Predicting Nonlinear Behavior of Cellular Cross-Laminated Timber Under Bending and Rolling Shear
Abstract
:Highlights
- What are the main findings?
- A nonlinear finite element model was developed to simulate the structural behavior of cellular cross-laminated timber (CCLT) using Hill’s yield criterion and Hashin’s damage criterion in Abaqus.
- In bending simulations, the Hashin model yielded highly accurate predictions, with deviations of 0.2% for long-span and 1% for short-span beams. The Hill model showed good performance as well, with a 7–9% error for long-span and 8% for short-span bending, depending on the element configuration.
- Both models successfully predicted failure modes: tensile failure in the lumber under long-span bending and shear failure in the corrugated core under short-span bending.
- In rolling shear tests, the Hill model underestimated the maximum shear load by 11%, while the Hashin model showed a larger deviation of 26%.
- What is the implication of the main finding?
- The validated models provide reliable tools for predicting CCLT performance, particularly under bending loads, offering insights into failure mechanisms critical for structural design.
- Despite underestimations in rolling shear simulations, both Hill and Hashin criteria demonstrate strong potential for further development and application in advanced CCLT modeling.
- These findings contribute to optimizing CCLT panel design, supporting more efficient and resilient timber structures in sustainable construction.
Abstract
1. Introduction
2. CCLT
2.1. Manufacturing
2.2. Experimental Testing
2.2.1. Bending Test
2.2.2. Rolling Shear Test
2.3. Constitutive Model
2.3.1. Elastic Behavior
2.3.2. Nonlinear Behavior
Hill Criteria: Elastoplastic Model
Hashin Criteria: Elastic Damage Model
- (1)
- Fiber tension (), ( 0)
- (2)
- Fiber compression (), ( 0)
- (3)
- Matrix tension (), ( 0)
- (4)
- Matrix compression (), 0)
2.4. FE Model
2.4.1. Bending Test Model
2.4.2. Rolling Shear Test Model
3. Results and Discussion
3.1. Third Point Bending Result
3.2. Rolling ShearTest Result
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harte, A.M. Mass timber—The emergence of a modern construction material. J. Struct. Integr. Maint. 2017, 2, 121–132. [Google Scholar] [CrossRef]
- Younis, A.; Dodoo, A. Cross-laminated timber for building construction: A life-cycle-assessment overview. J. Build. Eng. 2022, 52, 104482. [Google Scholar] [CrossRef]
- Wang, Z.; Yin, T. Cross-Laminated Timber: A Review on Its Characteristics and an Introduction to Chinese Practices. In Engineered Wood Products for Construction; IntechOpen: London, UK, 2021. [Google Scholar]
- Pradhan, S.; Mohammadabadi, M.; Seale, D. Quantifying the effect of profile design on flexural stiffness in cellular cross-laminated timber: A numerical exploration and experimental verification. Mater. Struct. 2024, 57, 164. [Google Scholar] [CrossRef]
- Eslami, H.; Jayasinghe, L.B.; Waldmann, D. Nonlinear three-dimensional anisotropic material model for failure analysis of timber. Eng. Fail. Anal. 2021, 130, 105764. [Google Scholar] [CrossRef]
- Xu, B.-H.; Bouchaïr, A.; Racher, P. Appropriate Wood Constitutive Law for Simulation of Nonlinear Behavior of Timber Joints. J. Mater. Civ. Eng. 2014, 26, 4014004. [Google Scholar] [CrossRef]
- Sirumbal-Zapata, L.F.; Málaga-Chuquitaype, C.; Elghazouli, A.Y. Plasticity-damage material constitutive model for timber subjected to cyclic loading. In Proceedings of the 16th World Conference on Earthquake, Santiago, Chile, 9–13 January 2017; Volume 1122. [Google Scholar]
