Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (185)

Search Parameters:
Keywords = timber beams

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2592 KiB  
Article
Lignin-Based Carbon-Fiber-Reinforced LVL Beams for Landscape Timber Structures
by Xuebo Li, Yuan Niu, Zhanpeng Jiang, Jiuyin Pang and Xiaoyi Niu
Polymers 2025, 17(15), 2030; https://doi.org/10.3390/polym17152030 - 25 Jul 2025
Viewed by 296
Abstract
This study focuses on the development of lignin-based carbon-fiber-reinforced laminated veneer lumber (LVL) beams for garden timber structures, addressing wood shortages and environmental concerns. The research consisted of three main phases: the extraction and characterization of the lignin from corn stalks; the preparation [...] Read more.
This study focuses on the development of lignin-based carbon-fiber-reinforced laminated veneer lumber (LVL) beams for garden timber structures, addressing wood shortages and environmental concerns. The research consisted of three main phases: the extraction and characterization of the lignin from corn stalks; the preparation and characterization of lignin-based carbon fibers; the fabrication and testing of reinforced LVL beams. Lignin was extracted from corn stalks using a deep eutectic solvent, followed by the preparation of lignin-based carbon fibers through electrospinning. These carbon fibers were integrated with poplar veneers to create reinforced LVL beams. The test results demonstrated significant improvements in mechanical properties, with the reinforced LVL beams exhibiting a 17% increase in elastic modulus and a 30% enhancement in flexural strength compared with conventional LVL beams. Notable improvements were also observed in tensile strength, compressive strength, and shear strength. This research provides a novel approach for producing high-value-added carbon fibers from agricultural waste, advancing the development of sustainable building materials. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

15 pages, 3688 KiB  
Article
Temperature Field Prediction of Glulam Timber Connections Under Fire Hazard: A DeepONet-Based Approach
by Jing Luo, Guangxin Tian, Chen Xu, Shijie Zhang and Zhen Liu
Fire 2025, 8(7), 280; https://doi.org/10.3390/fire8070280 - 16 Jul 2025
Viewed by 519
Abstract
This paper presents an integrated computational framework for predicting temperature fields in glulam beam–column connections under fire conditions, combining finite element modeling, automated parametric analysis, and deep learning techniques. A high-fidelity heat transfer finite element model was developed, incorporating the anisotropic thermal properties [...] Read more.
This paper presents an integrated computational framework for predicting temperature fields in glulam beam–column connections under fire conditions, combining finite element modeling, automated parametric analysis, and deep learning techniques. A high-fidelity heat transfer finite element model was developed, incorporating the anisotropic thermal properties of wood and temperature-dependent material behavior, validated against experimental data with strong agreement. To enable large-scale parametric studies, an automated Abaqus model modification and data processing system was implemented, improving computational efficiency through the batch processing of geometric and material parameters. The extracted temperature field data was used to train a DeepONet neural network, which achieved accurate temperature predictions (with a L2 relative error of 1.5689% and an R2 score of 0.9991) while operating faster than conventional finite element analysis. This research establishes a complete workflow from fundamental heat transfer analysis to efficient data generation and machine learning prediction, providing structural engineers with practical tools for the performance-based fire safety design of timber connections. The framework’s computational efficiency enables comprehensive parametric studies and design optimizations that were previously impractical, offering significant advancements for structural fire engineering applications. Full article
(This article belongs to the Special Issue Advances in Structural Fire Engineering)
Show Figures

