Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (352)

Search Parameters:
Keywords = three voltage vector

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4379 KB  
Article
Full-Lifecycle Deterioration Characteristics and Remaining Life Prediction of ZnO Varistors Based on PSO-SVR and iForest
by Zhiheng Zhu, Hongyang Xiao, Zhengwang Xu, Jixin Yang and Zhou Huang
Energies 2026, 19(2), 367; https://doi.org/10.3390/en19020367 - 12 Jan 2026
Viewed by 177
Abstract
To address three core deficiencies of the existing research on ZnO varistors (incomplete full-lifecycle datasets, insufficient characterization robustness due to the lack of multi-parameter complementarity, and disconnected remaining life prediction and failure threshold determination), this study proposes a comprehensive technical solution for ZnO [...] Read more.
To address three core deficiencies of the existing research on ZnO varistors (incomplete full-lifecycle datasets, insufficient characterization robustness due to the lack of multi-parameter complementarity, and disconnected remaining life prediction and failure threshold determination), this study proposes a comprehensive technical solution for ZnO varistor remaining life prediction. An 8/20 μs impulse current accelerated deterioration experiment was designed to construct a full-lifecycle dataset (441 sets of data) covering nine same-batch ZnO varistors from their initial state to complete failure. Five core electrical parameters (varistor voltage U1mA, nonlinear coefficient α, leakage current IL, parallel resistance Rp, parallel capacitance Cp) were fused, and principal component analysis (PCA) was adopted for dimensionality reduction to form a high-robustness characterization feature (correlation coefficient with deterioration degree = 0.96). A combined model of Particle Swarm Optimization-Support Vector Regression (PSO-SVR) and Isolation Forest (iForest) was established to realize “quantitative prediction–qualitative threshold” collaboration. Experimental results show that the PSO-SVR model achieves high-precision remaining life prediction (test set R2 = 0.9726, MSE = 0.00142) and the iForest model accurately identifies the failure threshold (AUC = 0.984, accuracy = 95.9%). The combined model reaches an overall accuracy of 99.89%, effectively solving the core deficiencies of the existing research and providing key technical support for SPD-condition monitoring and operation and maintenance decisions in energy systems. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

18 pages, 14423 KB  
Article
Data-Driven Model-Free Predictive Control for Zero-Sequence Circulating Current Suppression in Parallel NPC Converters
by Lan Cheng, Shiyu Liu, Jianye Rao, Songling Huang, Junjie Chen, Lin Qiu, Yishuang Hu and Youtong Fang
Energies 2026, 19(1), 189; https://doi.org/10.3390/en19010189 - 30 Dec 2025
Viewed by 237
Abstract
This paper proposes a data-driven model-free robust predictive control strategy for parallel three-level NPC inverters based on finite control set model predictive control (FCS-MPC), focusing on the zero-sequence circulating current (ZSCC) problem under parameter mismatch conditions. A set of virtual voltage vectors with [...] Read more.
This paper proposes a data-driven model-free robust predictive control strategy for parallel three-level NPC inverters based on finite control set model predictive control (FCS-MPC), focusing on the zero-sequence circulating current (ZSCC) problem under parameter mismatch conditions. A set of virtual voltage vectors with zero average common-mode voltage (CMV) is introduced to effectively suppress ZSCC without adding additional constraints to the cost function. Meanwhile, an Integral Sliding Mode Observer (ISMO) is integrated into the predictive control framework to enhance robustness and enable reliable control using only input–output data. Unlike existing studies that primarily consider ZSCC suppression under an ideal system, this work specifically addresses the practical scenario in which system parameters deviate from their nominal values. Even when ZSCC suppression strategies are employed, parameter mismatch can still lead to noticeable circulating currents, motivating the need for a more robust solution. Simulation and experimental results validate that the proposed approach achieves excellent current tracking, neutral-point voltage balance, and effective ZSCC suppression under parameter variations, demonstrating strong robustness and feasibility for practical applications. Full article
Show Figures