- Wang, M.; Song, X.; Gu, X. Three-Dimensional Combined Elastic-Plastic and Damage Model for Nonlinear Analysis of Wood. J. Struct. Eng. 2018, 144. [Google Scholar] [CrossRef]
- Kharouf, N.; McClure, G.; Smith, I. Elasto-plastic modeling of wood bolted connections. Comput. Struct. 2003, 81, 747–754. [Google Scholar] [CrossRef]
- Moses, D.M.; Prion, H.G.L. Stress and failure analysis of wood composites: A new model. Compos. B Eng. 2004, 35, 251–261. [Google Scholar] [CrossRef]
- Oudjene, M.; Khelifa, M. Elasto-plastic constitutive law for wood behaviour under compressive loadings. Constr. Build. Mater. 2009, 23, 3359–3366. [Google Scholar] [CrossRef]
- Kawecki, B.; Podgórski, J. 3D Abaqus Simulation of Bent Softwood Elements. Arch. Civ. Eng. 2020, 66, 323–337. [Google Scholar] [CrossRef]
- Echaabi, J.; Trochu, F.; Gauvin, R. Review of failure criteria of fibrous composite materials. Polym. Compos. 1996, 17, 786–798. [Google Scholar] [CrossRef]
- Hashin, Z. Failure Criteria for Unidirectional Fiber Composites. J. Appl. Mech. 1980, 47, 329–334. [Google Scholar] [CrossRef]
- Christensen, R.M. A Survey of and Evaluation Methodology for Fiber Composite Material Failure Theories. In Mechanics for a New Mellennium; Springer: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Ivanov, I.V.; Sadowski, T. Numerical modelling and investigation of plywood progressive failure in CT tests. Comput. Mater. Sci. 2009, 45, 729–734. [Google Scholar] [CrossRef]
- Manual, Abaqus Analysis User’s Guide. Abaqus 6.11. 89(2080), v6. 2012. Available online: http://130.149.89.49:2080/v2016/books/usb/default.htm (accessed on 1 January 2024).
- Bodner, S.R.; Partom, Y. Constitutive Equations for Elastic-Viscoplastic Strain-Hardening Materials. J. Appl. Mech. 1975, 42, 385–389. [Google Scholar] [CrossRef]
- Sivák, P.; Frankovský, P.; Delyová, I.; Bocko, J.; Kostka, J.; Schürger, B. Influence of Different Strain Hardening Models on the Behavior of Materials in the Elastic–Plastic Regime under Cyclic Loading. Materials 2020, 13, 5323. [Google Scholar] [CrossRef]
- Bernstein, B.E. A unified theory of elasticity and plasticity. Int. J. Eng. Sci. 1977, 15, 645–660. [Google Scholar] [CrossRef]
- Shrestha, J.K.; Pradhan, S.; Gautam, D. In-plane behavior of various brick bonds in masonry walls. Innov. Infrastruct. Solut. 2020, 5, 58. [Google Scholar] [CrossRef]
- Wright, S.; Dahlen, J.; Montes, C.; Eberhardt, T.L. Quantifying knots by image analysis and modeling their effects on the mechanical properties of loblolly pine lumber. Eur. J. Wood Wood Prod. 2019, 77, 903–917. [Google Scholar] [CrossRef]
- Forest Products Laboratory. Wood Handbook: Wood as an Engineering Material; U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 1987. [Google Scholar]
- Mohammadabadi, M.; Yadama, V. Influence of a biaxially corrugated core geometry on flexural stiffness of wood-strand composite sandwich panels. Mater. Today Commun. 2020, 23, 100931. [Google Scholar] [CrossRef]
- Doyle, D.V.; Markwardt, L.J. Tension Parallel-to-Grain Properties of Southern Pine Dimension Lumber; U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 1967. [Google Scholar]
- Zhu, E.C.; Guan, Z.W.; Rodd, P.D.; Pope, D.J. A constitutive model for OSB and its application in finite element analysis. Eur. J. Wood Wood Prod. 2005, 63, 87–93. [Google Scholar] [CrossRef]
