Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,972)

Search Parameters:
Keywords = time–space network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 622 KiB  
Article
Distributed Diffusion Multi-Distribution Filter with IMM for Heavy-Tailed Noise
by Guannan Chang, Changwu Jiang, Wenxing Fu, Tao Cui and Peng Dong
Signals 2025, 6(3), 37; https://doi.org/10.3390/signals6030037 (registering DOI) - 1 Aug 2025
Abstract
With the diversification of space applications, the tracking of maneuvering targets has gradually gained attention. Issues such as their wide range of movement and observation outliers caused by human operation are worthy of in-depth discussion. This paper presents a novel distributed diffusion multi-noise [...] Read more.
With the diversification of space applications, the tracking of maneuvering targets has gradually gained attention. Issues such as their wide range of movement and observation outliers caused by human operation are worthy of in-depth discussion. This paper presents a novel distributed diffusion multi-noise Interacting Multiple Model (IMM) filter for maneuvering target tracking in heavy-tailed noise. The proposed approach leverages parallel Gaussian and Student-t filters to enhance robustness against non-Gaussian process and measurement noise. This hybrid filter is implemented as a node within a distributed network, where the diffusion algorithm leads to the global state asymptotically reaching consensus as the filtering time progresses. Furthermore, a fusion of multiple motion models within the IMM algorithm enables robust tracking of maneuvering targets across the distributed network and process outlier caused by maneuver compared to previous studies. Simulation results demonstrate the effectiveness of the proposed filter in tracking maneuvering targets. Full article
Show Figures

Figure 1

30 pages, 7223 KiB  
Article
Smart Wildlife Monitoring: Real-Time Hybrid Tracking Using Kalman Filter and Local Binary Similarity Matching on Edge Network
by Md. Auhidur Rahman, Stefano Giordano and Michele Pagano
Computers 2025, 14(8), 307; https://doi.org/10.3390/computers14080307 - 30 Jul 2025
Abstract
Real-time wildlife monitoring on edge devices poses significant challenges due to limited power, constrained bandwidth, and unreliable connectivity, especially in remote natural habitats. Conventional object detection systems often transmit redundant data of the same animals detected across multiple consecutive frames as a part [...] Read more.
Real-time wildlife monitoring on edge devices poses significant challenges due to limited power, constrained bandwidth, and unreliable connectivity, especially in remote natural habitats. Conventional object detection systems often transmit redundant data of the same animals detected across multiple consecutive frames as a part of a single event, resulting in increased power consumption and inefficient bandwidth usage. Furthermore, maintaining consistent animal identities in the wild is difficult due to occlusions, variable lighting, and complex environments. In this study, we propose a lightweight hybrid tracking framework built on the YOLOv8m deep neural network, combining motion-based Kalman filtering with Local Binary Pattern (LBP) similarity for appearance-based re-identification using texture and color features. To handle ambiguous cases, we further incorporate Hue-Saturation-Value (HSV) color space similarity. This approach enhances identity consistency across frames while reducing redundant transmissions. The framework is optimized for real-time deployment on edge platforms such as NVIDIA Jetson Orin Nano and Raspberry Pi 5. We evaluate our method against state-of-the-art trackers using event-based metrics such as MOTA, HOTA, and IDF1, with a focus on detected animals occlusion handling, trajectory analysis, and counting during both day and night. Our approach significantly enhances tracking robustness, reduces ID switches, and provides more accurate detection and counting compared to existing methods. When transmitting time-series data and detected frames, it achieves up to 99.87% bandwidth savings and 99.67% power reduction, making it highly suitable for edge-based wildlife monitoring in resource-constrained environments. Full article
(This article belongs to the Special Issue Intelligent Edge: When AI Meets Edge Computing)
Show Figures