Figure 1

19 pages, 4862 KiB  
Article
Fire Resistance of Steel Beams with Intumescent Coating Exposed to Fire Using ANSYS and Machine Learning
by Igor Džolev, Sofija Kekez-Baran and Andrija Rašeta
Buildings 2025, 15(13), 2334; https://doi.org/10.3390/buildings15132334 - 3 Jul 2025
Viewed by 414
Abstract
The thermal conductivity of steel is high compared to other materials such as concrete or timber. Therefore, fire protection measures are applied to prolong the duration between the onset of fire exposure and the final loss of load-bearing function of a steel structure. [...] Read more.
The thermal conductivity of steel is high compared to other materials such as concrete or timber. Therefore, fire protection measures are applied to prolong the duration between the onset of fire exposure and the final loss of load-bearing function of a steel structure. The most common passive fire protection measure is the application of intumescent coating (IC), a thin film that expands at elevated temperatures and forms an insulating char layer of lower thermal conductivity. This paper focuses on structural steel beams with IPE open-section profiles protected by a water-based IC and subjected to static and standard fire loading. ANSYS 16.0 is used to simulate heat transfer, with thermal conductivity function described by standard multivariate linear regression analysis, followed by mechanical analysis considering degradation of material mechanical properties at elevated temperatures. Simulations are conducted for all IPE profile sizes, with varying initial degrees of utilisation, beam lengths, and coating thicknesses. Results indicated fire resistance times ranging from 24 to 53.5 min, demonstrating a relatively good level of fire resistance even with the minimal IC thickness. Furthermore, artificial neural networks were developed to predict the fire resistance time of steel members with IC using varying numbers of hidden neurons and subset ratios. The model achieved a predictability level of 99.9% upon evaluation. Full article
(This article belongs to the Special Issue Advanced Analysis and Design for Steel Structure Stability)
Show Figures

Figure 1

31 pages, 3456 KiB  
Review
Advancements in Timber–Steel Hybridisation: A Review on Techniques, Applications, and Structural Performances
by Abdulaziz Abdulmalik, Benoit P. Gilbert, Hong Guan, Tuan Ngo and Alex Remennikov
Buildings 2025, 15(13), 2252; https://doi.org/10.3390/buildings15132252 - 26 Jun 2025
Viewed by 464
Abstract
Timber–steel hybridisation offers a balanced approach by capitalising on the high strength-to-weight ratio and sustainability of the timber while also benefiting from the high stiffness and ductility of the steel, contributing to the improved performance of hybrid structural elements. This paper reviews key [...] Read more.
Timber–steel hybridisation offers a balanced approach by capitalising on the high strength-to-weight ratio and sustainability of the timber while also benefiting from the high stiffness and ductility of the steel, contributing to the improved performance of hybrid structural elements. This paper reviews key aspects of timber–steel hybridisation, with a particular emphasis on the connection methods between timber and steel, including adhesive bonding and mechanical fastening, as well as the different types of reinforcement configurations. In particular, this review covers two main types of adhesives used in timber–steel hybrid systems, namely, epoxy and polyurethane, and two primary types of mechanical fasteners, namely, bolts and screws. The mechanical performances of all hybridisation methods are reviewed. The importance of surface treatments, such as shot blasting for steel and mechanical abrasion for timber, is also discussed as a key factor in optimising adhesive bonds. Furthermore, various reinforcement configurations, including top, bottom, side, and embedded arrangements, are evaluated for their impact on the structural efficiency and fire performance. To support this evaluation, calculations have been carried out to illustrate how different reinforcement configurations influence the stress distribution in timber–steel hybrid beams. By providing detailed insights into these critical aspects, this paper serves as a valuable decision-making tool, offering guidance for researchers and industry professionals for selecting the appropriate bonding techniques and configurations to meet specific structural objectives and advance sustainable construction practices. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

