Data-Driven Model-Free Predictive Control for Zero-Sequence Circulating Current Suppression in Parallel NPC Converters
Abstract
1. Introduction
2. Conventional FCS-MPC Approach for 3L-NPC Inverter
2.1. Mathematical Model of 3L-NPC Inverter
2.2. FCS-MPC Method for 3L-NPC Inverter
2.3. FCS-MPC for ZSCC Suppression in Parallel NPC Inverters System
3. Proposed Method
3.1. Zero Average CMV-Based Virtual Voltage Vector Method
3.2. ISMO-Based Model-Free Robust Prediction Control
4. Performance Evaluation
4.1. Simulation Results
4.2. Experiment Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Citroni, R.; Mangini, F.; Frezza, F. Efficient Integration of Ultra-low Power Techniques and Energy Harvesting in Self-Sufficient Devices: A Comprehensive Overview of Current Progress and Future Directions. Sensors 2024, 24, 4471. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.L.; Wang, Y.; Lai, J.S.; Lee, Y.S.; Martin, D. Design of Parallel Inverters for Smooth Mode Transfer Microgrid Applications. IEEE Trans. Power Electron. 2010, 25, 6–15. [Google Scholar] [CrossRef]
- Tcai, A.; Kwon, Y.; Pugliese, S.; Liserre, M. Reduction of the Circulating Current Among Parallel NPC Inverters. IEEE Trans. Power Electron. 2021, 36, 12504–12514. [Google Scholar] [CrossRef]
- Lee, S.Y.; Jung, J.J. The Circulating Current Reduction Control Method for Asynchronous Carrier Phases of Parallel Connected Inverters. Energies 2022, 15, 1949. [Google Scholar] [CrossRef]
- Oliveira, T.; Caseiro, L.; Mendes, A.; Cruz, S. Finite Control Set Model Predictive Control for Paralleled Uninterruptible Power Supplies. Energies 2020, 13, 3453. [Google Scholar] [CrossRef]
- Cuzmar, R.H.; Mora, A.; Pereda, J.; Poblete, P.; Aguilera, R.P. Long-Horizon Sequential FCS-MPC Approaches for Modular Multilevel Matrix Converters. IEEE Trans. Ind. Electron. 2024, 71, 5137–5147. [Google Scholar] [CrossRef]
- Simonetti, F.; D’Innocenzo, A.; Cecati, C. Simple Explicit Solution of Finite Control Set Model Predictive Control for Cascaded H-Bridge Inverters. IEEE Trans. Ind. Electron. 2024, 71, 9620–9630. [Google Scholar] [CrossRef]
- Zafra, E.; Vazquez, S.; Dragičević, T.; Alcaide, A.M.; Leon, J.I.; Franquelo, L.G. Prediction Window Selection in FCS-MPC for Two-Level VSI Applications. IEEE Trans. Power Electron. 2024, 39, 3135–3143. [Google Scholar] [CrossRef]
- Wang, X.; Zou, J.; Peng, Y.; Xie, C.; Li, K.; Guerrero Zapata, J.M. Elimination of zero sequence circulating currents in paralleled three-level T-type inverters with a model predictive control strategy. IET Power Electron. 2018, 11, 2573–2581. [Google Scholar] [CrossRef]
- Lu, X.; Chen, M.; Zhang, Q. Research on Mixed Logic Dynamic Modeling and Finite Control Set Model Predictive Control of Multi-Inverter Parallel System. Energy Eng. 2023, 120, 649–664. [Google Scholar] [CrossRef]
- Wang, X.; Zou, J.; Zhao, J.; Xie, C.; Li, K.; Munir, H.M.; Guerrero, J.M. A novel model predictive control strategy to eliminate zero-sequence circulating current in paralleled three-level inverters. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 7, 309–320. [Google Scholar] [CrossRef]
- Wang, F.; Li, Z.; Tong, X.; Chen, L. Modeling, analysis and evaluation of modified model predictive control method for parallel three-level simplified neutral point clamped inverters. IEEE Access 2019, 7, 185349–185359. [Google Scholar] [CrossRef]
- Xing, X.; Zhang, C.; He, J.; Chen, A.; Zhang, Z. Model predictive control for parallel three-level T-type grid-connected inverters in renewable power generations. IET Renew. Power Gener. 2017, 11, 1353–1363. [Google Scholar] [CrossRef]
- Jin, T.; Huang, Y.; Lin, Y.; Daniel Legrand, M.N. Model Predictive Current Control Based on Virtual Voltage Vector Method for Parallel Three-Level Inverters. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 6049–6058. [Google Scholar] [CrossRef]
- Li, C.; Liu, Z.; Wu, X.; He, F.; Lv, Z.; Li, J.; Tan, G. Analysis and Robustness Improvement of Finite-Control-Set Model Predictive Current Control for IPMSM With Model Parameter Mismatches. IEEE Access 2022, 10, 93381–93394. [Google Scholar] [CrossRef]
- Long, B.; Zhu, Z.; Yang, W.; Chong, K.T.; Rodríguez, J.; Guerrero, J.M. Gradient Descent Optimization Based Parameter Identification for FCS-MPC Control of LCL-Type Grid Connected Converter. IEEE Trans. Ind. Electron. 2022, 69, 2631–2643. [Google Scholar] [CrossRef]
- Alhosaini, W.; Wu, Y.; Zhao, Y. An enhanced model predictive control using virtual space vectors for grid-connected three-level neutral-point clamped inverters. IEEE Trans. Energy Convers. 2019, 34, 1963–1972. [Google Scholar] [CrossRef]
- Zhang, Y.; Jin, J.; Huang, L. Model-free predictive current control of PMSM drives based on extended state observer using ultralocal model. IEEE Trans. Ind. Electron. 2021, 68, 993–1003. [Google Scholar] [CrossRef]
- Mousavi, M.S.; Davari, S.A.; Nekoukar, V.; Garcia, C.; Rodriguez, J. Integral Sliding Mode Observer-Based Ultralocal Model for Finite-Set Model Predictive Current Control of Induction Motor. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 2912–2922. [Google Scholar] [CrossRef]
- IEEE Std 519-2022 (Revision of IEEE Std 519-2014); IEEE Standard for Harmonic Control in Electric Power Systems. IEEE: New York, NY, USA, 2022; pp. 1–31.













