Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (308)

Search Parameters:
Keywords = time slot optimization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 2947 KiB  
Article
Optimization and Empirical Study of Departure Scheduling Considering ATFM Slot Adherence
by Zheng Zhao, Siqi Zhao, Yahao Zhang and Jie Leng
Aerospace 2025, 12(8), 683; https://doi.org/10.3390/aerospace12080683 - 30 Jul 2025
Abstract
Departure punctuality (KPI01) and ATFM slot adherence (KPI03) have been emphasized by the International Civil Aviation Organization as key performance indicators (KPIs) in the Global Air Navigation Plan. To address the inherent conflict between these two objectives in departure scheduling, a multi-objective optimization [...] Read more.
Departure punctuality (KPI01) and ATFM slot adherence (KPI03) have been emphasized by the International Civil Aviation Organization as key performance indicators (KPIs) in the Global Air Navigation Plan. To address the inherent conflict between these two objectives in departure scheduling, a multi-objective optimization model is proposed that aims to simultaneously enhance departure punctuality, ATFM slot adherence, and taxiing efficiency. A simulated annealing algorithm based on a resource transmission mechanism was developed to solve the model effectively. Based on full-scale operational data from Nanjing Lukou International Airport in June 2023, the empirical results confirm the model’s effectiveness in two primary dimensions: (1) Significant improvement in taxiing efficiency: The average unimpeded taxi-out time was reduced by 6.4% (from 17.2 to 16.1 min). The number of flights with taxi-out times exceeding 30 min decreased by 58%. For representative taxi routes (e.g., stand 118 to runway 6), the excess taxi-out time was reduced by 82.3% (from 5.61 to 1.10 min). (2) Enhanced operational punctuality: Departure punctuality improved by 10.7% (from 67.9% to 78.7%), while ATFM slot adherence increased by 31.2% (from 64.6% to 95.8%). This study presents an innovative departure scheduling approach and offers a practical framework for improving collaborative operational efficiency among airports, air traffic management units, and airlines. Full article
(This article belongs to the Section Air Traffic and Transportation)
Show Figures

Figure 1

19 pages, 3297 KiB  
Article
Secrecy Rate Maximization via Joint Robust Beamforming and Trajectory Optimization for Mobile User in ISAC-UAV System
by Lvxin Xu, Zhi Zhang and Liuguo Yin
Drones 2025, 9(8), 536; https://doi.org/10.3390/drones9080536 - 30 Jul 2025
Abstract
Unmanned aerial vehicles (UAVs) have emerged as a promising platform for integrated sensing and communication (ISAC) due to their mobility and deployment flexibility. By adaptively adjusting their flight trajectories, UAVs can maintain favorable line-of-sight (LoS) communication links and sensing angles, thus enhancing overall [...] Read more.
Unmanned aerial vehicles (UAVs) have emerged as a promising platform for integrated sensing and communication (ISAC) due to their mobility and deployment flexibility. By adaptively adjusting their flight trajectories, UAVs can maintain favorable line-of-sight (LoS) communication links and sensing angles, thus enhancing overall system performance in dynamic and complex environments. However, ensuring physical layer security (PLS) in such UAV-assisted ISAC systems remains a significant challenge, particularly in the presence of mobile users and potential eavesdroppers. This manuscript proposes a joint optimization framework that simultaneously designs robust transmit beamforming and UAV trajectories to secure downlink communication for multiple ground users. At each time slot, the UAV predicts user positions and maximizes the secrecy sum-rate, subject to constraints on total transmit power, multi-target sensing quality, and UAV mobility. To tackle this non-convex problem, we develop an efficient optimization algorithm based on successive convex approximation (SCA) and constrained optimization by linear approximations (COBYLA). Numerical simulations validate that the proposed framework effectively enhances the secrecy performance while maintaining high-quality sensing, achieving near-optimal performance under realistic system constraints. Full article
Show Figures

