Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = time-domain anti-jamming

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3953 KiB  
Article
A New Signal Separation and Sampling Duration Estimation Method for ISRJ Based on FRFT and Hybrid Modality Fusion Network
by Siyu Wang, Chang Zhu, Zhiyong Song, Zhanling Wang and Fulai Wang
Remote Sens. 2025, 17(15), 2648; https://doi.org/10.3390/rs17152648 - 30 Jul 2025
Viewed by 218
Abstract
Accurate estimation of Interrupted Sampling Repeater Jamming (ISRJ) sampling duration is essential for effective radar anti-jamming. However, in complex electromagnetic environments, the simultaneous presence of suppressive and deceptive jamming, coupled with significant signal overlap in the time–frequency domain, renders ISRJ separation and parameter [...] Read more.
Accurate estimation of Interrupted Sampling Repeater Jamming (ISRJ) sampling duration is essential for effective radar anti-jamming. However, in complex electromagnetic environments, the simultaneous presence of suppressive and deceptive jamming, coupled with significant signal overlap in the time–frequency domain, renders ISRJ separation and parameter estimation considerably challenging. To address this challenge, this paper proposes a method utilizing the Fractional Fourier Transform (FRFT) and a Hybrid Modality Fusion Network (HMFN) for ISRJ signal separation and sampling-duration estimation. The proposed method first employs FRFT and a time–frequency mask to separate the ISRJ and target echo from the mixed signal. This process effectively suppresses interference and extracts the ISRJ signal. Subsequently, an HMFN is employed for high-precision estimation of the ISRJ sampling duration, offering crucial parameter support for active electromagnetic countermeasures. Simulation results validate the performance of the proposed method. Specifically, even under strong interference conditions with a Signal-to-Jamming Ratio (SJR) of −5 dB for deceptive jamming and as low as −10 dB for suppressive jamming, the regression model’s coefficient of determination still reaches 0.91. This result clearly demonstrates the method’s robustness and effectiveness in complex electromagnetic environments. Full article
Show Figures

Figure 1

19 pages, 3954 KiB  
Article
Constant Modulus Wideband MIMO Radar Waveform Design for Transmit Beampattern and Angular Waveform Synthesis
by Hao Zheng, Xiaoxia Zhang, Shubin Wang and Junkun Yan
Remote Sens. 2025, 17(13), 2124; https://doi.org/10.3390/rs17132124 - 20 Jun 2025
Viewed by 361
Abstract
A linear frequency modulation (LFM) signal and its corresponding de-chirp operation are one of the basic methods for wideband radar signal processing, which can reduce the burden of the radar system sampling rate and is more suitable for large-bandwidth signal processing. More importantly, [...] Read more.
A linear frequency modulation (LFM) signal and its corresponding de-chirp operation are one of the basic methods for wideband radar signal processing, which can reduce the burden of the radar system sampling rate and is more suitable for large-bandwidth signal processing. More importantly, most existing methods against interrupted sampling repeater jamming (ISRJ) are based on time–frequency (TF) or frequency domain analysis of the de-chirped signal. However, the above anti-ISRJ methods cannot be directly applied to multiple-input multiple-output (MIMO) radar with multiple beams, because the angular waveform (AW) in mainlobe directions does not possess the TF properties of the LFM signal. Consequently, this work focuses on the co-optimization of transmit beampattern and AW similarity in wideband MIMO radar systems. Different from the existing works, which only concern the space–frequency pattern of the transmit waveform, we recast the transmit beampattern and AW expressions for wideband MIMO radar in a more compact form. Based on the compact expressions, a co-optimization model of the transmit beampattern and AWs is formulated where the similarity constraint is added to force the AW to share the TF properties of the LFM signal. An algorithm based on the alternating direction method of multipliers (ADMM) framework is proposed to address the aforementioned problem. Numerical simulations show that the optimized waveform can form the desired transmit beampattern and its AWs have similar TF properties and de-chirp results to the LFM signal. Full article
Show Figures