Figure 1

15 pages, 3785 KB  
Article
A Sustainable Manufacturing Approach: Experimental and Machine Learning-Based Surface Roughness Modelling in PMEDM
by Vaibhav Ganachari, Aleksandar Ašonja, Shailesh Shirguppikar, Ruturaj U. Kakade, Mladen Radojković, Blaža Stojanović and Aleksandar Vencl
J. Manuf. Mater. Process. 2026, 10(1), 10; https://doi.org/10.3390/jmmp10010010 - 29 Dec 2025
Viewed by 275
Abstract
The powder-mixed electric-discharge machining (PMEDM) process has been the focus of researchers for quite some time. This method overcomes the constraints of conventional machining, viz., low material removal rate (MRR) and high surface roughness (SR) in hard-cut materials, tool failure, and a high [...] Read more.
The powder-mixed electric-discharge machining (PMEDM) process has been the focus of researchers for quite some time. This method overcomes the constraints of conventional machining, viz., low material removal rate (MRR) and high surface roughness (SR) in hard-cut materials, tool failure, and a high tool wear ratio (TWR). However, to determine the optimal machining parameter levels for improving MRR, surface finish must be measured during actual experimentation using various parameter levels across different materials. It is a very costly and time-consuming process for industries. However, in the age of Industry 4.0 and artificial intelligence machine learning (AI-ML), it provides an efficient solution to real manufacturing problems when big data is available. In this study, experimentation was conducted on AISI D2 steel using the PMEDM process for SR analysis with different parameters, viz. current, voltage, cycle time (TOn), powder concentration (PC), and duty factor (DF). Moreover, machine learning models were used to predict SR values for selected parameter levels in the PMEDM process. In this research, Gaussian process regression (GPR) with a squared exponential kernel, support vector machines, and ensemble regression models were used for computational analysis. The results of this work showed that Gaussian regression, support vector machine, and ensemble regression achieved 95%, 92%, and 83% accuracy, respectively. The GPR model achieved the best predictive performance among these three models. Full article
Show Figures

Figure 1

20 pages, 4069 KB  
Article
Theoretical and Experimental Study on the Overvoltage in the PWM Inverter–Cable–Induction Machine Association
by Bouyahi Henda and Adel Khedher
Electricity 2026, 7(1), 1; https://doi.org/10.3390/electricity7010001 - 26 Dec 2025
Viewed by 248
Abstract
Induction motors (IMs) are widely used in variable-speed electric drive systems, where the motor is supplied by a voltage source inverter (VSI). Thus, PWM inverter–IM combination presents several issues that can degrade system performance, particularly overvoltage phenomena when long cables are used. In [...] Read more.
Induction motors (IMs) are widely used in variable-speed electric drive systems, where the motor is supplied by a voltage source inverter (VSI). Thus, PWM inverter–IM combination presents several issues that can degrade system performance, particularly overvoltage phenomena when long cables are used. In inverter-fed drive systems, the physical separation between the converter and the motor often requires long motor cables, which can significantly affect voltage stress. As the inverter’s output pulses propagate through the cable, voltage reflections and high-frequency oscillations occur at the motor terminals. We theoretically and experimentally investigate the effect of three PWM methods, namely Space Vector (SVPWM), Selective Harmonic Elimination PWM (SHEPWM), and Random PWM (RPWM) strategies, on overvoltage at the terminals of an induction motor fed by a PWM inverter through a long cable. The simulation results exhibit the validity and efficiency of SVPWM control to reduce overvoltage for different cable lengths. In addition, in order to reduce and eliminate all overvoltage peaks, three filters are proposed and evaluated: an RC filter, an RLC filter, and a compensator. The proposed PWM strategies are assessed using equivalent experimental results obtained on an induction motor fed by a two-level VSI. The experimental tests demonstrate also the efficiency of the SVPWM compared to other strategies. Full article
Show Figures