Figure 1

29 pages, 1659 KiB  
Article
A Mixed-Integer Programming Framework for Drone Routing and Scheduling with Flexible Multiple Visits in Highway Traffic Monitoring
by Nasrin Mohabbati-Kalejahi, Sepideh Alavi and Oguz Toragay
Mathematics 2025, 13(15), 2427; https://doi.org/10.3390/math13152427 - 28 Jul 2025
Viewed by 226
Abstract
Traffic crashes and congestion generate high social and economic costs, yet traditional traffic monitoring methods, such as police patrols, fixed cameras, and helicopters, are costly, labor-intensive, and limited in spatial coverage. This paper presents a novel Drone Routing and Scheduling with Flexible Multiple [...] Read more.
Traffic crashes and congestion generate high social and economic costs, yet traditional traffic monitoring methods, such as police patrols, fixed cameras, and helicopters, are costly, labor-intensive, and limited in spatial coverage. This paper presents a novel Drone Routing and Scheduling with Flexible Multiple Visits (DRSFMV) framework, an optimization model for planning drone-based highway monitoring under realistic operational constraints, including battery limits, variable monitoring durations, recharging at a depot, and target-specific inter-visit time limits. A mixed-integer nonlinear programming (MINLP) model and a linearized version (MILP) are presented to solve the problem. Due to the NP-hard nature of the underlying problem structure, a heuristic solver, Hexaly, is also used. A case study using real traffic census data from three Southern California counties tests the models across various network sizes and configurations. The MILP solves small and medium instances efficiently, and Hexaly produces high-quality solutions for large-scale networks. Results show clear trade-offs between drone availability and time-slot flexibility, and demonstrate that stricter revisit constraints raise operational cost. Full article
Show Figures

Figure 1

18 pages, 3199 KiB  
Article
Geomechanical Basis for Assessing Open-Pit Slope Stability in High-Altitude Gold Mining
by Farit Nizametdinov, Rinat Nizametdinov, Denis Akhmatnurov, Nail Zamaliyev, Ravil Mussin, Nikita Ganyukov, Krzysztof Skrzypkowski, Waldemar Korzeniowski, Jerzy Stasica and Zbigniew Rak
Appl. Sci. 2025, 15(15), 8372; https://doi.org/10.3390/app15158372 - 28 Jul 2025
Viewed by 208
Abstract
The development of mining operations in high-altitude regions is associated with a number of geomechanical challenges caused by increased rock fracturing, adverse climatic conditions, and high seismic activity. These issues are particularly relevant for the exploitation of gold ore deposits, where the stability [...] Read more.
The development of mining operations in high-altitude regions is associated with a number of geomechanical challenges caused by increased rock fracturing, adverse climatic conditions, and high seismic activity. These issues are particularly relevant for the exploitation of gold ore deposits, where the stability of open-pit slopes directly affects both safety and extraction efficiency. The aim of this study is to develop and practically substantiate a comprehensive approach to assessing and ensuring slope stability, using the Bozymchak gold ore deposit—located in a high-altitude and seismically active zone—as a case study. The research involves the laboratory testing of rock samples obtained from engineering–geological boreholes, field shear tests on rock prisms, laser scanning of pit slopes, and digital geomechanical modeling. The developed calculation schemes take into account the structural features of the rock mass, geological conditions, and the design contours of the pit. In addition, special bench excavation technologies with pre-shear slotting and automated GeoMoS monitoring are implemented for real-time slope condition tracking. The results of the study make it possible to reliably determine the strength characteristics of the rocks under natural conditions, identify critical zones of potential collapse, and develop recommendations for optimizing slope parameters and mining technologies. The implemented approach ensures the required level of safety. Full article
(This article belongs to the Special Issue Latest Advances in Rock Mechanics and Geotechnical Engineering)
Show Figures

Figure 1

12 pages, 5900 KiB  
Technical Note
Digitally-Driven Surgical Guide for Alveoloplasty Prior to Immediate Denture Placement
by Zaid Badr, Jonah Jaworski, Sofia D’Acquisto and Manal Hamdan
Dent. J. 2025, 13(8), 333; https://doi.org/10.3390/dj13080333 - 22 Jul 2025
Viewed by 239
Abstract
Objective: This article presents a step-by-step digital technique for fabricating a 3D-printed surgical guide to assist in alveoloplasty for immediate denture placement. Methods: The workflow integrates intraoral scanning, virtual tooth extraction, digital soft tissue modeling, and additive manufacturing to produce a customized guide [...] Read more.
Objective: This article presents a step-by-step digital technique for fabricating a 3D-printed surgical guide to assist in alveoloplasty for immediate denture placement. Methods: The workflow integrates intraoral scanning, virtual tooth extraction, digital soft tissue modeling, and additive manufacturing to produce a customized guide with an occlusal window and buccal slot, along with a verification stent. Results: This method ensures precise ridge recontouring and verification, enhancing surgical predictability and prosthetic fit. Conclusions: Unlike traditional surgical guides based on conventional casts or manual fabrication, this fully digital approach offers a practical and replicable protocol that bridges digital planning and clinical execution. By improving surgical precision, reducing operative time, and ensuring optimal denture fit, this technique represents a significant advancement in guided pre-prosthetic surgery. Full article
(This article belongs to the Special Issue New Trends in Digital Dentistry)
Show Figures