Figure 1

29 pages, 5705 KiB  
Article
An Anti-Interrupted-Sampling Repeater Jamming Method Based on Simulated Annealing–2-Optimization Parallel Optimization of Waveforms and Fractional Domain Extraction
by Ziming Yin, Pengcheng Guo, Yunyu Wei, Sizhe Gao, Jingjing Wang, Anxiang Xue and Kuo Wang
Sensors 2025, 25(10), 3000; https://doi.org/10.3390/s25103000 - 9 May 2025
Viewed by 412
Abstract
Faced with increasingly complex electronic jamming environments, intra-pulse agility has become a primary method of anti-interrupted-sampling repeater jamming (ISRJ) for radar systems. However, existing intra-pulse agile signals suffer from high autocorrelation sidelobe levels and limited jamming suppression capabilities. These issues restrict the performance [...] Read more.
Faced with increasingly complex electronic jamming environments, intra-pulse agility has become a primary method of anti-interrupted-sampling repeater jamming (ISRJ) for radar systems. However, existing intra-pulse agile signals suffer from high autocorrelation sidelobe levels and limited jamming suppression capabilities. These issues restrict the performance of intra-pulse agile signals in complex electromagnetic environments.This paper proposes an anti-interrupted-sampling repeater jamming method based on Simulated Annealing–2-optimization (SA-2opt) parallel optimization of waveforms and fractional domain extraction. Firstly, the proposed method employs the SA-2opt parallel optimization algorithm to optimize the joint frequency and chirp rate encoding waveform. Then, the received signal is subjected to the fractional Fourier transform (FrFT) and inverse transform to extract the target signal. Finally, jamming detection is conducted based on the multi-dimensional features of the pulse-compressed signal. After this detection, a time-domain filter is constructed to achieve jamming suppression. The optimized waveform exhibits the following advantages: the sub-pulses are orthogonal to each other, and autocorrelation sidelobe levels are as low as -20.7dB. The method proposed in this paper can achieve anti-ISRJ in the case of a high jamming-to-signal ratio (JSR). Simulation experiments validate both the effectiveness of the optimized waveform in achieving low autocorrelation sidelobes and the anti-ISRJ performance of the proposed method. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

17 pages, 905 KiB  
Article
Jamming Detection and Suppression Technique for OTFS Systems in an AWGN Channel
by Lintao Li, Pu Wang, Dexing Zhan, Hua Li and Jiayi Lv
Electronics 2025, 14(7), 1286; https://doi.org/10.3390/electronics14071286 - 25 Mar 2025
Viewed by 584
Abstract
Orthogonal time frequency space (OTFS) modulation is a promising waveform for future wireless communication, offering robustness against time-varying channels and Doppler effects in high-mobility scenarios. However, the anti-jamming capabilities of OTFS systems remain underexplored, leaving gaps in understanding their potential in jamming-prone environments. [...] Read more.
Orthogonal time frequency space (OTFS) modulation is a promising waveform for future wireless communication, offering robustness against time-varying channels and Doppler effects in high-mobility scenarios. However, the anti-jamming capabilities of OTFS systems remain underexplored, leaving gaps in understanding their potential in jamming-prone environments. In this work, we mainly focus on the jamming detection and suppression methods for OTFS systems in additive an white Gaussian noise (AWGN) channel. A frequency-domain anti-jamming technique is presented, employing a time-domain overlapping window approach to reduce jamming sidelobes while mitigating the signal-to-noise ratio (SNR) degradation caused by the window function. Additionally, a smoothing window method is introduced to provide stable samples for jamming detection, effectively reducing the false alarm rate. Furthermore, a low-complexity improved forward consecutive mean excision (FCME) algorithm is proposed, enhancing its practicality and making it more suitable for real-world applications. Finally, the effectiveness of the proposed anti-jamming methods is validated through simulation analyses under single-tone and partial-band jamming scenarios. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