25 pages, 8853 KiB  
Article
Experimental and Finite Element Study on Wooden Joints Strengthened by Detachable Steel Sleeves
by Jiajun Gao, Jianhua Shao, Yong Wang, Anxiang Feng, Zhanguang Wang, Hongxuan Xu, Yangfa Zhu and Boshi Ma
Buildings 2025, 15(12), 2139; https://doi.org/10.3390/buildings15122139 - 19 Jun 2025
Viewed by 299
Abstract
We designed detachable steel sleeves to reinforce wooden joints and improve their integrity under earthquake action and investigated their mechanical properties. Monotonic bending tests were performed on a half-tenon pure wooden joint and a joint strengthened by a detachable steel sleeve. More obvious [...] Read more.
We designed detachable steel sleeves to reinforce wooden joints and improve their integrity under earthquake action and investigated their mechanical properties. Monotonic bending tests were performed on a half-tenon pure wooden joint and a joint strengthened by a detachable steel sleeve. More obvious tenon pulling-out failure was observed in the pure wood joint; in comparison, only slight extrusion fracture of wooden beams and extrusion deformation of steel sleeves occurred in the wood joint reinforced by a detachable steel sleeve. Our test results showed that the initial rotational stiffness of the strengthened joint, JG1, was increased by 495.4% compared with that of the unstrengthened joint, JG0. The yield bending moment increased by 425.9%, and the ultimate bending moment increased by 627.5%, which indicated that the mechanical performance was significantly improved when the joint was reinforced by a detachable steel sleeve. Numerical simulations of different components were performed with finite element analysis software to analyze the mechanical performance of the reinforced joint. It was found that the stiffness and ultimate flexural performance of the joint could be increased by setting stiffeners on the steel sleeve and connecting the wooden column with self-tapping screws. The results of the tests were compared with those obtained through finite element analysis, and a high degree of accuracy was achieved, which could provide a theoretical basis for the reinforcement of timber structural buildings. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 4361 KiB  
Article
Building Sustainable Futures: Evaluating Embodied Carbon Emissions and Biogenic Carbon Storage in a Cross-Laminated Timber Wall and Floor (Honeycomb) Mass Timber Building
by Aayusha Chapagain and Paul Crovella
Sustainability 2025, 17(12), 5602; https://doi.org/10.3390/su17125602 - 18 Jun 2025
Viewed by 628
Abstract
The building sector significantly contributes to global energy consumption and carbon emissions, primarily due to the extensive use of carbon-intensive materials such as concrete and steel. Mass timber construction, particularly using cross-laminated timber (CLT), offers a promising low-carbon alternative. This study aims to [...] Read more.
The building sector significantly contributes to global energy consumption and carbon emissions, primarily due to the extensive use of carbon-intensive materials such as concrete and steel. Mass timber construction, particularly using cross-laminated timber (CLT), offers a promising low-carbon alternative. This study aims to calculate the embodied carbon emissions and biogenic carbon storage of a CLT-based affordable housing project, 340+ Dixwell in New Haven, Connecticut. This project was designed using a honeycomb structural system, where mass timber floors and roofs are supported by mass timber-bearing walls. The authors are not aware of a prior study that has evaluated the life cycle impacts of honeycomb mass timber construction while considering Timber Use Intensity (TUI). Unlike traditional post-and-beam systems, the honeycomb design uses nearly twice the amount of timber, resulting in higher carbon sequestration. This makes the study significant from a sustainability perspective. This study follows International Standard Organization (ISO) standards 14044, 21930, and 21931 and reports the results for both lifecycle stages A1–A3 and A1–A5. The analysis covers key building components, including the substructure, superstructure, and enclosure, with timber, concrete, metals, glass, and insulation as the materials assessed. Material quantities were extracted using Autodesk Revit®, and the life cycle assessment (LCA) was evaluated using One Click LCA (2015)®. The A1 to A3 stage results of this honeycomb building revealed that, compared to conventional mass timber housing structures such as Adohi Hall and Heartwood, it demonstrates the lowest embodiedf carbon emissions and the highest biogenic carbon storage per square foot. This outcome is largely influenced by its higher Timber Use Intensity (TUI). Similarly, the A1-A5 findings indicate that the embodied carbon emissions of this honeycomb construction are 40% lower than the median value for other multi-family residential buildings, as assessed using the Carbon Leadership Forum (CLF) Embodied Carbon Emissions Benchmark Study of various buildings. Moreover, the biogenic carbon storage per square foot of this building is 60% higher than the average biogenic carbon storage of reference mass timber construction types. Full article
Show Figures