Figure 1

18 pages, 1411 KiB  
Article
A Framework for Joint Beam Scheduling and Resource Allocation in Beam-Hopping-Based Satellite Systems
by Jinfeng Zhang, Wei Li, Yong Li, Haomin Wang and Shilin Li
Electronics 2025, 14(14), 2887; https://doi.org/10.3390/electronics14142887 - 18 Jul 2025
Viewed by 215
Abstract
With the rapid development of heterogeneous satellite networks integrating geostationary earth orbit (GEO) and low earth orbit (LEO) satellite systems, along with the significant growth in the number of satellite users, it is essential to consider frequency compatibility and coexistence between GEO and [...] Read more.
With the rapid development of heterogeneous satellite networks integrating geostationary earth orbit (GEO) and low earth orbit (LEO) satellite systems, along with the significant growth in the number of satellite users, it is essential to consider frequency compatibility and coexistence between GEO and LEO systems, as well as to design effective system resource allocation strategies to achieve efficient utilization of system resources. However, existing beam-hopping (BH) resource allocation algorithms in LEO systems primarily focus on beam scheduling within a single time slot, lacking unified beam management across the entire BH cycle, resulting in low beam-resource utilization. Moreover, existing algorithms often employ iterative optimization across multiple resource dimensions, leading to high computational complexity and imposing stringent requirements on satellite on-board processing capabilities. In this paper, we propose a BH-based beam scheduling and resource allocation framework. The proposed framework first employs geographic isolation to protect the GEO system from the interference of the LEO system and subsequently optimizes beam partitioning over the entire BH cycle, time-slot beam scheduling, and frequency and power resource allocation for users within the LEO system. The proposed scheme achieves frequency coexistence between the GEO and LEO satellite systems and performs joint optimization of system resources across four dimensions—time, space, frequency, and power—with reduced complexity and a progressive optimization framework. Simulation results demonstrate that the proposed framework achieves effective suppression of both intra-system and inter-system interference via geographic isolation, while enabling globally efficient and dynamic beam scheduling across the entire BH cycle. Furthermore, by integrating the user-level frequency and power allocation algorithm, the scheme significantly enhances the total system throughput. The proposed progressive optimization framework offers a promising direction for achieving globally optimal and computationally tractable resource management in future satellite networks. Full article
Show Figures

Figure 1

24 pages, 3062 KiB  
Article
Sustainable IoT-Enabled Parking Management: A Multiagent Simulation Framework for Smart Urban Mobility
by Ibrahim Mutambik
Sustainability 2025, 17(14), 6382; https://doi.org/10.3390/su17146382 - 11 Jul 2025
Cited by 1 | Viewed by 365
Abstract
The efficient management of urban parking systems has emerged as a pivotal issue in today’s smart cities, where increasing vehicle populations strain limited parking infrastructure and challenge sustainable urban mobility. Aligned with the United Nations 2030 Agenda for Sustainable Development and the strategic [...] Read more.
The efficient management of urban parking systems has emerged as a pivotal issue in today’s smart cities, where increasing vehicle populations strain limited parking infrastructure and challenge sustainable urban mobility. Aligned with the United Nations 2030 Agenda for Sustainable Development and the strategic goals of smart city planning, this study presents a sustainability-driven, multiagent simulation-based framework to model, analyze, and optimize smart parking dynamics in congested urban settings. The system architecture integrates ground-level IoT sensors installed in parking spaces, enabling real-time occupancy detection and communication with a centralized system using low-power wide-area communication protocols (LPWAN). This study introduces an intelligent parking guidance mechanism that dynamically directs drivers to the nearest available slots based on location, historical traffic flow, and predicted availability. To manage real-time data flow, the framework incorporates message queuing telemetry transport (MQTT) protocols and edge processing units for low-latency updates. A predictive algorithm, combining spatial data, usage patterns, and time-series forecasting, supports decision-making for future slot allocation and dynamic pricing policies. Field simulations, calibrated with sensor data in a representative high-density urban district, assess system performance under peak and off-peak conditions. A comparative evaluation against traditional first-come-first-served and static parking systems highlights significant gains: average parking search time is reduced by 42%, vehicular congestion near parking zones declines by 35%, and emissions from circling vehicles drop by 27%. The system also improves user satisfaction by enabling mobile app-based reservation and payment options. These findings contribute to broader sustainability goals by supporting efficient land use, reducing environmental impacts, and enhancing urban livability—key dimensions emphasized in sustainable smart city strategies. The proposed framework offers a scalable, interdisciplinary solution for urban planners and policymakers striving to design inclusive, resilient, and environmentally responsible urban mobility systems. Full article
Show Figures