Figure 1

21 pages, 764 KiB  
Article
Sustainable Optimization of the Injection Molding Process Using Particle Swarm Optimization (PSO)
by Yung-Tsan Jou, Hsueh-Lin Chang and Riana Magdalena Silitonga
Appl. Sci. 2025, 15(15), 8417; https://doi.org/10.3390/app15158417 - 29 Jul 2025
Viewed by 141
Abstract
This study presents a breakthrough in sustainable injection molding by uniquely combining a backpropagation neural network (BPNN) with particle swarm optimization (PSO) to overcome traditional optimization challenges. The BPNN’s exceptional ability to learn complex nonlinear relationships between six key process parameters (including melt [...] Read more.
This study presents a breakthrough in sustainable injection molding by uniquely combining a backpropagation neural network (BPNN) with particle swarm optimization (PSO) to overcome traditional optimization challenges. The BPNN’s exceptional ability to learn complex nonlinear relationships between six key process parameters (including melt temperature and holding pressure) and product quality is amplified by PSO’s intelligent search capability, which efficiently navigates the high-dimensional parameter space. Together, this hybrid approach achieves what neither method could accomplish alone: the BPNN accurately models the intricate process-quality relationships, while PSO rapidly converges on optimal parameter sets that simultaneously meet strict quality targets (66–70 g weight, 3–5 mm thickness) and minimize energy consumption. The significance of this integration is demonstrated through three key outcomes: First, the BPNN-PSO combination reduced optimization time by 40% compared to traditional trial-and-error methods. Second, it achieved remarkable prediction accuracy (RMSE 0.8229 for thickness, 1.5123 for weight) that surpassed standalone BPNN implementations. Third, the method’s efficiency enabled SMEs to achieve CAE-level precision without expensive software, reducing setup costs by approximately 25%. Experimental validation confirmed that the optimized parameters decreased energy use by 28% and material waste by 35% while consistently producing parts within specifications. This research provides manufacturers with a practical, scalable solution that transforms injection molding from an experience-dependent craft to a data-driven science. The BPNN-PSO framework not only delivers superior technical results but does so in a way that is accessible to resource-constrained manufacturers, marking a significant step toward sustainable, intelligent production systems. For SMEs, this framework offers a practical pathway to achieve both economic and environmental sustainability, reducing reliance on resource-intensive CAE tools while cutting production costs by an estimated 22% through waste and energy savings. The study provides a replicable blueprint for implementing data-driven sustainability in injection molding operations without compromising product quality or operational efficiency. Full article
(This article belongs to the Special Issue Advancement in Smart Manufacturing and Industry 4.0)
Show Figures

Figure 1

19 pages, 3818 KiB  
Article
Robotic Arm Trajectory Planning in Dynamic Environments Based on Self-Optimizing Replay Mechanism
by Pengyao Xu, Chong Di, Jiandong Lv, Peng Zhao, Chao Chen and Ruotong Wang
Sensors 2025, 25(15), 4681; https://doi.org/10.3390/s25154681 - 29 Jul 2025
Viewed by 182
Abstract
In complex dynamic environments, robotic arms face multiple challenges such as real-time environmental changes, high-dimensional state spaces, and strong uncertainties. Trajectory planning tasks based on deep reinforcement learning (DRL) suffer from difficulties in acquiring human expert strategies, low experience utilization (leading to slow [...] Read more.
In complex dynamic environments, robotic arms face multiple challenges such as real-time environmental changes, high-dimensional state spaces, and strong uncertainties. Trajectory planning tasks based on deep reinforcement learning (DRL) suffer from difficulties in acquiring human expert strategies, low experience utilization (leading to slow convergence), and unreasonable reward function design. To address these issues, this paper designs a neural network-based expert-guided triple experience replay mechanism (NETM) and proposes an improved reward function adapted to dynamic environments. This replay mechanism integrates imitation learning’s fast data fitting with DRL’s self-optimization to expand limited expert demonstrations and algorithm-generated successes into optimized expert experiences. Experimental results show the expanded expert experience accelerates convergence: in dynamic scenarios, NETM boosts accuracy by over 30% and safe rate by 2.28% compared to baseline algorithms. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