Figure 1

29 pages, 4561 KB  
Article
Straightforward Multilevel Space Vector Modulation for a Modular Multilevel Converter for PV Generation
by Santiago de Pablo, Yad N. Bakir, Fernando Martinez-Rodrigo, Luis C. Herrero-de-Lucas and Alexis B. Rey-Boue
Electronics 2026, 15(1), 53; https://doi.org/10.3390/electronics15010053 - 23 Dec 2025
Viewed by 207
Abstract
Many methods have been developed for multilevel Space Vector Modulation (SVM), but despite their inherent advantages, all of them have been more complex than the alternative option of using Pulse Width Modulation (PWM) with sinusoidal or modified references. Different axes like g-h at [...] Read more.
Many methods have been developed for multilevel Space Vector Modulation (SVM), but despite their inherent advantages, all of them have been more complex than the alternative option of using Pulse Width Modulation (PWM) with sinusoidal or modified references. Different axes like g-h at 60° or ja-jb-jc at 120° have been used to simplify the operations to find the three nearest vectors and their duty cycles, but the control signals of multilevel converters are the duty cycles of phases, not the duty cycles of vectors. Moreover, throughout this paper, it was found that local information is not sufficient to compute the duty cycles of the phases: global information should be taken into account to obtain full control on the common mode voltage (CMV), and the selection of the starting vector in the switching sequence is also critical to obtain a balanced CMV. The natural coordinates ab-bc-ca were used in this paper, and a straightforward method is proposed for multilevel SVM: a method that is comparable in complexity to multilevel PWM with modified references and leads to exactly the same control signals. This method can be used as an easy starting point to develop other SVM techniques for multilevel converters. Full article
(This article belongs to the Special Issue New Horizons and Recent Advances of Power Electronics)
Show Figures

Figure 1

19 pages, 2873 KB  
Article
High-Performance Sensorless Control of Induction Motors via ANFIS and NPC Inverter Topology
by Zina Boussada, Bassem Omri and Mouna Ben Hamed
Symmetry 2025, 17(11), 1996; https://doi.org/10.3390/sym17111996 - 18 Nov 2025
Viewed by 498
Abstract
This paper presents a high-performance sensorless control strategy for induction motors using an Adaptive Neuro-Fuzzy Inference System (ANFIS) for rotor speed estimation, eliminating the need for mechanical sensors. The ANFIS approach leverages stator voltages and currents, reducing costs and complexity. The motor is [...] Read more.
This paper presents a high-performance sensorless control strategy for induction motors using an Adaptive Neuro-Fuzzy Inference System (ANFIS) for rotor speed estimation, eliminating the need for mechanical sensors. The ANFIS approach leverages stator voltages and currents, reducing costs and complexity. The motor is controlled via Indirect Stator Field Orientation Control (ISFOC) with a three-level Neutral–Point–Clamped (NPC) inverter employing Space Vector Modulation (SVM). Symmetry in the motor’s magnetic structure and SVM’s switching patterns enhances control precision, stability, and efficiency while minimizing harmonic distortion. Simulation results validate the proposed ANFIS-based estimator’s superior performance compared to a MRAS-based Luenberger observer under various operating conditions, demonstrating accurate speed tracking and robustness against load disturbances. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