Figure 1

30 pages, 6991 KiB  
Article
A Hybrid EV Charging Approach Based on MILP and a Genetic Algorithm
by Syed Abdullah Al Nahid and Junjian Qi
Energies 2025, 18(14), 3656; https://doi.org/10.3390/en18143656 - 10 Jul 2025
Viewed by 326
Abstract
Uncoordinated electric vehicle (EV) charging can significantly complicate power system operations. In this paper, we develop a hybrid EV charging method that seamlessly integrates centralized EV charging and distributed control schemes to address EV energy demand challenges. The proposed method includes (1) a [...] Read more.
Uncoordinated electric vehicle (EV) charging can significantly complicate power system operations. In this paper, we develop a hybrid EV charging method that seamlessly integrates centralized EV charging and distributed control schemes to address EV energy demand challenges. The proposed method includes (1) a centralized day-ahead optimal scheduling mechanism and EV shifting process based on mixed-integer linear programming (MILP) and (2) a distributed control strategy based on a genetic algorithm (GA) that dynamically adjusts the charging rate in real-time grid scenarios. The MILP minimizes energy imbalance at overloaded slots by reallocating EVs based on supply–demand mismatch. By combining full and minimum charging strategies with MILP-based shifting, the method significantly reduces network stress due to EV charging. The centralized model schedules time slots using valley-filling and EV-specific constraints, and the local GA-based distributed control adjusts charging currents based on minimum energy, system availability, waiting time, and a priority index (PI). This PI enables user prioritization in both the EV shifting process and power allocation decisions. The method is validated using demand data on a radial feeder with residential and commercial load profiles. Simulation results demonstrate that the proposed hybrid EV charging framework significantly improves grid-level efficiency and user satisfaction. Compared to the baseline without EV integration, the average-to-peak demand ratio is improved from 61% to 74% at Station-A, from 64% to 80% at Station-B, and from 51% to 63% at Station-C, highlighting enhanced load balancing. The framework also ensures that all EVs receive energy above their minimum needs, achieving user satisfaction scores of 88.0% at Stations A and B and 81.6% at Station C. This study underscores the potential of hybrid charging schemes in optimizing energy utilization while maintaining system reliability and user convenience. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

35 pages, 3807 KiB  
Article
Concept of an Integrated Urban Public Transport System Linked to a Railway Network Based on the Principles of a Timed-Transfer Timetable in the City of Prievidza
by Zdenka Bulková, Eva Brumerčíková, Bibiána Buková and Tomáš Mihalik
Systems 2025, 13(7), 543; https://doi.org/10.3390/systems13070543 - 4 Jul 2025
Viewed by 274
Abstract
Urban public transport represents a fundamental pillar of a sustainable transport system and a key subsystem within the broader mobility framework in urban environments. This paper focuses on the analysis and optimization of the public transport system in the city of Prievidza and [...] Read more.
Urban public transport represents a fundamental pillar of a sustainable transport system and a key subsystem within the broader mobility framework in urban environments. This paper focuses on the analysis and optimization of the public transport system in the city of Prievidza and the nearby town of Bojnice in Slovakia, which currently face challenges such as low system attractiveness, operational inefficiency, and weak integration with regional railway transport. This study presents the results of a comprehensive analysis of existing public transport services in Prievidza and Bojnice, including an assessment of passenger flows, line network structure, transfer connections, and operational parameters. Based on the identified deficiencies, a new urban public transport network system is proposed, emphasizing direct links to the railway network. This methodology is developed in the context of an integrated timed-transfer timetable, with defined system time slots at the main transfer hub and a newly designed line network with standardized paths and regular intervals. The proposed system ensures significantly improved connectivity between urban transport and rail services, reduces deadhead kilometres, lowers the number of required vehicles, and leads to a reduction in operational costs by up to 20%. The resulting model serves as a transferable example of efficient service planning in medium-sized cities, with a focus on functional integration, operational efficiency, and sustainable urban development. Full article
(This article belongs to the Special Issue Optimization-Based Decision-Making Models in Rail Systems Engineering)
Show Figures