22 pages, 2875 KiB  
Article
Optimization of Test Mass Motion State for Enhancing Stiffness Identification Performance in Space Gravitational Wave Detection
by Ningbiao Tang, Ziruo Fang, Zhongguang Yang, Zhiming Cai, Haiying Hu and Huawang Li
Aerospace 2025, 12(8), 673; https://doi.org/10.3390/aerospace12080673 - 28 Jul 2025
Viewed by 104
Abstract
In space gravitational wave detection, various physical effects in the spacecraft, such as self-gravity, electricity, and magnetism, will introduce undesirable parasitic stiffness. The coupling noise between stiffness and the motion states of the test mass critically affects the performance of scientific detection, making [...] Read more.
In space gravitational wave detection, various physical effects in the spacecraft, such as self-gravity, electricity, and magnetism, will introduce undesirable parasitic stiffness. The coupling noise between stiffness and the motion states of the test mass critically affects the performance of scientific detection, making accurate stiffness identification crucial. In response to the question, this paper proposes a method to optimize the test mass motion state for enhancing stiffness identification performance. First, the dynamics of the test mass are studied and a recursive least squares algorithm is applied for the implementation of on-orbit stiffness identification. Then, the motion state of the test mass is parametrically characterized by multi-frequency sinusoidal signals as the variable to be optimized, with the optimization objectives and constraints of stiffness identification defined based on convergence time, convergence accuracy, and engineering requirements. To tackle the dual-objective, computationally expensive nature of the problem, a multigranularity surrogate-assisted evolutionary algorithm with individual progressive constraints (MGSAEA-IPC) is proposed. A fuzzy radial basis function neural network PID (FRBF-PID) controller is also designed to address complex control needs under varying motion states. Numerical simulations demonstrate that the convergence time after optimization is less than 2 min, and the convergence accuracy is less than 1.5 × 10−10 s−2. This study can provide ideas and design references for subsequent related identification and control missions. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

17 pages, 4618 KiB  
Article
ANN-Enhanced Modulated Model Predictive Control for AC-DC Converters in Grid-Connected Battery Systems
by Andrea Volpini, Samuela Rokocakau, Giulia Tresca, Filippo Gemma and Pericle Zanchetta
Energies 2025, 18(15), 3996; https://doi.org/10.3390/en18153996 - 27 Jul 2025
Viewed by 188
Abstract
With the increasing integration of renewable energy sources (RESs) into power systems, batteries are playing a critical role in ensuring grid reliability and flexibility. Among them, vanadium redox flow batteries (VRFBs) have emerged as a promising solution for large-scale storage due to their [...] Read more.
With the increasing integration of renewable energy sources (RESs) into power systems, batteries are playing a critical role in ensuring grid reliability and flexibility. Among them, vanadium redox flow batteries (VRFBs) have emerged as a promising solution for large-scale storage due to their long cycle life, scalability, and deep discharge capability. However, achieving optimal control and system-level integration of VRFBs requires accurate, real-time modeling and parameter estimation, challenging tasks given the multi-physics nature and time-varying dynamics of such systems. This paper presents a lightweight physics-informed neural network (PINN) framework tailored for VRFBs, which directly embeds the discrete-time state-space dynamics into the network architecture. The model simultaneously predicts terminal voltage and estimates five discrete-time physical parameters associated with RC dynamics and internal resistance, while avoiding hidden layers to enhance interpretability and computational efficiency. The resulting PINN model is integrated into a modulated model predictive control (MMPC) scheme for a dual-stage DC-AC converter interfacing the VRFB with low-voltage AC grids. Simulation and hardware-in-the-loop results demonstrate that adaptive tuning of the PINN-estimated parameters enables precise tracking of battery parameter variations, thereby improving the robustness and performance of the MMPC controller under varying operating conditions. Full article
Show Figures