16 pages, 6685 KiB  
Article
Signal Processing for Novel Noise Radar Based on de-chirp and Delay Matching
by Xinquan Cao, Shiyuan Zhang, Ke Tan, Jianchao Yang, Xingyu Lu, Zheng Dai and Hong Gu
Sensors 2024, 24(22), 7169; https://doi.org/10.3390/s24227169 - 8 Nov 2024
Viewed by 1315
Abstract
Modern radar technology requires high-quality signals and detection performance. However, traditional frequency-modulated continuous wave (FMCW) radar often has poor anti-jamming capabilities, and the high sampling rates associated with large time-bandwidth product signals can lead to increased system hardware costs and reduced data processing [...] Read more.
Modern radar technology requires high-quality signals and detection performance. However, traditional frequency-modulated continuous wave (FMCW) radar often has poor anti-jamming capabilities, and the high sampling rates associated with large time-bandwidth product signals can lead to increased system hardware costs and reduced data processing efficiency. This paper constructed a composite radar waveform based on noise frequency modulation (NFM) and linear frequency modulation (LFM) signals, enhancing the signal’s complexity and anti-jamming capability. Furthermore, a method for optimizing the processing of echo signals based on de-chirp and delay matching is proposed. The locally generated LFM signal is used to de-chirp the received echoes, resulting in a narrowband difference frequency noise signal. Subsequently, delay matching is performed in the fast time domain using the locally generated NFM signal according to the number of sampling points in the traversal processing period, allowing for the acquisition of target delay information. While reducing the analog-to-digital (A/D) sampling rate, the detection performance for wideband echo signals under high sampling rates is still maintained, with sidelobe levels and range resolution preserved. Accumulating this information in the slow time domain enables accurate target detection. The effectiveness of the proposed method is validated through simulation experiments. Full article
(This article belongs to the Special Issue Signal Processing in Radar Systems)
Show Figures

Figure 1

19 pages, 6239 KiB  
Article
Robust Wideband Interference Suppression Method for GNSS Array Antenna Receiver via Hybrid Beamforming Technique
by Zhenxing Xu, Qijia Dong, Shenyang Li, Fuzhan Yue, Meng Wang, Zhenghuan Xia, Xiao Chen, Shuangna Zhang, Guoji Zou and Huizheng Wang
Remote Sens. 2024, 16(11), 1913; https://doi.org/10.3390/rs16111913 - 26 May 2024
Cited by 2 | Viewed by 1887
Abstract
Global navigation satellite system (GNSS) array antenna receivers are widely used to suppress wideband interference in navigation countermeasures. However, existing array antenna receivers all adopt a digital array structure and digital beamforming technique, and they have limited analog-front-end (AFE) dynamic range. In strong [...] Read more.
Global navigation satellite system (GNSS) array antenna receivers are widely used to suppress wideband interference in navigation countermeasures. However, existing array antenna receivers all adopt a digital array structure and digital beamforming technique, and they have limited analog-front-end (AFE) dynamic range. In strong interference scenarios, AFE saturation will occur, which limits the maximum interference suppression ability of the array receiver. Aiming at this issue, this paper proposes a robust wideband interference suppression method for GNSS array antenna receivers based on a hybrid beamforming technique. Firstly, a novel, fully connected hybrid array receiver structure is proposed. Secondly, the corresponding hybrid beamforming method is proposed at the same time, and it realizes the complete elimination of the strong wideband interference by joint suppression in the analog domain and digital domain. After mathematical simulations, it is verified that, compared to the digital beamforming-based anti-jamming technique, the proposed method can effectively suppress strong wideband interference, and the maximum interference suppression ability is improved by 36 dB. Full article
(This article belongs to the Special Issue Satellite Navigation and Signal Processing (Second Edition))
Show Figures

Figure 1

19 pages, 10571 KiB  
Article
Carrier-Free Ultra-Wideband Sensor Target Recognition in the Jungle Environment
by Jianchao Li, Shuning Zhang, Lingzhi Zhu, Si Chen, Linsheng Hou, Xiaoxiong Li and Kuiyu Chen
Remote Sens. 2024, 16(9), 1549; https://doi.org/10.3390/rs16091549 - 26 Apr 2024
Cited by 1 | Viewed by 1357
Abstract
Carrier-free ultra-wideband sensors have high penetrability anti-jamming solid ability, which is not easily affected by the external environment, such as weather. Also, it has good performance in the complex jungle environment. In this paper, we propose a jungle vehicle identification system based on [...] Read more.
Carrier-free ultra-wideband sensors have high penetrability anti-jamming solid ability, which is not easily affected by the external environment, such as weather. Also, it has good performance in the complex jungle environment. In this paper, we propose a jungle vehicle identification system based on a carrier-free ultra-wideband sensor. Firstly, a composite jungle environment with the target vehicle is modeled. From this model, the simulation obtains time-domain echoes under the excitation of carrier-free ultra-wideband sensor signals in different orientations. Secondly, the time-domain signals are transformed into MTF images through the Markov transfer field to show the statistical characteristics of the time-domain echoes. At the same time, we propose an improved RepVGG network. The structure of the RepVGG network contains five stages, which consist of several RepVGG Blocks. Each RepVGG Block is created by combining convolutional kernels of different sizes using a weighted sum. We add the self-attention module to the output of stage 0 to improve the ability to extract the features of the MTF map and better capture the complex relationship between characteristics during training. In addition, a self-attention module is added before the linear layer classification output in stage 4 to improve the classification accuracy of the network. Moreover, a combined cross-entropy loss and sparsity penalty loss function helps enhance the performance and accuracy of the network. The experimental results show that the system can recognize jungle vehicle targets well. Full article
(This article belongs to the Topic Radar Signal and Data Processing with Applications)
Show Figures