| Group | Switching State | CMV Amplitude | Type of Voltage Vector |
|---|---|---|---|
| 1 | 0,0,0 | 0 | Zero vector |
| 2 | 1,1,1 −1,−1,−1 | Zero vector | |
| 3 | 1,0,0 0,0,−1 0,1,0 −1,0,0 0,0,1 0,−1,0 | Small vector | |
| 4 | 0,−1,−1 1,1,0 −1,0,−1 0,1,1 −1,−1,0 1,0,1 | Small vector | |
| 5 | 1,0,−1 0,1,−1 −1,1,0 −1,0,1 0,−1,1 1,−1,0 | 0 | Middle vector |
| 6 | 1,−1,−1 1,1,−1 −1,1,−1 −1,1,1 −1,−1,1 1,−1,1 | Large vector |
| Group | Voltage Vector | CMV | Type of Vectors |
|---|---|---|---|
| 1 | (1,1,−1) (−1,1,1) (1,−1,1) (1,0,0) (0,1,0) (0,0,1) | Large & Small vector | |
| 2 | (1,−1,−1) (−1,1,−1) (−1,−1,1) (0,0,−1) (−1,0,0) (0,−1,0) | Large & Small vector | |
| 3 | (1,0,−1) (0,1,−1) (−1,1,0) (−1,0,1) (0,−1,1) (1,−1,0) (0,0,0) | 0 | Middle & Zero vector |
| Parameter | Symbol | Simulation | Experiment |
|---|---|---|---|
| DC voltage source | 800 V | 120 V | |
| Sample cycle | 50 μs | 100 μs | |
| Filter inductance | L | 10 mH | 10 mH |
| Resistance of line | R | 0.5 | 0.5 |
| DC capacitor | C | 2.7 mF | 2.7 mF |
| AC resistive load | 1 | 1 | |
| AC inductive load | 3 mH | 3 mH | |
| Frequency of AC side | f | 50 Hz | 50 Hz |
| Reference current amplitude | 20 A | 10 A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Cheng, L.; Liu, S.; Rao, J.; Huang, S.; Chen, J.; Qiu, L.; Hu, Y.; Fang, Y. Data-Driven Model-Free Predictive Control for Zero-Sequence Circulating Current Suppression in Parallel NPC Converters. Energies 2026, 19, 189. https://doi.org/10.3390/en19010189
Cheng L, Liu S, Rao J, Huang S, Chen J, Qiu L, Hu Y, Fang Y. Data-Driven Model-Free Predictive Control for Zero-Sequence Circulating Current Suppression in Parallel NPC Converters. Energies. 2026; 19(1):189. https://doi.org/10.3390/en19010189
Chicago/Turabian StyleCheng, Lan, Shiyu Liu, Jianye Rao, Songling Huang, Junjie Chen, Lin Qiu, Yishuang Hu, and Youtong Fang. 2026. "Data-Driven Model-Free Predictive Control for Zero-Sequence Circulating Current Suppression in Parallel NPC Converters" Energies 19, no. 1: 189. https://doi.org/10.3390/en19010189
APA StyleCheng, L., Liu, S., Rao, J., Huang, S., Chen, J., Qiu, L., Hu, Y., & Fang, Y. (2026). Data-Driven Model-Free Predictive Control for Zero-Sequence Circulating Current Suppression in Parallel NPC Converters. Energies, 19(1), 189. https://doi.org/10.3390/en19010189