Figure 1

16 pages, 1145 KiB  
Article
A Hybrid Transformer–Mamba Model for Multivariate Metro Energy Consumption Forecasting
by Liheng Long, Zhiyao Chen, Junqian Wu, Qing Fu, Zirui Zhang, Fan Feng and Ronghui Zhang
Electronics 2025, 14(15), 2986; https://doi.org/10.3390/electronics14152986 - 26 Jul 2025
Viewed by 271
Abstract
With the rapid growth of urban populations and the expansion of metro networks, accurate energy consumption prediction has become a critical task for optimizing metro operations and supporting low-carbon city development. Traditional statistical and machine learning methods often struggle to model the complex, [...] Read more.
With the rapid growth of urban populations and the expansion of metro networks, accurate energy consumption prediction has become a critical task for optimizing metro operations and supporting low-carbon city development. Traditional statistical and machine learning methods often struggle to model the complex, nonlinear, and time-varying nature of metro energy data. To address these challenges, this paper proposes MTMM, a novel hybrid model that integrates the multi-head attention mechanism of the Transformer with the efficient, state-space-based Mamba architecture. The Transformer effectively captures long-range temporal dependencies, while Mamba enhances inference speed and reduces complexity. Additionally, the model incorporates multivariate energy features, leveraging the correlations among different energy consumption types to improve predictive performance. Experimental results on real-world data from the Guangzhou Metro demonstrate that MTMM significantly outperforms existing methods in terms of both MAE and MSE. The model also shows strong generalization ability across different prediction lengths and time step configurations, offering a promising solution for intelligent energy management in metro systems. Full article
(This article belongs to the Special Issue AI Applications for Smart Grid)
Show Figures

Figure 1

28 pages, 3794 KiB  
Article
A Robust System for Super-Resolution Imaging in Remote Sensing via Attention-Based Residual Learning
by Rogelio Reyes-Reyes, Yeredith G. Mora-Martinez, Beatriz P. Garcia-Salgado, Volodymyr Ponomaryov, Jose A. Almaraz-Damian, Clara Cruz-Ramos and Sergiy Sadovnychiy
Mathematics 2025, 13(15), 2400; https://doi.org/10.3390/math13152400 - 25 Jul 2025
Viewed by 166
Abstract
Deep learning-based super-resolution (SR) frameworks are widely used in remote sensing applications. However, existing SR models still face limitations, particularly in recovering contours, fine features, and textures, as well as in effectively integrating channel information. To address these challenges, this study introduces a [...] Read more.
Deep learning-based super-resolution (SR) frameworks are widely used in remote sensing applications. However, existing SR models still face limitations, particularly in recovering contours, fine features, and textures, as well as in effectively integrating channel information. To address these challenges, this study introduces a novel residual model named OARN (Optimized Attention Residual Network) specifically designed to enhance the visual quality of low-resolution images. The network operates on the Y channel of the YCbCr color space and integrates LKA (Large Kernel Attention) and OCM (Optimized Convolutional Module) blocks. These components can restore large-scale spatial relationships and refine textures and contours, improving feature reconstruction without significantly increasing computational complexity. The performance of OARN was evaluated using satellite images from WorldView-2, GaoFen-2, and Microsoft Virtual Earth. Evaluation was conducted using objective quality metrics, such as Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), Edge Preservation Index (EPI), and Perceptual Image Patch Similarity (LPIPS), demonstrating superior results compared to state-of-the-art methods in both objective measurements and subjective visual perception. Moreover, OARN achieves this performance while maintaining computational efficiency, offering a balanced trade-off between processing time and reconstruction quality. Full article
Show Figures

Figure 1

19 pages, 2630 KiB  
Article
Experimental and Kinetic Modelling Study of the Heterogeneous Catalytic Conversion of Bioethanol into n-Butanol Using MgO–Al2O3 Mixed Oxide Catalyst
by Amosi Makoye, Anna Vikár, András Bence Nacsa, Róbert Barthos, József Valyon, Ferenc Lónyi and Tibor Nagy
Catalysts 2025, 15(8), 709; https://doi.org/10.3390/catal15080709 - 25 Jul 2025
Viewed by 217
Abstract
Ethanol upgrading via catalytic C–C coupling, commonly known as the Guerbet reaction, offers a sustainable route to produce 1-butanol, a high-performance biofuel. To address gaps in the mechanistic understanding of the catalytic reaction, we investigated the process involving a fixed-bed reactor, operated at [...] Read more.
Ethanol upgrading via catalytic C–C coupling, commonly known as the Guerbet reaction, offers a sustainable route to produce 1-butanol, a high-performance biofuel. To address gaps in the mechanistic understanding of the catalytic reaction, we investigated the process involving a fixed-bed reactor, operated at 275–325 °C, 21 bar, and weight hourly space velocities of 0.25–2.5 gEtOH/(gcat·h), using helium as a carrier gas, with a 5:1 He/EtOH molar ratio. The catalyst was a MgO–Al2O3 mixed oxide (Mg/Al = 2:1), derived from a hydrotalcite precursor. A detailed kinetic model was developed, encompassing 15 species and 27 reversible steps (10 sorption and 17 reaction steps), within a 1+1D sorption–reaction–transport framework. Four C4-forming pathways were included: aldol condensation to form crotonaldehyde, semi-direct coupling to form butyraldehyde and crotyl alcohol, and direct coupling to form 1-butanol. To avoid overfitting, Arrhenius parameters were grouped by reaction type, resulting in sixty rate parameters and one active site-specific density parameter. The optimized model achieved high accuracy, with an average prediction error of 1.44 times the experimental standard deviation. The mechanistic analysis revealed aldol condensation as the dominant pathway below 335 °C, with semi-direct coupling to crotyl alcohol prevailing above 340 °C. The resulting model provides a robust framework for understanding and predicting complex reaction networks in ethanol upgrading systems. Full article
(This article belongs to the Special Issue Biomass Catalytic Conversion to Value-Added Chemicals)
Show Figures

