Weight-Adaptable Disturbance Observer for Continuous-Control-Set Model Predictive Control of NPC-3L-Fed PMSMs
Abstract
1. Introduction
- (1)
- Cascaded CCS-MPC with Mid-Point Voltage Control—The outer CCS-MPC loop formulates a quadratic program based solely on voltage–vector dwell times to minimize torque ripple and achieve precise current tracking. The inner loop dynamically balances the NPC-3L DC-link mid-point by adjusting P- and N-type small-vector dwell times.
- (2)
- Neural-Network Disturbance Observer—An online weight-tuning law derived via Lyapunov stability theory enables the NN-based disturbance observer to estimate and compensate parametric mismatches in real time. Experimental results demonstrate that this adaptive approach achieves substantially improved current tracking accuracy while requiring no offline gain tuning.
2. Mathematical Models
2.1. Model of Three-Phase PMSMs
2.2. NPC-3L Inverters and Output Voltage Vectors
3. Cascaded Structure with CCS-MPC and Mid-Point Voltage Control
3.1. Outer CCS-MPC
- Sector Selection
- Objective Function
3.2. Inner Mid-Point Voltage Control
4. Adaptive Weight NN-Based Disturbance Observer
5. Experiment
5.1. Performance of Cascaded Structure with CCS-MPC and Mid-Point Voltage Control
5.2. Performance of Adaptive Weight NN-Based Disturbance Observer
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, Z.; Wei, X.; Han, R.; Liu, C.; Zhang, Z. Double-Vector Model-Free Predictive Current Control for PMSMs with Influence Rejection of DC Voltage Mismatch. IEEE Trans. Transp. Electrif. 2016, 11, 6143–6153. [Google Scholar] [CrossRef]
- Bala, M.; Bahri, I.; Mercier, A.; Khanchoul, M.; Krebs, G. Speed PMSM Control Technique using a Single Current Sensor with Random SVPWM. In Proceedings of the 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), Delft, The Netherlands, 17–19 June 2020; pp. 1547–1552. [Google Scholar]
- Chen, Y.; Liu, C.; Liu, S.; Song, Z. A New Cascaded Adaptive Deadbeat Control Method for PMSM Drive. IEEE Trans. Ind. Electron. 2023, 70, 3384–3393. [Google Scholar] [CrossRef]
- Kakouche, K.; Oubelaid, A.; Mezani, S.; Rekioua, D.; Rekioua, T. Different Control Techniques of Permanent Magnet Synchronous Motor with Fuzzy Logic for Electric Vehicles: Analysis, Modelling, and Comparison. Energies 2023, 16, 3116. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Xu, Z.; Cheng, M.; Wang, W.; Hu, Y. Comprehensive Diagnosis and Tolerance Strategies for Electrical Faults and Sensor Faults in Dual Three-Phase PMSM Drives. IEEE Trans. Power Electron. 2019, 34, 6669–6684. [Google Scholar] [CrossRef]
- Levi, E. Advances in Converter Control and Innovative Exploitation of Additional Degrees of Freedom for Multiphase Machines. IEEE Trans. Ind. Electron. 2016, 63, 433–448. [Google Scholar] [CrossRef]
- Rodriguez, J.; Kennel, R.M.; Espinoza, J.R.; Trincado, M.; Silva, C.A.; Rojas, C.A. High-Performance Control Strategies for Electrical Drives: An Experimental Assessment. IEEE Trans. Ind. Electron. 2012, 59, 812–820. [Google Scholar] [CrossRef]
- Vazquez, S.; Rodriguez, J.; Rivera, M.; Franquelo, L.G.; Norambuena, M. Model Predictive Control for Power Converters and Drives: Advances and Trends. IEEE Trans. Ind. Electron. 2017, 64, 935–947. [Google Scholar] [CrossRef]
- Zhu, Z.; Wei, X.; Yu, F.; Zhang, Z. Overmodulatable Parameter-Free Predictive Current Control for PMSMs. IEEE Trans. Power Electron. 2025, 40, 1774–1786. [Google Scholar] [CrossRef]
- Dong, H.; Zhang, Y. A Low-Complexity Double Vector Model Predictive Current Control for Permanent Magnet Synchronous Motors. Energies 2024, 17, 147. [Google Scholar] [CrossRef]
- Luo, Y.; Niu, S. Predictive Current Control for Six-Phase PMSM Motor with Multi-Step Synthesis Based Virtual Vectors. IEEE Trans. Energy Convers. 2023, 38, 134–146. [Google Scholar] [CrossRef]
- Lin, X.; Liu, J.; Liu, Z.; Gao, Y.; Peretti, L.; Wu, L. Model-Free Current Predictive Control for PMSMs with Ultralocal Model Employing Fixed-Time Observer and Extremum-Seeking Method. IEEE Trans. Power Electron. 2025, 40, 10682–10693. [Google Scholar] [CrossRef]
- Lin, X.; Wu, C.; Yao, W.; Liu, Z.; Shen, X.; Xu, R.; Sun, G.; Liu, J. Observer-Based Fixed-Time Control for Permanent-Magnet Synchronous Motors with Parameter Uncertainties. IEEE Trans. Power Electron. 2023, 38, 433–4344. [Google Scholar] [CrossRef]
