence of gear rotating speed, lubricant volume, and temperature on lubricant flow, liquid film distribution, lubrication state in the meshing zone, and churning power loss. The results indicate that lubrication characteristics depend on the splashing effect of rotating gears and lubricant fluidity. Increasing gear rotating speed and lubricant temperature can improve liquid film distribution on the inner wall, increase lubricant volume, and thus enhance film thickness. The lubricant particles in the meshing zone correlate positively with the gear rotating speed and lubricant volume, correlate negatively with a temperature above 20 °C, and decrease notably at low temperatures. Churning power loss mainly comes from the output gear. As lubricant volume and gear rotating speed increase, churning torque and power loss increase. Above 20 °C, viscosity decreases, reducing power loss; low temperatures lessen lubricant fluidity, reducing churning power loss. Full article
(This article belongs to the Special Issue Friction–Vibration Interactions)
Show Figures

Figure 1

11 pages, 3470 KiB  
Article
The Effect of Lubricant’s Viscosity on Reducing the Frictional-Induced Fluctuation on the Onset of Friction
by Shutian Liu, Juncheng Lv and Chuanbo Liu
Lubricants 2024, 12(4), 136; https://doi.org/10.3390/lubricants12040136 - 17 Apr 2024
Cited by 4 | Viewed by 1505
Abstract
The initial friction stage between the contacting materials would generate a maximum shear force and an unstable fluctuating time, which had a negative effect on the entire frictional system, especially at low temperature conditions. In order to decrease the occurring shear force and [...] Read more.
The initial friction stage between the contacting materials would generate a maximum shear force and an unstable fluctuating time, which had a negative effect on the entire frictional system, especially at low temperature conditions. In order to decrease the occurring shear force and fluctuating time on the onset of friction, two different lubricating oils were applied in this study to investigate the influence of lubricant’s viscosity on these friction behaviors. The frictional experiments were conducted between the steel ball and the 40CrMnMo, and special attention was paid to the relationship between maximum friction force, fluctuating time, frictional vibration and the initial lubricant temperature. The results showed that the friction force first increased to the maximum value and then experienced an oscillation damping period (fluctuating time) before it reached a stable state. And this fluctuating behavior caused corresponding vibrations on the initial contacting. However, compared to the high viscosity lubricating oil (HO), the low viscosity lubricating oil (LO) contributed to more than 50% reductions on max friction force, fluctuating time and vibration at the cold start (0 °C). Moreover, the weakened initial frictional fluctuation was conducive to generating a low and stable friction coefficient (COF) and wear loss of the long-term test. The discrepancy on lubricating performance was that the low viscosity provided high fluidity, which allowed rapid distribution of the lubricant between the contacting surfaces and formed an intact lubricating film. Similarly, the high temperature decreased the viscosity of HO and thus led to satisfactory friction reductions. The knowledge gained herein provides a supporting theory on the design and preparation of a lubricating oil with high performance. Full article
(This article belongs to the Special Issue Friction–Vibration Interactions)
Show Figures

Figure 1

24 pages, 15221 KiB  
Article
Thermal Tribo-Dynamic Behaviors of Water-Lubricated Bearings during Start-Up with Journal Shape Error
by Shouan Chen, Jianlin Cai, Junfu Zhang and Zaixin Liu
Lubricants 2024, 12(4), 106; https://doi.org/10.3390/lubricants12040106 - 23 Mar 2024
Cited by 3 | Viewed by 1709
Abstract
In practical scenarios, journal bearings often exhibit shape errors due to machining imperfections and operational wear. These deviations from perfect roundness can significantly impact the performance of journal bearings during start-up. This study investigates the impact of journal shape errors on transient mixed [...] Read more.
In practical scenarios, journal bearings often exhibit shape errors due to machining imperfections and operational wear. These deviations from perfect roundness can significantly impact the performance of journal bearings during start-up. This study investigates the impact of journal shape errors on transient mixed lubrications, such as water film temperature and asperity contact, as well as on the rotor dynamics of water-lubricated bearings (WLB) at start-up. The simulation results of the developed numerical model are compared with the experimental data from existing studies to verify their accuracy. Following this validation, parametric analyses are conducted using the model. The analytical results indicate that journal shape error increases the temperature rise of the water-lubricated bearing system during start-up. The greater the error in journal shape, the higher the temperature rise, both in terms of shape amplitude and waviness order. Interestingly, the thermal deformation caused by the temperature effect decreases the vertical displacement during start-up. The study also finds that higher start-up speeds lead to quicker temperature increases when shape errors are present. However, these speeds enable the bearing to more rapidly reach the elastohydrodynamic lubrication (EHL) stage, where the temperature rise stabilizes. Therefore, start-up speeds must be carefully selected. Full article
(This article belongs to the Special Issue Friction–Vibration Interactions)
Show Figures