Graphical abstract

18 pages, 2878 KiB  
Article
Flow Field Reconstruction and Prediction of Powder Fuel Transport Based on Scattering Images and Deep Learning
by Hongyuan Du, Zhen Cao, Yingjie Song, Jiangbo Peng, Chaobo Yang and Xin Yu
Sensors 2025, 25(15), 4613; https://doi.org/10.3390/s25154613 - 25 Jul 2025
Viewed by 130
Abstract
This paper presents the flow field reconstruction and prediction of powder fuel transport systems based on representative feature extraction from scattering images using deep learning techniques. A laboratory-built powder fuel supply system was used to conduct scattering spectroscopy experiments on boron-based fuel under [...] Read more.
This paper presents the flow field reconstruction and prediction of powder fuel transport systems based on representative feature extraction from scattering images using deep learning techniques. A laboratory-built powder fuel supply system was used to conduct scattering spectroscopy experiments on boron-based fuel under various flow rate conditions. Based on the acquired scattering images, a prediction and reconstruction method was developed using a deep network framework composed of a Stacked Autoencoder (SAE), a Backpropagation Neural Network (BP), and a Long Short-Term Memory (LSTM) model. The proposed framework enables accurate classification and prediction of the dynamic evolution of flow structures based on learned representations from scattering images. Experimental results show that the feature vectors extracted by the SAE form clearly separable clusters in the latent space, leading to high classification accuracy under varying flow conditions. In the prediction task, the feature vectors predicted by the LSTM exhibit strong agreement with ground truth, with average mean square error, mean absolute error, and r-square values of 0.0027, 0.0398, and 0.9897, respectively. Furthermore, the reconstructed images offer a visual representation of the changing flow field, validating the model’s effectiveness in structure-level recovery. These results suggest that the proposed method provides reliable support for future real-time prediction of powder fuel mass flow rates based on optical sensing and imaging techniques. Full article
(This article belongs to the Special Issue Important Achievements in Optical Measurements in China 2024–2025)
Show Figures

Figure 1

27 pages, 6134 KiB  
Article
Research on BPNN-MDSG Hybrid Modeling Method for Full-Cycle Simulation of Surge in Altitude Test Facility Compressor System
by Yang Su, Xuejiang Chen and Xin Wang
Appl. Sci. 2025, 15(15), 8253; https://doi.org/10.3390/app15158253 - 24 Jul 2025
Viewed by 246
Abstract
Altitude Test Facility (ATF) compressor systems are widely used in aero-engine tests. These systems achieve the control of gas pressure and transport through complex operation processes. With advancements in the aviation industry, there is a growing demand for higher performance, greater safety, and [...] Read more.
Altitude Test Facility (ATF) compressor systems are widely used in aero-engine tests. These systems achieve the control of gas pressure and transport through complex operation processes. With advancements in the aviation industry, there is a growing demand for higher performance, greater safety, and more energy efficiency in digital ATF systems. Hybrid modeling is a technology that combines many methods and can meet these requirements. The Modular Dynamic System Greitzer (MDSG) compressor model, including mechanistic and data-driven modeling approaches, is combined with a neural network to obtain a BPNN-MDSG hybrid modeling method for the digital turbine system. The digital simulation is linked with the physical sensors of the ATF system to realize real-time simulation and monitoring. The steady and dynamic conditions of the actual system are simulated in virtual space. Compared with the actual results, the average error of steady mass flow is less than 3%, and the error of pressure is less than 1%. The average error of dynamic mass flow is less than 5%, and the error of pressure is less than 3%. The simulation and characteristic predictions are carried out in BPNN-MDSG virtual space. The anti-surge characteristics of the ATF system under start-up conditions are obtained. The full-condition anti-surge operation map of the system is obtained, which provides guidance for the actual operation of the ATF system. Full article
Show Figures