- Xu, R.; Shen, X.; Lin, X.; Liu, Z.; Xu, D.; Liu, J. Robust Model Predictive Control of Position Sensorless-Driven IPMSM Based on Cascaded EKF-LESO. IEEE Trans. Transp. Electrif. 2025, 11, 8824–8832. [Google Scholar] [CrossRef]
- Lin, X.; Xu, R.; Yao, W.; Gao, Y.; Sun, G.; Liu, J.; Peretti, L.; Wu, L. Observer-Based Prescribed Performance Speed Control for PMSMs: A Data-Driven RBF Neural Network Approach. IEEE Trans. Ind. Informat. 2024, 20, 7502–7512. [Google Scholar] [CrossRef]
- Kang, Z.; Lin, X.; Shen, X.; Liu, Z.; Gao, Y.; Liu, J. Event-Triggered Generalized Super-Twisting Sliding Mode Control for Position Tracking of PMSMs. IEEE Trans. Ind. Informat. 2025, 21, 5701–5711. [Google Scholar] [CrossRef]
- Abu-Ali, M.; Berkel, F.; Manderla, M.; Reimann, S.; Kennel, R.; Abdelrahem, M. Deep Learning-Based Long-Horizon MPC: Robust, High Performing, and Computationally Efficient Control for PMSM Drives. IEEE Trans. Power Electron. 2022, 37, 12486–12501. [Google Scholar] [CrossRef]
- Habibullah, M.; Lu, D.D.-C.; Xiao, D.; Rahman, M.F. Finite-State Predictive Torque Control of Induction Motor Supplied from a Three-Level NPC Voltage Source Inverter. IEEE Trans. Power Electron. 2017, 32, 479–489. [Google Scholar] [CrossRef]
- Habibullah, M.; Lu, D.D.-C.; Xiao, D.; Osman, I.; Rahman, M.F. Selected Prediction Vectors Based FS-PTC for 3L-NPC Inverter Fed Motor Drives. IEEE Trans. Ind. Appl. 2017, 53, 3588–3597. [Google Scholar] [CrossRef]
- Wang, G.; Li, P.; Wang, Y. Non-Weighted Two-Stage Model Predictive Control Strategy Based on Three-Level NPC Inverter. Energies 2024, 17, 1813. [Google Scholar] [CrossRef]
- Chen, X.; Huang, S.; Jiang, D.; Li, B. Fast Voltage-Balancing Scheme for a Carrier-Based Modulation in Three-Phase and Single-Phase NPC Three-Level Inverters. J. Electr. Eng. Technol. 2018, 13, 1986–1995. [Google Scholar]
- Sriprang, S.; Nahid-Mobarakeh, B.; Pierfederici, S.; Takorabet, N.; Bizon, N.; Kumam, P.; Mungporn, P.; Thounthong, P. Robust Flatness-based Control with State Observer-Based Parameter Estimation for PMSM Drive. In Proceedings of the 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & In-ternational Transportation Electrification Conference (ESARS-ITEC), Nottingham, UK, 7–9 November 2018; pp. 1–6. [Google Scholar]
- Chalanga, A.; Kamal, S.; Fridman, L.M.; Bandyopadhyay, B.; Moreno, J.A. Implementation of Super-Twisting Control: Super-Twisting and Higher Order Sliding-Mode Observer-Based Approaches. IEEE Trans. Ind. Electron. 2016, 63, 3677–3685. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Z.; Yang, Q.; Tian, W.; Karamanakos, P.; Heldwein, M.L.; Kennel, R. A Direct Model Predictive Control Strategy With an Implicit Modulator for Six-Phase PMSMs. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 1291–1304. [Google Scholar] [CrossRef]













| Voltage Vector Types | Magnitudes |
|---|---|
| Zero VVs | 0 |
| Small VVs | Vdc/3 |
| Middle VVs | Vdc/3 |
| Large VVs | 2Vdc/3 |
| Sector | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|
| I | ||||||
| Ⅱ | ||||||
| Ⅲ | ||||||
| Ⅳ | ||||||
| Ⅴ | ||||||
| Ⅵ |
| Parameter | Symbol | Value |
|---|---|---|
| Rated phase voltage | UN | 220 V |
| Rated phase current | IN | 12 A |
| Rated speed | ωmN | 2000 rpm |
| Permanent flux linkage | ψm | 0.096 Wb |
| Phase resistance | Rs | 0.78 Ω |
| Phase inductance | Ls | 3.4 mH |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Z.; Wang, J.; Wu, Y.; Zhang, Z. Weight-Adaptable Disturbance Observer for Continuous-Control-Set Model Predictive Control of NPC-3L-Fed PMSMs. Energies 2025, 18, 5864. https://doi.org/10.3390/en18215864
Liang Z, Wang J, Wu Y, Zhang Z. Weight-Adaptable Disturbance Observer for Continuous-Control-Set Model Predictive Control of NPC-3L-Fed PMSMs. Energies. 2025; 18(21):5864. https://doi.org/10.3390/en18215864
Chicago/Turabian StyleLiang, Zhenyan, Jiang Wang, Yitong Wu, and Zhen Zhang. 2025. "Weight-Adaptable Disturbance Observer for Continuous-Control-Set Model Predictive Control of NPC-3L-Fed PMSMs" Energies 18, no. 21: 5864. https://doi.org/10.3390/en18215864
APA StyleLiang, Z., Wang, J., Wu, Y., & Zhang, Z. (2025). Weight-Adaptable Disturbance Observer for Continuous-Control-Set Model Predictive Control of NPC-3L-Fed PMSMs. Energies, 18(21), 5864. https://doi.org/10.3390/en18215864