- Malek, S.; Zobeiry, N.; Dai, C.; Vaziri, R. Strain-Softening Response and Failure Prediction in Notched Oriented Strand Board. J. Mater. Civ. Eng. 2019, 31, 4019094. [Google Scholar] [CrossRef]
A. Lumber | |||||||||||||
Elasticity parameters | |||||||||||||
E1 (MPa) | E2 (MPa) | E3 (MPa) | Nu12 | Nu13 | Nu23 | G12 (MPa) | G13 (MPa) | G23 (MPa) | |||||
9400 | 1062.2 | 733.2 | 0.292 | 0.328 | 0.382 | 761.4 | 770.8 | 122.2 | |||||
Plastic Parameters (Strength Properties) | |||||||||||||
Hill Criterion (in MPa) | |||||||||||||
σ11 | σ22 | σ33 | τ0 | τ12 | τ23 | τ13 | |||||||
22 | 0.7 | 0.7 | 12.70 | 6.9 | 0.5 | 6.9 | |||||||
Hashin Criterion | |||||||||||||
Longitudinal Tensile Strength (MPa) | Longitudinal Compression Strength (MPa) | Transverse Tensile Strength (MPa) | Transverse Compression Strength (MPa) | Longitudinal Shear Strength (MPa) | Transverse Shear Strength (MPa) | ||||||||
22 | 36 | 0.7 | 4.6 | 6.9 | 0.5 | ||||||||
Longitudinal Tensile Fracture Energy (N/mm) | Longitudinal Compression Fracture Energy (N/mm) | Transverse Tensile Fracture Energy (N/mm) | Transverse Compression Fracture Energy (N/mm) | ||||||||||
0.8 | 0.8 | 0.5 | 0.5 | ||||||||||
B. Corrugation Panel | |||||||||||||
Elasticity parameters | |||||||||||||
E1 (MPa) | E2 (MPa) | E3 (MPa) | Nu12 | Nu13 | Nu23 | G12 (MPa) | G13 (MPa) | G23 (MPa) | |||||
9400 | 1062.2 | 733.2 | 0.292 | 0.328 | 0.382 | 761.4 | 770.8 | 122.2 | |||||
Plastic Parameters (Strength Properties) | |||||||||||||
Hill Criterion (in MPa) | |||||||||||||
σ11 | σ22 | σ33 | τ0 | τ12 | τ23 | τ13 | |||||||
14.10 | 12.62 | 12.62 | 8.14 | 7.5 | 1.5 | 7.5 | |||||||
Hashin Criterion | |||||||||||||
Longitudinal Tensile Strength (MPa) | Longitudinal Compression Strength (MPa) | Transverse Tensile Strength (MPa) | Transverse Compression Strength (MPa) | Longitudinal Shear Strength (MPa) | Transverse Shear Strength (MPa) | ||||||||
11.94 | 14.10 | 7.55 | 12.62 | 7.5 | 1.5 | ||||||||
Longitudinal Tensile Fracture Energy (N/mm) | Longitudinal Compression Fracture Energy (N/mm) | Transverse Tensile Fracture Energy (N/mm) | Transverse Compression Fracture Energy (N/mm) | ||||||||||
5 | 5 | 0.5 | 0.5 |
Long Span Bending | Short Span Bending | |||
---|---|---|---|---|
Bending Stiffness, N·mm2 | Maximum Load, N | Bending Stiffness, N·mm2 | Maximum Load, N | |
Experiment 1 | 1.69 × 1011 | 27,555 | 1.53 × 1011 | 48,538 |
Experiment 2 | 1.68 × 1011 | 27,660 | 1.78 × 1011 | 52,039 |
Hill-Solid-Shell | 1.77 × 1011 | 29,527 | 1.75 × 1011 | 54,217 |
Hill-Shell-Shell | 1.81 × 1011 | 29,954 | 1.83 × 1011 | 54,556 |
Hashin damage | 1.80 × 1011 | 27,552 | 1.83 × 1011 | 49,679 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pradhan, S.; Mohammadabadi, M. Predicting Nonlinear Behavior of Cellular Cross-Laminated Timber Under Bending and Rolling Shear. Fibers 2025, 13, 55. https://doi.org/10.3390/fib13050055
Pradhan S, Mohammadabadi M. Predicting Nonlinear Behavior of Cellular Cross-Laminated Timber Under Bending and Rolling Shear. Fibers. 2025; 13(5):55. https://doi.org/10.3390/fib13050055
Chicago/Turabian StylePradhan, Suman, and Mostafa Mohammadabadi. 2025. "Predicting Nonlinear Behavior of Cellular Cross-Laminated Timber Under Bending and Rolling Shear" Fibers 13, no. 5: 55. https://doi.org/10.3390/fib13050055
APA StylePradhan, S., & Mohammadabadi, M. (2025). Predicting Nonlinear Behavior of Cellular Cross-Laminated Timber Under Bending and Rolling Shear. Fibers, 13(5), 55. https://doi.org/10.3390/fib13050055