Figure 1

16 pages, 3413 KiB  
Article
Adaptive Spectrum Anti-Jamming in UAV-Enabled Air-to-Ground Networks: A Bimatrix Stackelberg Game Approach
by Longbo Cheng, Zixuan Xu, Jianshan Zhou, Daxin Tian, Xuting Duan, Kaige Qu and Dezong Zhao
Electronics 2023, 12(20), 4344; https://doi.org/10.3390/electronics12204344 - 19 Oct 2023
Cited by 1 | Viewed by 2941
Abstract
Anti-jamming communication technology is one of the most critical technologies for establishing secure and reliable communication between unmanned aerial vehicles (UAVs) and ground units. The current research on anti-jamming technology focuses primarily on the power and spatial domains and does not target the [...] Read more.
Anti-jamming communication technology is one of the most critical technologies for establishing secure and reliable communication between unmanned aerial vehicles (UAVs) and ground units. The current research on anti-jamming technology focuses primarily on the power and spatial domains and does not target the issue of intelligent jammer attacks on communication channels. We propose a game-theoretical center frequency selection method for UAV-enabled air-to-ground (A2G) networks to address this challenge. Specifically, we model the central frequency selection problem as a Stackelberg game between the UAV and the jammer, where the UAV is the leader and the jammer is the follower. We develop a formal matrix structure for characterizing the payoff of the UAV and the jammer and theoretically prove that the mixed Nash equilibrium of such a bimatrix Stackelberg game is equivalent to the optimal solution of a linear programming model. Then, we propose an efficient game algorithm via linear programming. Building on this foundation, we champion an efficacious algorithm, underpinned by our novel linear programming solution paradigm, ensuring computational feasibility with polynomial time complexity. Simulation experiments show that our game-theoretical approach can achieve Nash equilibrium and outperform traditional schemes, including the Frequency-Hopping Spread Spectrum (FHSS) and the Random Selection (RS) schemes, in terms of higher payoff and better stability. Full article
Show Figures

Figure 1

21 pages, 6823 KiB  
Article
Research on an Intra-Pulse Orthogonal Waveform and Methods Resisting Interrupted-Sampling Repeater Jamming within the Same Frequency Band
by Huahua Dai, Yingxiao Zhao, Hanning Su, Zhuang Wang, Qinglong Bao and Jiameng Pan
Remote Sens. 2023, 15(14), 3673; https://doi.org/10.3390/rs15143673 - 23 Jul 2023
Cited by 8 | Viewed by 1691
Abstract
Interrupted-sampling repeater jamming (ISRJ) is a kind of intra-pulse coherent deception jamming that can generate false target peaks in the range profile and interfere with the detection and tracking of real targets. In this paper, an anti-ISRJ method based on the intra-pulse orthogonal [...] Read more.
Interrupted-sampling repeater jamming (ISRJ) is a kind of intra-pulse coherent deception jamming that can generate false target peaks in the range profile and interfere with the detection and tracking of real targets. In this paper, an anti-ISRJ method based on the intra-pulse orthogonal waveform is proposed, which can recognize common interference signals by comparing sub-signal matched filtering results. For some special scenes where real targets cannot be directly differentiated from false targets, a new recognition method based on the energy discontinuity of the interference signal in the time domain is proposed in this paper. The method proposed in this paper can recognize real and false targets in all ISRJ modes without any prior information, such as jammer parameters, with a small amount of calculation, which is suitable for actual radar systems. Simulation experiments using different interference parameters show that although this method has a 3 dB loss of pulse compression gain, it can completely suppress different kinds of ISRJ interference when the SNR before pulse compression is higher than −20 dB, with 100% target detection probability. Full article
(This article belongs to the Topic Radar Signal and Data Processing with Applications)
Show Figures