Figure 1

27 pages, 33803 KiB  
Article
Multi-Channel Spatio-Temporal Data Fusion of ‘Big’ and ‘Small’ Network Data Using Transformer Networks
by Tao Cheng, Hao Chen, Xianghui Zhang, Xiaowei Gao, Lu Yin and Jianbin Jiao
ISPRS Int. J. Geo-Inf. 2025, 14(8), 286; https://doi.org/10.3390/ijgi14080286 - 24 Jul 2025
Viewed by 247
Abstract
The integration of heterogeneous spatio-temporal datasets presents a critical challenge in geospatial data science, particularly when combining large-scale, passively collected “big” data with precise but sparse “small” data. In this study, we propose a novel framework—Multi-Channel Spatio-Temporal Data Fusion (MCST-DF)—that leverages transformer-based deep [...] Read more.
The integration of heterogeneous spatio-temporal datasets presents a critical challenge in geospatial data science, particularly when combining large-scale, passively collected “big” data with precise but sparse “small” data. In this study, we propose a novel framework—Multi-Channel Spatio-Temporal Data Fusion (MCST-DF)—that leverages transformer-based deep learning to fuse these data sources for accurate network flow estimation. Our approach introduces a Residual Spatio-Temporal Transformer Network (RSTTNet), equipped with a layered attention mechanism and multi-scale embedding architecture to capture both local and global dependencies across space and time. We evaluate the framework using real-world mobile sensing and loop detector data from the London road network, demonstrating over 89% prediction accuracy and outperforming several benchmark deep learning models. This work provides a generalisable solution for spatio-temporal fusion of diverse geospatial data sources and has direct relevance to smart mobility, urban infrastructure monitoring, and the development of spatially informed AI systems. Full article
Show Figures

Figure 1

21 pages, 1936 KiB  
Article
FFT-RDNet: A Time–Frequency-Domain-Based Intrusion Detection Model for IoT Security
by Bingjie Xiang, Renguang Zheng, Kunsan Zhang, Chaopeng Li and Jiachun Zheng
Sensors 2025, 25(15), 4584; https://doi.org/10.3390/s25154584 - 24 Jul 2025
Viewed by 258
Abstract
Resource-constrained Internet of Things (IoT) devices demand efficient and robust intrusion detection systems (IDSs) to counter evolving cyber threats. The traditional IDS models, however, struggle with high computational complexity and inadequate feature extraction, limiting their accuracy and generalizability in IoT environments. To address [...] Read more.
Resource-constrained Internet of Things (IoT) devices demand efficient and robust intrusion detection systems (IDSs) to counter evolving cyber threats. The traditional IDS models, however, struggle with high computational complexity and inadequate feature extraction, limiting their accuracy and generalizability in IoT environments. To address this, we propose FFT-RDNet, a lightweight IDS framework leveraging depthwise separable convolution and frequency-domain feature fusion. An ADASYN-Tomek Links hybrid strategy first addresses class imbalances. The core innovation of FFT-RDNet lies in its novel two-dimensional spatial feature modeling approach, realized through a dedicated dual-path feature embedding module. One branch extracts discriminative statistical features in the time domain, while the other branch transforms the data into the frequency domain via Fast Fourier Transform (FFT) to capture the essential energy distribution characteristics. These time–frequency domain features are fused to construct a two-dimensional feature space, which is then processed by a streamlined residual network using depthwise separable convolution. This network effectively captures complex periodic attack patterns with minimal computational overhead. Comprehensive evaluation on the NSL-KDD and CIC-IDS2018 datasets shows that FFT-RDNet outperforms state-of-the-art neural network IDSs across accuracy, precision, recall, and F1 score (improvements: 0.22–1%). Crucially, it achieves superior accuracy with a significantly reduced computational complexity, demonstrating high efficiency for resource-constrained IoT security deployments. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