Figure 1

23 pages, 3907 KiB  
Article
Woodot: An AI-Driven Mobile Robotic System for Sustainable Defect Repair in Custom Glulam Beams
by Pierpaolo Ruttico, Federico Bordoni and Matteo Deval
Sustainability 2025, 17(12), 5574; https://doi.org/10.3390/su17125574 - 17 Jun 2025
Viewed by 454
Abstract
Defect repair on custom-curved glulam beams is still performed manually because knots are irregular, numerous, and located on elements that cannot pass through linear production lines, limiting the scalability of timber-based architecture. This study presents Woodot, an autonomous mobile robotic platform that combines [...] Read more.
Defect repair on custom-curved glulam beams is still performed manually because knots are irregular, numerous, and located on elements that cannot pass through linear production lines, limiting the scalability of timber-based architecture. This study presents Woodot, an autonomous mobile robotic platform that combines an omnidirectional rover, a six-dof collaborative arm, and a fine-tuned Segment Anything computer vision pipeline to identify, mill, and plug surface knots on geometrically variable beams. The perception model was trained on a purpose-built micro-dataset and reached an F1 score of 0.69 on independent test images, while the integrated system located defects with a 4.3 mm mean positional error. Full repair cycles averaged 74 s per knot, reducing processing time by more than 60% compared with skilled manual operations, and achieved flush plug placement in 87% of trials. These outcomes demonstrate that a lightweight AI model coupled with mobile manipulation can deliver reliable, shop-floor automation for low-volume, high-variation timber production. By shortening cycle times and lowering worker exposure to repetitive tasks, Woodot offers a viable pathway to enhance the environmental, economic, and social sustainability of digital timber construction. Nevertheless, some limitations remain, such as dependency on stable lighting conditions for optimal vision performance and the need for tool calibration checks. Full article
Show Figures

Figure 1

24 pages, 9633 KiB  
Article
Assessment of Knot-Induced Degradation in Timber Beams: Probabilistic Modeling and Data-Driven Prediction of Load Capacity Loss
by Peixuan Wang, Guoming Liu, Fanrong Li, Shengcai Li, Gabriele Milani and Donato Abruzzese
Buildings 2025, 15(12), 2058; https://doi.org/10.3390/buildings15122058 - 15 Jun 2025
Viewed by 368
Abstract
Timber structural performance is significantly influenced by natural knots, which serve as critical indicators in ancient architectural heritage preservation and modern sustainable building design. However, existing studies lack a comprehensive quantitative analysis of how the randomness of timber knot parameters relates to load-bearing [...] Read more.
Timber structural performance is significantly influenced by natural knots, which serve as critical indicators in ancient architectural heritage preservation and modern sustainable building design. However, existing studies lack a comprehensive quantitative analysis of how the randomness of timber knot parameters relates to load-bearing capacity degradation. This study introduces a multiscale evaluation framework that integrates physical testing, probabilistic modeling, and data-driven techniques. Firstly, static tests on full-scale timber beams with artificially introduced knots reveal the failure mechanisms and load capacity reduction associated with knots in the tension zone. Subsequently, a three-dimensional Monte Carlo simulation, modeling random distributions of knot position and size, demonstrates that the midspan region is most sensitive to knot effects, with load capacity loss being more pronounced on the tension side than on the compression side. Finally, a predictive model based on a fully connected neural network is developed; feature analysis indicates that the longitudinal position of knots exerts a stronger nonlinear influence on load capacity than radial depth or diameter. The results establish a mapping between knot characteristics, stress field distortion, and ultimate load capacity, providing a theoretical basis for safety evaluation of historic timber structures and the design of defect-tolerant timber beams in modern engineering. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

22 pages, 5614 KiB  
Article
Fatigue Design Research on Notch–Stud Connectors of Timber–Concrete Composite Structures
by Zuen Zheng, Shuai Yuan and Guojing He
Buildings 2025, 15(12), 2033; https://doi.org/10.3390/buildings15122033 - 12 Jun 2025
Viewed by 531
Abstract
To investigate the mechanical behavior and damage mechanism of notch–stud connectors in timber–concrete composites under fatigue loading, fifteen push-out specimens in five groups were designed with load cycles as the key variable. Fatigue failure modes and mechanisms were analyzed to examine fatigue life, [...] Read more.
To investigate the mechanical behavior and damage mechanism of notch–stud connectors in timber–concrete composites under fatigue loading, fifteen push-out specimens in five groups were designed with load cycles as the key variable. Fatigue failure modes and mechanisms were analyzed to examine fatigue life, stiffness degradation, and cumulative damage laws of connectors. Numerical simulations with up to 100 load cycles explored timber/concrete damage effects on stud fatigue performance. Based on the results, an S-N curve was established, a fatigue damage model developed, and a fatigue design method proposed for such connectors. Primary failure modes were stud fracture and local concrete crushing in notches. Stiffness degradation followed an inverted “S”-shaped “fast–slow–fast” pattern. Using residual slip as the damage variable, a two-stage fatigue damage evolution model was constructed from the damage–cycle ratio relationship, offering a new method for shear connector fatigue damage calculation in timber–concrete composites and enabling remaining life prediction for similar composite beam connectors. Finite element simulations of push-out specimens showed high consistency between calculated and experimental fatigue life/damage results, validating the conclusions. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