Figure 1

25 pages, 1756 KiB  
Article
An Anti-Intermittent Sampling Jamming Technique Utilizing the OTSU Algorithm of Random Orthogonal Sub-Pulses
by Haihong Zhan, Tao Wang, Tai Guo and Xingde Su
Remote Sens. 2023, 15(12), 3080; https://doi.org/10.3390/rs15123080 - 12 Jun 2023
Cited by 5 | Viewed by 1861
Abstract
The utilization of intermittent sampling jamming can engender a lofty verisimilitude false target cluster that exhibits coherence with the transmitted signal. Such an assemblage bears the hallmarks of both suppression jamming and deceitful jamming, capable of inflicting substantial impairment upon the radar, potentially [...] Read more.
The utilization of intermittent sampling jamming can engender a lofty verisimilitude false target cluster that exhibits coherence with the transmitted signal. Such an assemblage bears the hallmarks of both suppression jamming and deceitful jamming, capable of inflicting substantial impairment upon the radar, potentially leading to its profound incapacitation. Henceforth, the precise discernment of the target and various forms of intermittent sampling jamming emerges as a novel endeavor. In response to this predicament, this paper posits a pulsed radar waveform featuring intra-pulse random orthogonal frequency modulation (FM) and inter-pulse phase coherence. This innovative approach not only presents formidable challenges for the jammer in acquiring radar waveform parameters, but also bolsters the radar’s low probability of intercept (LPI), while maintaining the phase coherence of sub-pulses between pulses. Furthermore, based on this waveform, the characteristics of the intermittent sampling jamming signal and its differences from the target echo signal are analyzed in the time domain, frequency domain, time-frequency domain, and pulse compression domain. Building upon these findings, this paper proposes the sub-division algorithms for typical types of intermittent sampling jamming under this waveform: the full-pulses multi-level maximum inter-class variance and sub-pulses multi-level maximum inter-class variance anti-intermittent sampling jamming algorithms. Simulation analysis demonstrates that this waveform and the anti-jamming algorithms can accurately identify and effectively counteract different types of intermittent sampling jamming in typical scenarios. Full article
(This article belongs to the Special Issue Advanced Radar Signal Processing and Applications)
Show Figures

Figure 1

17 pages, 13416 KiB  
Article
A Non-Uniform Interrupted-Sampling Repeater Jamming Method for Intra-Pulse Frequency Agile Radar
by Zongzheng Sun, Yinghui Quan and Zhixing Liu
Remote Sens. 2023, 15(7), 1851; https://doi.org/10.3390/rs15071851 - 30 Mar 2023
Cited by 12 | Viewed by 2382
Abstract
The existing research proposes an intra-pulse frequency agile radar waveform with “active” anti-jamming characteristics. It uses the discontinuity and periodicity of the interrupted-sampling repeater jamming and combines the anti-jamming algorithm to effectively suppress interrupted-sampling repeater jamming. In order to improve the jamming effectiveness [...] Read more.
The existing research proposes an intra-pulse frequency agile radar waveform with “active” anti-jamming characteristics. It uses the discontinuity and periodicity of the interrupted-sampling repeater jamming and combines the anti-jamming algorithm to effectively suppress interrupted-sampling repeater jamming. In order to improve the jamming effectiveness of the interferer for the intra-pulse frequency agile waveform, this paper proposes to jam the intra-pulse frequency agile radar by using a non-uniform interrupted-sampling and forwarding method under parameter constraints. The proposed method first obtains the sub-pulse width of the intra-pulse frequency agile radar waveform by parameter estimation of the intercepted intra-pulse frequency agile radar signal through time–frequency ridge extraction and wavelet transform. Then, we construct non-uniform interrupted-sampling repeater jamming based on sub-pulse width constraint interference parameters. Theoretical analysis and results show that the non-uniform interrupted-sampling forwarding under parameter constraints makes it challenging to suppress interference in multiple domains, such as the time–frequency and pulse compression domain for intra-pulse frequency agile radar, which significantly improves the jamming capability of the jammer for intra-pulse frequency agile radar. Full article
Show Figures