Figure 1

23 pages, 11925 KiB  
Article
Design and Field Experiment of Synchronous Hole Fertilization Device for Maize Sowing
by Feng Pan, Jincheng Chen, Baiwei Wang, Ziheng Fang, Jinxin Liang, Kangkang He and Chao Ji
Agriculture 2025, 15(13), 1400; https://doi.org/10.3390/agriculture15131400 - 29 Jun 2025
Viewed by 318
Abstract
The disadvantages of traditional strip fertilization technology for corn planting in China include low fertilizer utilization rates, unstable operation quality, and environmental pollution. Therefore, in this study, a synchronous hole fertilization device for corn planting based on real-time intelligent control is designed, aiming [...] Read more.
The disadvantages of traditional strip fertilization technology for corn planting in China include low fertilizer utilization rates, unstable operation quality, and environmental pollution. Therefore, in this study, a synchronous hole fertilization device for corn planting based on real-time intelligent control is designed, aiming to reduce fertilizer application and increase efficiency through the precise alignment technology of the seed and fertilizer. This device integrates an electric drive precision seeding unit, a slot wheel hole fertilization unit, and a multi-sensor coordinated closed-loop control system. An STM32 single-chip micro-computer is used to dynamically analyze the seed–fertilizer timing signal, and a double closed-loop control strategy (the position loop priority is higher than the speed loop) is used to correct the spatial phase difference between the seed and fertilizer in real time to ensure the precise control of the longitudinal distance (40~70 mm) and the lateral distance (50~80 mm) of the seed and fertilizer. Through the Box–Behnken response surface method, a field multi-factor test was carried out to analyze the mechanism of influence of the implemented forward speed (A), per-hole target fertilizing amount (B), and plant spacing (fertilizer hole interval) (C) on the seed–fertilizer alignment qualification rate (Y1) and the coefficient of variation in the hole fertilizing amount (Y2). The results showed that the order of primary and secondary factors affecting Y1 was A > C > B, and that the order affecting Y2 was C > B > A; the comprehensive performance of the device was best with the optimal parameter combination of A = 4.2 km/h, B = 4.4 g, and C = 30 cm, with Y1 as high as 94.024 ± 0.694% and Y2 as low as 3.147 ± 0.058%, which is significantly better than the traditional strip application method. The device realizes the precise regulation of 2~6 g/hole by optimizing the structural parameters of the outer groove wheel (arc center distance of 25 mm, cross-sectional area of 201.02 mm2, effective filling length of 2.73~8.19 mm), which can meet the differentiated agronomic needs of ordinary corn, silage corn, and popcorn. Field verification shows that the device significantly improves the spatial distribution of the concentration of fertilizer, effectively reduces the amount of fertilizer applied, and improves operational stability and reliability in multiple environments. This provides technical support for the regional application of precision agricultural equipment. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

28 pages, 1293 KiB  
Article
Research on Multi-Agent Collaborative Scheduling Planning Method for Time-Triggered Networks
by Changsheng Chen, Anrong Zhao, Zhihao Zhang, Tao Zhang and Chao Fan
Electronics 2025, 14(13), 2575; https://doi.org/10.3390/electronics14132575 - 26 Jun 2025
Viewed by 302
Abstract
Time-triggered Ethernet combines time-triggered and event-triggered communication, and is suitable for fields with high real-time requirements. Aiming at the problem that the traditional scheduling algorithm is not effective in scheduling event-triggered messages, a message scheduling algorithm based on multi-agent reinforcement learning (MADDPG, Multi-Agent [...] Read more.
Time-triggered Ethernet combines time-triggered and event-triggered communication, and is suitable for fields with high real-time requirements. Aiming at the problem that the traditional scheduling algorithm is not effective in scheduling event-triggered messages, a message scheduling algorithm based on multi-agent reinforcement learning (MADDPG, Multi-Agent Deep Deterministic Policy Gradient) and a hybrid algorithm combining SMT (Satisfiability Modulo Theories) solver and MADDPG are proposed. This method aims to optimize the scheduling of event-triggered messages while maintaining the uniformity of time-triggered message scheduling, providing more time slots for event-triggered messages, and reducing their waiting time and end-to-end delay. Through the designed scheduling software, in the experiment, compared with the SMT-based algorithm and the traditional DQN (Deep Q-Network) algorithm, the new method shows better load balance and lower message jitter, and it is verified in the OPNET simulation environment that it can effectively reduce the delay of event-triggered messages. Full article
(This article belongs to the Special Issue Advanced Techniques for Multi-Agent Systems)
Show Figures