18 pages, 1551 KiB  
Article
Development and Validation of a Theoretical Model for Flexural Behavior in Timber-Concrete and Bamboo-Concrete Composite Beams
by Thaís P. L. Siqueira, M’hamed Y. R. da Glória, Enzo Martinelli and Romildo D. Toledo Filho
Buildings 2025, 15(12), 2021; https://doi.org/10.3390/buildings15122021 - 12 Jun 2025
Viewed by 656
Abstract
The growing demand for sustainable construction has encouraged the use of composite beams combining timber or bamboo with concrete to optimize structural performance and reduce environmental impact. These hybrid systems, widely used in new constructions and retrofits, present modeling challenges due to the [...] Read more.
The growing demand for sustainable construction has encouraged the use of composite beams combining timber or bamboo with concrete to optimize structural performance and reduce environmental impact. These hybrid systems, widely used in new constructions and retrofits, present modeling challenges due to the nonlinear interaction between materials and their mechanical connections. This study aims to develop and validate a finite element model to simulate the nonlinear flexural behavior of these composite beams. The model is based on an exact solution for two-layer elastic systems and incorporates nonlinear constitutive laws for concrete and timber/bamboo, along with a trilinear shear–slip law to represent interface behavior. Unlike most models, it is applicable to different connector types and a range of materials—including bamboo, timber, and both conventional and lightweight concrete. An incremental–iterative solution captures progressive deformations and failure mechanisms. Validation against 16 experimental beams showed accurate predictions of linear load capacity, mid-span deflection, and initial stiffness. Over 80% of the results showed deviations below 30%, and 50% were within 20%. The model also correctly captured the experimental failure mode in all cases. This approach provides a reliable and versatile tool for the structural analysis and design of composite beams. Full article
(This article belongs to the Special Issue Contemporary Applications of Wood in Architecture and Construction)
Show Figures