Graphical abstract

16 pages, 7757 KiB  
Article
DRFM-Based Repeater Jamming Reconstruction and Cancellation Method with Accurate Edge Detection
by Bowen Han, Xiaodong Qu, Xiaopeng Yang, Wolin Li and Zhengyan Zhang
Remote Sens. 2023, 15(7), 1759; https://doi.org/10.3390/rs15071759 - 24 Mar 2023
Cited by 20 | Viewed by 3775
Abstract
Digital radio frequency memory (DRFM) based repeater jamming can create false targets, which can lead to a loss of situational awareness, misidentification of targets, and decreased overall performance of the radar system. Traditional jamming suppression methods do not give due importance to the [...] Read more.
Digital radio frequency memory (DRFM) based repeater jamming can create false targets, which can lead to a loss of situational awareness, misidentification of targets, and decreased overall performance of the radar system. Traditional jamming suppression methods do not give due importance to the accurate estimation of the jamming edge, resulting in jamming residual and poor anti-jamming performance. To tackle this issue, this paper explores the reason and impact of inaccurate jamming edge estimation and proposes a DRFM-based repeater jamming reconstruction and cancellation method with accurate edge detection. In the proposed method, firstly, multiple jamming parameters are obtained by computing the short-time fractional Fourier transformation (STFRFT) spectrogram of the received signal. To avoid jamming residue, the proposed method estimates the accurate jamming edges by the joint use of the difference of box (DOB) filters and time domain deconvolution (TDDC) curves. Numerical simulations and experiments are conducted to evaluate the algorithm’s effectiveness in countering smeared spectrum (SMSP) and interrupted sampling repeater jamming (ISRJ). The results demonstrate its superior jamming reconstruction and suppression performance than other methods. Full article
(This article belongs to the Special Issue Advanced Radar Signal Processing and Applications)
Show Figures

Figure 1

25 pages, 5125 KiB  
Article
Airborne Radar Anti-Jamming Waveform Design Based on Deep Reinforcement Learning
by Zexin Zheng, Wei Li and Kun Zou
Sensors 2022, 22(22), 8689; https://doi.org/10.3390/s22228689 - 10 Nov 2022
Cited by 18 | Viewed by 3600
Abstract
Airborne radars are susceptible to a large number of clutter, noise and variable jamming signals in the real environment, especially when faced with active main lobe jamming, as the waveform shortcut technology in the traditional regime can no longer meet the actual battlefield [...] Read more.
Airborne radars are susceptible to a large number of clutter, noise and variable jamming signals in the real environment, especially when faced with active main lobe jamming, as the waveform shortcut technology in the traditional regime can no longer meet the actual battlefield radar anti-jamming requirements. Therefore, it is necessary to study anti-main-lobe jamming techniques for airborne radars in complex environments to improve their battlefield survivability. In this paper, we propose an airborne radar waveform design method based on a deep reinforcement learning (DRL) algorithm under clutter and jamming conditions, after previous research on reinforcement-learning (RL)-based airborne radar anti-jamming waveform design methods that have improved the anti-jamming performance of airborne radars. The method uses a Markov decision process (MDP) to describe the complex operating environment of airborne radars, calculates the value of the radar anti-jamming waveform strategy under various jamming states using deep neural networks and designs the optimal anti-jamming waveform strategy for airborne radars based on the duelling double deep Q network (D3QN) algorithm. In addition, the method uses an iterative transformation method (ITM) to generate the time domain signals of the optimal waveform strategy. Simulation results show that the airborne radar waveform designed based on the deep reinforcement learning algorithm proposed in this paper improves the signal-to-jamming plus noise ratio (SJNR) by 2.08 dB and 3.03 dB, and target detection probability by 26.79% and 44.25%, respectively, compared with the waveform designed based on the reinforcement learning algorithm and the conventional linear frequency modulation (LFM) signal at a radar transmit power of 5 W. The airborne radar waveform design method proposed in this paper helps airborne radars to enhance anti-jamming performance in complex environments while further improving target detection performance. Full article
Show Figures