17 pages, 13332 KB  
Article
Weight-Adaptable Disturbance Observer for Continuous-Control-Set Model Predictive Control of NPC-3L-Fed PMSMs
by Zhenyan Liang, Jiang Wang, Yitong Wu and Zhen Zhang
Energies 2025, 18(21), 5864; https://doi.org/10.3390/en18215864 - 6 Nov 2025
Viewed by 559
Abstract
This paper presents a cascaded control strategy for neutral-point-clamped three-level (NPC-3L) inverter-fed permanent magnet synchronous motors (PMSMs), integrating continuous-control-set model-predictive control (CCS-MPC) with mid-point voltage regulation and an online Lyapunov-stable neural-network (NN) disturbance observer. The outer CCS-MPC loop optimizes voltage vector application for [...] Read more.
This paper presents a cascaded control strategy for neutral-point-clamped three-level (NPC-3L) inverter-fed permanent magnet synchronous motors (PMSMs), integrating continuous-control-set model-predictive control (CCS-MPC) with mid-point voltage regulation and an online Lyapunov-stable neural-network (NN) disturbance observer. The outer CCS-MPC loop optimizes voltage vector application for accurate current tracking and harmonic suppression, while the inner loop balances mid-point voltage by adjusting the dwell times of P/N small-voltage vectors (VVs). The NN-based disturbance observer compensates parameter mismatches in real time, reducing steady-state dq-axis current errors. To validate the effectiveness of the proposed strategy, experiments are conducted using a three-phase PMSM fed by three-phase NPC-3L inverters. Experimental results demonstrate substantial improvements in mid-point voltage balance, current quality, and robustness against model uncertainties. Full article
(This article belongs to the Collection State-of-the-Art of Electrical Power and Energy System in China)
Show Figures

Figure 1

30 pages, 5764 KB  
Article
Control and Modeling Framework for Balanced Operation and Electro-Thermal Analysis in Three-Level T-Type Neutral Point Clamped Inverters
by Ahmed H. Okilly, Cheolgyu Kim, Do-Wan Kim and Jeihoon Baek
Energies 2025, 18(21), 5587; https://doi.org/10.3390/en18215587 - 24 Oct 2025
Viewed by 521
Abstract
Reliable multilevel inverter IGBT modules require precise loss and heat management, particularly in severe traction applications. This paper presents a comprehensive modeling framework for three-level T-type neutral-point clamped (TNPC) inverters using a high-power Insulated Gate Bipolar Transistor (IGBT) module that combines model predictive [...] Read more.
Reliable multilevel inverter IGBT modules require precise loss and heat management, particularly in severe traction applications. This paper presents a comprehensive modeling framework for three-level T-type neutral-point clamped (TNPC) inverters using a high-power Insulated Gate Bipolar Transistor (IGBT) module that combines model predictive control (MPC) with space vector pulse width modulation (SVPWM). The particle swarm optimization (PSO) algorithm is used to methodically tune the MPC cost function weights for minimization, while achieving a balance between output current tracking, stabilization of the neutral-point voltage, and, consequently, a uniform distribution of thermal stress. The proposed SVPWM-MPC algorithm selects optimal switching states, which are then utilized in a chip-level loss model coupled with a Cauer RC thermal network to predict transient chip-level junction temperatures dynamically. The proposed framework is executed in MATLAB R2024b and validated with experiments, and the SemiSel industrial thermal simulation tool, demonstrating both control effectiveness and accuracy of the electro-thermal model. The results demonstrate that the proposed control method can sustain neutral-point voltage imbalance of less than 0.45% when operating at 25% load and approximately 1% under full load working conditions, while accomplishing a uniform junction temperature profile in all inverter legs across different working conditions. Moreover, the results indicate that the proposed control and modeling structure is an effective and common-sense way to perform coordinated electrical and thermal management, effectively allowing for predesign and reliability testing of high-power TNPC inverters. Full article
(This article belongs to the Special Issue Power Electronics Technology and Application)
Show Figures