Figure 1

21 pages, 3530 KiB  
Article
Crack Propagation Behavior Modeling of Bonding Interface in Composite Materials Based on Cohesive Zone Method
by Yulong Zhu, Yafen Zhang and Lu Xiang
Buildings 2025, 15(10), 1717; https://doi.org/10.3390/buildings15101717 - 19 May 2025
Viewed by 390
Abstract
Wood, steel, and concrete constitute the three predominant structural materials employed in contemporary commercial and residential construction. In composite applications, bond interfaces between these materials represent critical structural junctures that frequently exhibit a reduced load-bearing capacity, rendering them susceptible to the initiation of [...] Read more.
Wood, steel, and concrete constitute the three predominant structural materials employed in contemporary commercial and residential construction. In composite applications, bond interfaces between these materials represent critical structural junctures that frequently exhibit a reduced load-bearing capacity, rendering them susceptible to the initiation of cracks. To elucidate the fracture propagation mechanisms at composite material interfaces, this study implements the cohesive zone method (CZM) to numerically simulate interfacial cracking behavior in two material systems: glued laminated timber (GLT) and reinforced concrete (RC). The adopted CZM framework utilizes a progressive delamination approach through cohesive elements governed by a bilinear traction–separation constitutive law. This methodology enables the simulation of interfacial failure through three distinct fracture modes: mode I (pure normal separation), mode II (pure in-plane shear), and mixed-mode (mode m) failure. Numerical models were developed for GLT beams, RC beams, and RC slab structures to investigate the propagation of interfacial cracks under monotonic loading conditions. The simulation results demonstrate strong agreement with experimental cracking observations in GLT structures, validating the CZM’s efficacy in characterizing both mechanical behavior and crack displacement fields. The model successfully captures transverse tensile failure (mode I) parallel to wood grain, longitudinal shear failure (mode II), and mixed-mode failure (mode m) in GLT specimens. Subsequent application of the CZM to RC structural components revealed a comparable predictive accuracy in simulating the interfacial mechanical response and crack displacement patterns at concrete composite interfaces. These findings collectively substantiate the robustness of the proposed CZM framework in modeling complex fracture phenomena across diverse construction material systems. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 10492 KiB  
Article
Predicting Nonlinear Behavior of Cellular Cross-Laminated Timber Under Bending and Rolling Shear
by Suman Pradhan and Mostafa Mohammadabadi
Fibers 2025, 13(5), 55; https://doi.org/10.3390/fib13050055 - 2 May 2025
Viewed by 553
Abstract
This study investigates the structural performance of cellular cross-laminated timber (CCLT) through a nonlinear finite element model using Hill and Hashin damage criteria in Abaqus. This study evaluates these criteria in simulating CCLT’s mechanical behavior under bending and shear loading. Experimental validation included [...] Read more.
This study investigates the structural performance of cellular cross-laminated timber (CCLT) through a nonlinear finite element model using Hill and Hashin damage criteria in Abaqus. This study evaluates these criteria in simulating CCLT’s mechanical behavior under bending and shear loading. Experimental validation included short-span and long-span bending tests, along with rolling shear tests. In bending simulations, the Hill criterion predicted maximum loads with a 7% error for long-span beams when modeling lumber as solid elements and the corrugated panel as shell elements. When the entire CCLT was modeled using shell elements, the error increased to 9%. For the short-span bending, the error remained at 8% regardless of element type. The Hashin model provided more accurate results, with deviations of 0.2% for long-span beams and 1% for short-span beams. Both models successfully predicted failure mechanisms, identifying tension failure in the lumber under long-span bending and shear failure in the corrugated core under short-span bending. In rolling shear tests, the Hill criterion underestimated the maximum shear load by 11%, while the Hashin criterion had a larger underestimation of 26%. Despite these discrepancies, both models effectively captured the nonlinear behavior of CCLT panels. These findings highlight the potential of Hill and Hashin criteria for modeling CCLT’s mechanical response, offering valuable insights into structural design applications. Full article
Show Figures

Figure 1

18 pages, 5896 KiB  
Article
Efficiency of Alternative Reinforcement Methods for Wooden Ceilings and Their Ecological Aspects
by Karl Deix, Christian Huber and Josip Gogic
Materials 2025, 18(9), 2032; https://doi.org/10.3390/ma18092032 - 29 Apr 2025
Viewed by 410
Abstract
In the case of load increases and the refurbishment of existing buildings, it is often necessary to carry out strengthening measures on existing timber beams. When timber concrete composite (TCC) ceilings cannot be used, it is possible to reinforce the undersides of the [...] Read more.
In the case of load increases and the refurbishment of existing buildings, it is often necessary to carry out strengthening measures on existing timber beams. When timber concrete composite (TCC) ceilings cannot be used, it is possible to reinforce the undersides of the beams with structural steel or fiber composites (aramid or carbon-fiber-reinforced polymer). This work investigates how significant effects on the load-bearing and deformation behavior can be achieved with these materials in terms of construction practice. The article is intended to show structural engineers which reinforcement measures lead to which forces, deformations, etc., and how these are utilized. This should form the basis for the planning of reinforcement measures, as it is not clear from the beginning whether AFRP, CFRP, or steel is the most suitable material. For this purpose, a comparative parameter study was carried out under practical conditions and with a variable degree of reinforcement using the corresponding formulas. The internal forces in the timber and reinforcement cross-sections, the deflection behavior, and the failure loads at the strength and design levels were calculated. It was demonstrated that, particularly for steel and carbon-fiber-reinforced polymer (CFRP) reinforcements, significant increases in the ultimate load can be achieved and the often-important deformation behavior can be significantly improved. Especially the steel variant leads to high improvements in deflection and breaking load behavior, with the base material (wood) also being utilized more economically as a result. A comparative ecological study in the form of the global warming potential showed that reinforcement methods are also advantageous from the point of view of sustainability compared to renovations with timber concrete composite slabs or new concrete slabs. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