Figure 1

15 pages, 4739 KiB  
Article
Sidelobes Suppression for Time Domain Anti-Jamming of Satellite Navigation Receivers
by Wenxiang Liu, Zukun Lu, Zhiying Wang, Xianghao Li, Zongnan Li, Wei Xiao, Xiaozhou Ye, Zhi Wang, Jie Song, Jia Qiao and Baiyu Li
Remote Sens. 2022, 14(21), 5609; https://doi.org/10.3390/rs14215609 - 7 Nov 2022
Cited by 5 | Viewed by 2751
Abstract
The global satellite navigation system represented by global position systems (GPS) has been widely used in civil and military fields, and has become an important cornerstone of space-time information services. However, the frequency band of satellite navigation signals is open, and the frequency [...] Read more.
The global satellite navigation system represented by global position systems (GPS) has been widely used in civil and military fields, and has become an important cornerstone of space-time information services. However, the frequency band of satellite navigation signals is open, and the frequency points overlap with some radars and communication systems, which brings challenges to the application of satellite navigation. Time-domain adaptive filtering technology is a typical anti-jamming method which can suppress the narrow-band interference faced by satellite navigation. However, in the process of suppressing narrow-band interference, the navigation signal will be distorted, which is mainly reflected in the distortion of the spectrum of the navigation signal, which will lead to the enhancement of the side lobes in the correlation function. In this paper, we focus on time-domain adaptive anti-jamming, study the mechanism of correlation function sidelobes lift caused by narrow-band interference suppression, and propose a correlation function sidelobes suppression method based on time-domain adaptive anti-jamming, which can be realized without losing anti-jamming performance. The simulation experiment verifies the validity of the mechanism analysis of the sidelobes lift of the correlation function and the effectiveness of the proposed method. The analysis results and the proposed method are of great significance, which is reflected in the improvement of the anti-jamming performance and acquisition performance of satellite navigation receivers. Full article
(This article belongs to the Section Satellite Missions for Earth and Planetary Exploration)
Show Figures

Figure 1

15 pages, 4382 KiB  
Technical Note
Robust Anti-Jamming Algorithm Based on Transmit/Receive Time-Sharing Technology
by Baiyu Li, Zukun Lu, Jie Song, Wei Xiao, Jia Qiao, Long Huang, Zhibin Xiao and Baojun Lin
Machines 2022, 10(10), 952; https://doi.org/10.3390/machines10100952 - 19 Oct 2022
Cited by 1 | Viewed by 2426
Abstract
Transmit/Receive (T/R) time-sharing is a critical technology to ensure accurate space–time reference information of navigation signals, which solves the problem of co-channel interference between receiver and transmitter. The rapid development of the electronic information industry has led to severe frequency band conflicts between [...] Read more.
Transmit/Receive (T/R) time-sharing is a critical technology to ensure accurate space–time reference information of navigation signals, which solves the problem of co-channel interference between receiver and transmitter. The rapid development of the electronic information industry has led to severe frequency band conflicts between different electronic systems. Satellite navigation receivers must take measures to suppress interference to eliminate the effects of narrowband interference, mainly unintentional interference. Time-domain anti-jamming is widely used in navigation receivers for its simple and easy advantages in ensuring the validity and stability of navigation data. However, because the satellite-ground link receivers adopt transmit/receive time-sharing technology to realize the bidirectional measurement and communication function of the link, the stability of the data solution is greatly affected by anti-interference in the time domain. The anti-jamming filter of the traditional navigation receiver usually re-converges from the initial state in each signal-receiving time slot, which leads to the receiver losing high volume data due to repeated convergence. This paper proposes a robust time-domain anti-jamming technology based on transmit/receive time-sharing technology. The continuity and stability of the interference signal are used to obtain the preliminary information of the periodic transceiver. The results show that robust anti-jamming technology based on a T/R time-sharing navigation signal can effectively improve the carrier-to-noise ratio loss and data loss caused by traditional time-domain anti-jamming technology, reduce the convergence time to nanosecond level, and has bright prospects in the future application of other navigation systems. Full article
Show Figures

Figure 1

Back to TopTop