Figure 1

20 pages, 8476 KB  
Article
Three-Phase Space Vector PWM Inverter for Induction Motor Drive with Leakage Current Reduction
by Gerardo Vazquez-Guzman, Panfilo R. Martinez-Rodriguez, Julio C. Rosas-Caro, Emmanuel Rivera-Perez, Juan A. Verdin-Cruz, Christopher J. Rodriguez-Cortes and Diego Langarica-Cordoba
Sustainability 2025, 17(20), 9317; https://doi.org/10.3390/su17209317 - 20 Oct 2025
Viewed by 1070
Abstract
Several industrial applications rely on induction motors to carry out processes essential for product manufacturing. Speed control of an induction motor commonly requires a pulse width modulated inverter capable of driving a system with long cables, suppression of common mode voltage, reduction in [...] Read more.
Several industrial applications rely on induction motors to carry out processes essential for product manufacturing. Speed control of an induction motor commonly requires a pulse width modulated inverter capable of driving a system with long cables, suppression of common mode voltage, reduction in common mode current, and suppression of electromagnetic interference. This paper proposes a three-phase motor drive aimed at maintaining a constant common-mode voltage. The proposed system consists of two three-phase conventional full bridge inverters connected in parallel and having as an input two separate direct current sources. The proposed system is controlled by using the space vector pulse width modulation technique. By properly designing the switching signal sequences for both converters, the common-mode voltage can be maintained constant, thereby reducing the associated common-mode current to an RMS value of 92.3 mA and enhancing the overall reliability of the system. The proposed system is validated through numerical simulations and by the implementation of an experimental prototype. Full article
(This article belongs to the Special Issue Power Electronics on Recent Sustainable Energy Conversion Systems)
Show Figures

Figure 1

22 pages, 5131 KB  
Article
Predictive Torque Control for Induction Machine Fed by Voltage Source Inverter: Theoretical and Experimental Analysis on Acoustic Noise
by Bouyahi Henda and Adel Khedher
Acoustics 2025, 7(4), 63; https://doi.org/10.3390/acoustics7040063 - 11 Oct 2025
Viewed by 866
Abstract
Induction motors piloted by voltage source inverters constitute a major source of acoustic noise in industry. The discrete tonal bands generated by induction motor stator current spectra controlled by the fixed Pulse Width Modulation (PWM) technique have damaging effects on the electronic noise [...] Read more.
Induction motors piloted by voltage source inverters constitute a major source of acoustic noise in industry. The discrete tonal bands generated by induction motor stator current spectra controlled by the fixed Pulse Width Modulation (PWM) technique have damaging effects on the electronic noise source. Nowadays, the investigation of new advanced control techniques for variable speed drives has developed a potential investigation field. Finite state model predictive control has recently become a very popular research focus for power electronic converter control. The flexibility of this control shows that the switching times are generated using all the information on the drive status. Predictive Torque Control (PTC), space vector PWM and random PWM are investigated in this paper in terms of acoustic noise emitted by an induction machine fed by a three-phase two-level inverter. A comparative study based on electrical and mechanical magnitudes, as well as harmonic analysis of the stator current, is presented and discussed. An experimental test bench is also developed to examine the effect of the proposed PTC and PWM techniques on the acoustic noise of an induction motor fed by a three-phase two-level voltage source converter. Full article
Show Figures

Figure 1

17 pages, 3259 KB  
Article
A Multivector Direct Model Predictive Control Scheme with Harmonic Suppression for DTP-PMSMs
by Baoyun Qi, Rui Yang, Yu Lu, Zhen Zhang, Bingchen Liang, Bin Deng, Jiancheng Liu, Liwei Yu and Hongyun Wu
Electronics 2025, 14(19), 3970; https://doi.org/10.3390/electronics14193970 - 9 Oct 2025
Viewed by 530
Abstract
A multivector direct model predictive control (DMPC) scheme is proposed for the dual three-phase permanent magnet synchronous machine (DTP-PMSM) drive system to achieve closed-loop control for both fundamental current tracking and harmonic current minimization. The proposed multivector DMPC scheme employs four active voltage [...] Read more.
A multivector direct model predictive control (DMPC) scheme is proposed for the dual three-phase permanent magnet synchronous machine (DTP-PMSM) drive system to achieve closed-loop control for both fundamental current tracking and harmonic current minimization. The proposed multivector DMPC scheme employs four active voltage vectors, including two large vectors and two basic vectors for implicit modulation. Moreover, the control optimization problem is formulated as a four-dimensional quadratic programming problem, which is suitable for real-time implementation. The proposed multivector DMPC scheme enables fast and accurate tracking of the fundamental current as well as effective suppression of harmonic currents in both the fundamental and harmonic subspaces. In addition, a Kalman filter observer is incorporated to enhance robustness against model uncertainties and disturbances. Experimental results on a DTP-PMSM test bench verify that the proposed multivector DMPC scheme effectively reduces torque ripple, improves current quality, and enhances both steady-state and transient performance of the system. Full article
(This article belongs to the Special Issue Emerging Technologies in Wireless Power and Energy Transfer Systems)
Show Figures