23 pages, 7457 KiB  
Article
An Efficient Ship Target Integrated Imaging and Detection Framework (ST-IIDF) for Space-Borne SAR Echo Data
by Can Su, Wei Yang, Yongchen Pan, Hongcheng Zeng, Yamin Wang, Jie Chen, Zhixiang Huang, Wei Xiong, Jie Chen and Chunsheng Li
Remote Sens. 2025, 17(15), 2545; https://doi.org/10.3390/rs17152545 - 22 Jul 2025
Viewed by 294
Abstract
Due to the sparse distribution of ship targets in wide-area offshore scenarios, the typical cascade mode of imaging and detection for space-borne Synthetic Aperture Radar (SAR) echo data would consume substantial computational time and resources, severely affecting the timeliness of ship target information [...] Read more.
Due to the sparse distribution of ship targets in wide-area offshore scenarios, the typical cascade mode of imaging and detection for space-borne Synthetic Aperture Radar (SAR) echo data would consume substantial computational time and resources, severely affecting the timeliness of ship target information acquisition tasks. Therefore, we propose a ship target integrated imaging and detection framework (ST-IIDF) for SAR oceanic region data. A two-step filtering structure is added in the SAR imaging process to extract the potential areas of ship targets, which can accelerate the whole process. First, an improved peak-valley detection method based on one-dimensional scattering characteristics is used to locate the range gate units for ship targets. Second, a dynamic quantization method is applied to the imaged range gate units to further determine the azimuth region. Finally, a lightweight YOLO neural network is used to eliminate false alarm areas and obtain accurate positions of the ship targets. Through experiments on Hisea-1 and Pujiang-2 data, within sparse target scenes, the framework maintains over 90% accuracy in ship target detection, with an average processing speed increase of 35.95 times. The framework can be applied to ship target detection tasks with high timeliness requirements and provides an effective solution for real-time onboard processing. Full article
(This article belongs to the Special Issue Efficient Object Detection Based on Remote Sensing Images)
Show Figures

Figure 1

24 pages, 1367 KiB  
Article
The Buades Gallery: A Tube of Oil Paint Open to the World Mercedes Buades and Her Support for Spanish Conceptualism, 1973–1978
by Sergio Rodríguez Beltrán
Arts 2025, 14(4), 80; https://doi.org/10.3390/arts14040080 - 21 Jul 2025
Viewed by 200
Abstract
The Buades Gallery (1973–2003) was not merely a commercial space in Madrid. In the history of art in Spain, it served as a professional and political node for Spanish conceptualism, an art form which, due to its idiosyncrasies, required its own channels of [...] Read more.
The Buades Gallery (1973–2003) was not merely a commercial space in Madrid. In the history of art in Spain, it served as a professional and political node for Spanish conceptualism, an art form which, due to its idiosyncrasies, required its own channels of distribution. This article seeks to examine the trajectory of Mercedes Buades in alignment with this movement, re-evaluating her role from a feminist perspective and highlighting the importance of certain agents who have traditionally been invisibilised. To this end, a theoretical approach is adopted, following the sociology of art and the social history of art, paying particular attention to the contributions of Enrico Castelnuovo, Pierre Bourdieu and Núria Peist. These frameworks enable an analysis of the role of the gallerist as a structuring agent within the artistic field, capable of generating symbolic capital and establishing dynamics of production, circulation and consumption in the context of post-Franco Spain, a country that lacked a consolidated museum infrastructure at the time. Even so, Mercedes Buades established a model of gallery practice that, beyond its commercial dimension, contributed decisively to the symbolic configuration of contemporary art in Spain and formed part of a network of artistic visibility that promoted experimental art. Full article
Show Figures

Figure 1

Back to TopTop