Figure 1

20 pages, 579 KiB  
Article
Optimal Energy-Aware Scheduling of Heterogeneous Jobs with Monotonically Increasing Slot Costs
by Lin Zhao, Hao Fu and Mu Su
Symmetry 2025, 17(7), 980; https://doi.org/10.3390/sym17070980 - 20 Jun 2025
Viewed by 545
Abstract
Energy-aware scheduling plays a critical role in modern computing and manufacturing systems, where energy consumption often increases with job execution order or resource usage intensity. This study investigates a scheduling problem in which a sequence of heterogeneous jobs—classified as either heavy or light—must [...] Read more.
Energy-aware scheduling plays a critical role in modern computing and manufacturing systems, where energy consumption often increases with job execution order or resource usage intensity. This study investigates a scheduling problem in which a sequence of heterogeneous jobs—classified as either heavy or light—must be assigned to multiple identical machines with monotonically increasing slot costs. While the machines are structurally symmetric, the fixed job order and cost asymmetry introduce significant challenges for optimal job allocation. We formulate the problem as an integer linear program and simplify the objective by isolating the cumulative cost of heavy jobs, thereby reducing the search for optimality to a position-based assignment problem. To address this challenge, we propose a structured assignment model termed monotonic machine assignment, which enforces index-based job distribution rules and restores a form of functional symmetry across machines. We prove that any feasible assignment can be transformed into a monotonic one without increasing the total energy cost, ensuring that the global optimum lies within this reduced search space. Building on this framework, we first present a general dynamic programming algorithm with complexity O(n2m2). More importantly, by introducing a structural correction scheme based on misaligned assignments, we design an iterative refinement algorithm that achieves global optimality in only O(nm2) time, offering significant scalability for large instances. Our results contribute both structural insight and practical methods for optimal, position-sensitive, energy-aware scheduling, with potential applications in embedded systems, pipelined computation, and real-time operations. Full article
(This article belongs to the Special Issue Symmetry in Computing Algorithms and Applications)
Show Figures

Figure 1

20 pages, 2957 KiB  
Article
Magnetic Field Analytical Calculation of No-Load Electromagnetic Performance of Line-Start Explosion-Proof Permanent Magnet Synchronous Motors Considering Saturation Effect
by Jinhui Liu, Yunbo Shi, Yang Zheng and Minghui Wang
Actuators 2025, 14(6), 294; https://doi.org/10.3390/act14060294 - 17 Jun 2025
Viewed by 311
Abstract
This paper proposes an improved analytical model for a line-start explosion-proof magnet synchronous motor that considers the effect of magnetic bridge saturation. Under the condition of maintaining the air-gap magnetic field unchanged, and taking into account the topological structures of embedded magnets, squirrel [...] Read more.
This paper proposes an improved analytical model for a line-start explosion-proof magnet synchronous motor that considers the effect of magnetic bridge saturation. Under the condition of maintaining the air-gap magnetic field unchanged, and taking into account the topological structures of embedded magnets, squirrel cages, and rotor slot openings, a subdomain model partitioning method is systematically investigated. Considering the saturation effect of the magnetic bridge of the rotor, the equivalent magnetic circuit method was utilized to calculate the permeance of the saturated region. It not only facilitates the establishment of subdomain equations and corresponding subdomain boundary conditions, but also ensures the maximum accuracy of the equivalence by maintaining the topology of the rotor. The motor was partitioned into subdomains, and in conjunction with the boundary conditions, the Poisson equation and Laplace equation are solved to obtain the electromagnetic performance of the motor. The accuracy of the analytical model is verified through finite element analysis. The accuracy of the analytical model is verified through finite element analysis (FEA). Compared to the FEA, the improved model maintains high precision while reducing computational time and exhibiting better generality, making it suitable for the initial design and optimization of industrial motors. Full article
(This article belongs to the Section Actuators for Manufacturing Systems)
Show Figures