Figure 1

22 pages, 5438 KB  
Article
Investigation of Constant SVPWM and Variable RPWM Strategies on Noise Generated by an Induction Motor Powered by VSI Two- or Three-Level
by Bouyahi Henda and Adel Khedher
Appl. Sci. 2025, 15(19), 10819; https://doi.org/10.3390/app151910819 - 9 Oct 2025
Viewed by 525
Abstract
A three-phase inverter generates non-sinusoidal voltages, contains high order harmonics, and concentrates on switching frequency multiples. Supplying an induction machine (IM) with a voltage source inverter (VSI) increases the acoustic noise content which becomes unbearable, particularly for systems needing a moderate level of [...] Read more.
A three-phase inverter generates non-sinusoidal voltages, contains high order harmonics, and concentrates on switching frequency multiples. Supplying an induction machine (IM) with a voltage source inverter (VSI) increases the acoustic noise content which becomes unbearable, particularly for systems needing a moderate level of electric traction. The discrete tonal bands produced by the IM stator current spectrum controlled by the fixed pulse width modulation (PWM) technique have damaging effects on the electronic noise source. Moreover, it has been factually proven that the noise content is strongly associated with the harmonics of the source feeding electric machine. Thus, the harmonic content is influenced by the control strategy VSI to produce pulse width modulation (PWM). Currently, the investigation of new advanced control techniques for variable speed drives has developed into a potential investigation file. Two fundamental topologies for a three-phase inverter have been suggested in the literature, namely two- and three-level topologies. Therefore, this paper investigated the effect of variable and fixed PWM strategies, such as random PWM (RPWM) and space vector PWM (SVPWM), on the noise generated by an IM, powered with a two- or three-level inverter. Simulation results showed the validity and efficiency of the proposed variable RPWM strategy in reducing sideband harmonics for both the two and three levels at different switching frequencies and modulation indexes. The proposed PWM strategies were further evaluated by the results of equivalent experiments on an IM fed by a two-level VSI. The experimental measurements of harmonic current and noise spectra demonstrate that the acoustic noise is reduced and dispersed totally for the RPWM strategy. Full article
Show Figures

Figure 1

15 pages, 4292 KB  
Article
Research on Medium Voltage Energy Storage Inverter Control Based on Hybrid Variable Virtual Vectors
by Zhimin Mei, Kai Xiong and Jiang Liu
Electronics 2025, 14(17), 3372; https://doi.org/10.3390/electronics14173372 - 25 Aug 2025
Viewed by 620
Abstract
Medium-voltage energy storage converter equipment is an important component of the new generation of ship power and power systems. Virtual space vector pulse width modulation, as a modulation optimization method to improve the neutral-point voltage imbalance in medium- and high-voltage multilevel energy storage [...] Read more.
Medium-voltage energy storage converter equipment is an important component of the new generation of ship power and power systems. Virtual space vector pulse width modulation, as a modulation optimization method to improve the neutral-point voltage imbalance in medium- and high-voltage multilevel energy storage converters, has become a research hotspot for T-type three-level energy storage inverter modulation methods due to its significant balancing effect and simple implementation. However, the current research method of constructing virtual vectors through redundant small vectors has limitations in regulating the neutral-point potential under full (especially high) modulation ratios. This paper proposes a modulation method that uses hybrid variable virtual small vectors and virtual medium vectors through optimization selection and reconstruction of basic vectors. This method ensures that the neutral-point charge change of the vector is zero and the common-mode voltage is minimized within the switching period under the full modulation ratio, achieving the purpose of controlling the neutral-point voltage balance and suppressing the common-mode voltage. Finally, simulation and experimental results show that the proposed method has good neutral-point voltage regulation and common-mode voltage suppression capabilities within the full modulation ratio range, and the system also has strong robustness and adaptability under different load conditions. Full article
Show Figures