13 pages, 11235 KiB  
Article
A Quantitative Monitoring Study of Environmental Factors Activating Caihua and Wooden Heritage Cracks in the Palace Museum, Beijing, China
by Xiang He, Hong Li, Yilun Liu, Binhao Wu, Mengmeng Cai, Xiangna Han and Hong Guo
Buildings 2025, 15(5), 827; https://doi.org/10.3390/buildings15050827 - 5 Mar 2025
Viewed by 811
Abstract
Cultural heritage objects, including traditional Chinese polychrome paintings on architectures (Caihua) and wooden architectural components, frequently exhibit surface defects that are highly sensitive to environmental factors, resulting in progressive deterioration. However, due to limited data acquisition methods and quantitative analysis models, the stability [...] Read more.
Cultural heritage objects, including traditional Chinese polychrome paintings on architectures (Caihua) and wooden architectural components, frequently exhibit surface defects that are highly sensitive to environmental factors, resulting in progressive deterioration. However, due to limited data acquisition methods and quantitative analysis models, the stability and risks of defects such as cracks during environmental changes remain unclear. This study integrates photogrammetry and digital image processing to investigate through-cracks and craquelures on the surface of a well pavilion within the Palace Museum, Beijing. We confirmed the activity of these cracks, quantified crack widths, and studied the environmental influences on their development. Over a monitoring period of more than 15 months, the widths of seven cracks on four beams were measured alongside various environmental factors. Correlation analyses identified air humidity as the most significant factor influencing crack width fluctuations (p < 0.01). Numerical simulations revealed that short-term humidity exposure induces surface swelling and crack closure, whereas prolonged humidity leads to internal moisture transport and crack reopening. Furthermore, fitting parameters indicating the severity of crack variation correlated well with the degradation levels of the wooden components. In summary, this study establishes a monitoring and quantification procedure for assessing crack activity, explores the influence of humidity through numerical simulations, and identifies a potential indicator for the non-destructive assessment of timber component stability. The proposed framework offers an exploratory approach to addressing critical challenges in the health monitoring of wooden architectural components. Full article
Show Figures

Figure 1

29 pages, 10636 KiB  
Article
Development of an Environmentally Friendly Steel Structural Framework: Evaluation of Bending Stiffness and Yield Bending Moment of Cross-Laminated Timber Slab–H-Shaped Steel Composite Beams for Component Reuse
by Sachi Furukawa, Ryohei Iwami and Yoshihiro Kimura
Sustainability 2025, 17(5), 2073; https://doi.org/10.3390/su17052073 - 27 Feb 2025
Cited by 2 | Viewed by 1044
Abstract
The building and construction sector accounts for nearly 40% of global greenhouse gas emissions, with steel-framed buildings being a significant contributor due to high CO2 emissions during production. To mitigate this issue, integrating Cross-Laminated Timber (CLT) into structural systems has emerged as [...] Read more.
The building and construction sector accounts for nearly 40% of global greenhouse gas emissions, with steel-framed buildings being a significant contributor due to high CO2 emissions during production. To mitigate this issue, integrating Cross-Laminated Timber (CLT) into structural systems has emerged as a sustainable alternative. CLT, known for its carbon sequestration properties, offers an environmentally friendly replacement for reinforced-concrete slabs, particularly when paired with steel structures to enhance material reuse and reduce lifecycle impacts. This study focuses on hybrid systems combining H-shaped steel beams and CLT floor panels connected using high-strength friction bolts. A four-point bending test, simulating a secondary beam, was conducted, demonstrating that the composite effect significantly enhances flexural stiffness and strength. Additionally, a simplified method for evaluating the flexural stiffness and yielding strength of these composite beams, based on material and joint properties, was shown to successfully evaluate the test results. Full article
(This article belongs to the Section Green Building)
Show Figures

Graphical abstract

Back to TopTop