Figure 1

20 pages, 2661 KiB  
Article
Cooperative Jamming for RIS-Assisted UAV-WSN Against Aerial Malicious Eavesdropping
by Juan Li, Gang Wang, Weijia Wu, Jing Zhou, Yingkun Liu, Yangqin Wei and Wei Li
Drones 2025, 9(6), 431; https://doi.org/10.3390/drones9060431 - 13 Jun 2025
Viewed by 415
Abstract
As the low-altitude economy undergoes rapid growth, unmanned aerial vehicles (UAVs) have served as mobile sink nodes in wireless sensor networks (WSNs), significantly enhancing data collection efficiency. However, the open nature of wireless channels and spectrum scarcity pose severe challenges to data security, [...] Read more.
As the low-altitude economy undergoes rapid growth, unmanned aerial vehicles (UAVs) have served as mobile sink nodes in wireless sensor networks (WSNs), significantly enhancing data collection efficiency. However, the open nature of wireless channels and spectrum scarcity pose severe challenges to data security, particularly when legitimate UAVs (UAV-L) receive confidential information from ground sensor nodes (SNs), which is vulnerable to interception by eavesdropping UAVs (UAV-E). In response to this challenge, this study presents a cooperative jamming (CJ) scheme for Reconfigurable Intelligent Surfaces (RIS)-assisted UAV-WSN to combat aerial malicious eavesdropping. The multi-dimensional optimization problem (MDOP) of system security under quality of service (QoS) constraints is addressed by collaboratively optimizing the transmit power (TP) of SNs, the flight trajectories (FT) of the UAV-L, the frame length (FL) of time slots, and the phase shift matrix (PSM) of the RIS. To address the challenge, we put forward a Cooperative Jamming Joint Optimization Algorithm (CJJOA) scheme. Specifically, we first apply the block coordinate descent (BCD) to decompose the original MDOP into several subproblems. Then, each subproblem is convexified by successive convex approximation (SCA). The numerical results demonstrate that the designed algorithm demonstrates extremely strong stability and reliability during the convergence process. At the same time, it shows remarkable advantages compared with traditional benchmark testing methods, effectively and practically enhancing security. Full article
(This article belongs to the Special Issue UAV-Assisted Mobile Wireless Networks and Applications)
Show Figures

Figure 1

17 pages, 1444 KiB  
Article
Adaptive Slotframe Allocation with QoS and Energy Optimization in 6TiSCH for Industrial IoT Applications
by Nilam Pradhan, Bharat S. Chaudhari and Prasad D. Khandekar
Telecom 2025, 6(2), 41; https://doi.org/10.3390/telecom6020041 - 10 Jun 2025
Viewed by 508
Abstract
Industry 4.0 has transformed manufacturing and automation by integrating cyber–physical systems with the Industrial Internet of Things (IIoT) for real-time monitoring, intelligent control, and data-driven decision making. The IIoT increasingly relies on IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) to achieve reliable, low-latency, and [...] Read more.
Industry 4.0 has transformed manufacturing and automation by integrating cyber–physical systems with the Industrial Internet of Things (IIoT) for real-time monitoring, intelligent control, and data-driven decision making. The IIoT increasingly relies on IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) to achieve reliable, low-latency, and energy-efficient industrial communications. The 6TiSCH protocol stack integrates scheduling and routing to optimize transmissions for resource-constrained devices, enhancing Quality of Service (QoS) in IIoT deployments. This paper proposes an innovative adaptive and cross-layer slotframe allocation technique for 6TiSCH networks, dynamically scheduling cells based on node hop distance, queue backlog, predicted traffic load, and link quality metrics. By dynamically adapting to these parameters, the proposed method significantly improves key QoS metrics, including end-to-end latency, packet delivery ratio, and network lifetime. The mechanism integrates real-time queue backlog monitoring, link performance analysis, and energy harvesting awareness to optimize cell scheduling decisions proactively. The results demonstrate that the proposed strategy reduces end-to-end latency by up to 32%, enhances PDR by up to 27%, and extends network lifetime by up to 10% compared to state-of-the-art adaptive scheduling solutions. Full article
Show Figures

Figure 1

Back to TopTop