Figure 1

20 pages, 10327 KiB  
Article
Nonlinear Dynamic Analysis of a Spur Gear Pair System with Wear Considering the Meshing Position
by Zhibo Geng, Min Chen, Jiao Wang, Yu Xia, Yun Kong and Ke Xiao
Lubricants 2024, 12(1), 25; https://doi.org/10.3390/lubricants12010025 - 16 Jan 2024
Cited by 5 | Viewed by 2194
Abstract
In this paper, a nonlinear dynamic model of a parallel shaft gear system consisting of two involute spur gears is developed to investigate the coupling effect between the gradual surface wear of gear teeth over time and nonlinear dynamic characteristics. A uniform wear [...] Read more.
In this paper, a nonlinear dynamic model of a parallel shaft gear system consisting of two involute spur gears is developed to investigate the coupling effect between the gradual surface wear of gear teeth over time and nonlinear dynamic characteristics. A uniform wear model that accounts for how the volumetric wear of the gear teeth affect their meshing position, backlash, and stiffness is proposed. Additionally, a nonlinear dynamic model with six degrees of freedom is described that considers friction, time-varying gear backlash, and time-varying meshing stiffness. The proposed model significantly changes the mesh stiffness, not only in terms of value but also in terms of contact ratio. Furthermore, the nonlinear dynamic characteristics of the gear system vary significantly. It is found that the gradual wear of gear teeth affects the meshing position and further has a significant impact on the nonlinear dynamic characteristics of the spur gear system. This paper provides a basis for studying the nonlinear dynamic characteristics of the spur gear system as it experiences the gradual wear of teeth over time. Full article
(This article belongs to the Special Issue Friction–Vibration Interactions)
Show Figures

Figure 1

21 pages, 4201 KiB  
Article
Study on the Dynamic Characteristics of Gears Considering Surface Topography in a Mixed Lubrication State
by Gong Cheng, Jianzuo Ma, Junyang Li, Kang Sun, Kang Wang and Yun Wang
Lubricants 2024, 12(1), 7; https://doi.org/10.3390/lubricants12010007 - 27 Dec 2023
Cited by 3 | Viewed by 2397
Abstract
Based on mixed lubrication analysis, considering the influence of rough interface contact stiffness, contact damping, and interface friction on the gear transmission system, the relationship between interface contact and the overall performance of the gear transmission system has been established. First, the surface [...] Read more.
Based on mixed lubrication analysis, considering the influence of rough interface contact stiffness, contact damping, and interface friction on the gear transmission system, the relationship between interface contact and the overall performance of the gear transmission system has been established. First, the surface topography is characterized using statistical parameters of rough surfaces, and the contact stiffness and damping for tooth surfaces with different roughnesses are calculated. Subsequently, a six degree of freedom gear tribo-dynamics coupling model is developed. Finally, the established tribo-dynamics model is employed to investigate the relationship between surface roughness and the overall performance of the gear transmission system. This study provides a more intimate connection between the contact interface and the general behavior of the gear transmission system, enabling a better representation of real-world engineering problems. The research findings reveal that contact stiffness and damping decrease with increasing surface roughness. Higher roughness leads to greater gear vibration amplitude. Moreover, elevated surface roughness results in intensified meshing force and more significant energy loss. Surprisingly, when the roughness is appropriate, gears with rough surfaces lose less energy than those with smooth surfaces. Full article
(This article belongs to the Special Issue Friction–Vibration Interactions)
Show Figures

Figure 1

Back to TopTop