Figure 1

19 pages, 9300 KB  
Article
Decoupling Control for the HVAC Port of Power Electronic Transformer
by Wusong Wen, Tianwen Zhan, Yingchao Zhang and Jintong Nie
Energies 2025, 18(15), 4131; https://doi.org/10.3390/en18154131 - 4 Aug 2025
Viewed by 682
Abstract
For the high-voltage AC port of power electronic transformer (HVAC-PET) with three-phase independent DC buses on the low-voltage side, a decoupling control strategy, concerning the influence of grid voltage imbalance, three-phase active-load imbalance, and high-order harmonic distortion, is proposed in this paper to [...] Read more.
For the high-voltage AC port of power electronic transformer (HVAC-PET) with three-phase independent DC buses on the low-voltage side, a decoupling control strategy, concerning the influence of grid voltage imbalance, three-phase active-load imbalance, and high-order harmonic distortion, is proposed in this paper to simultaneously realize the functions of active power control, reactive power compensation, and active power filtering. In the outer power control loop, according to the distribution rule of decoupled average active power components in three phases, stability control for the sum of cluster average active power flows is realized by injecting positive-sequence active current, so as to control the average cluster voltage (i.e., the average of all the DC-link capacitor voltages), and by injecting negative-sequence current, the cluster average active power flows can be controlled individually to balance the three cluster voltages (i.e., the average of the DC-link capacitor voltages in each cluster). The negative-sequence reactive power component is considered to realize the reactive power compensation. In the inner current control loop, the fundamental and high-order harmonic components are uniformly controlled in the positive-sequence dq frame using the PI + VPIs (vector proportional integral) controller, and the harmonic filtering function is realized while the fundamental positive-sequence current is adjusted. Experiments performed on the 380 V/50 kVA laboratory HVAC-PET verify the effectiveness of the proposed control strategy. Full article
Show Figures

Figure 1

29 pages, 3882 KB  
Article
Control Range and Power Efficiency of Multiphase Cage Induction Generators Operating Alone at a Varying Speed on a Direct Current Load
by Piotr Drozdowski
Energies 2025, 18(15), 4108; https://doi.org/10.3390/en18154108 - 2 Aug 2025
Viewed by 580
Abstract
The aim of the article is to determine the control range of a multiphase squirrel cage induction generator with more than three stator phases, operating in a wide range of driving speeds. The generator produces an output DC voltage using a multiphase converter [...] Read more.
The aim of the article is to determine the control range of a multiphase squirrel cage induction generator with more than three stator phases, operating in a wide range of driving speeds. The generator produces an output DC voltage using a multiphase converter operating as a PWM rectifier. The entire speed range is divided into intervals in which the sequence of stator phase voltages and, in effect, the number of pole pairs, is changed. In each interval, the output voltage is regulated by the frequency and amplitude of the stator voltages causing the highest possible power efficiency of the generator. The system can be scalar controlled or regulated using field orientation. Generator characteristics are calculated based on the set of steady-state equations derived from differential equations describing the multiphase induction machine. The calculation results are compared with simulations and with the steady-state measurement of the vector-controlled nine-phase generator. Recognizing the reliability of the obtained results, calculations are performed for a twelve-phase generator, obtaining satisfactory efficiency from 70% to 85% in the generator speed range from 0.2 to 1.0 of the assumed reference speed of 314 rad/s. The generator producing DC voltage can charge an electrical energy storage system or can be used directly to provide electrical power. This solution is not patented. Full article
(This article belongs to the Special Issue Advanced Technologies for Electrified Transportation and Robotics)
Show Figures

Figure 1

Back to TopTop