Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = thioamide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 4126 KiB  
Review
Targeting the Heart of Mycobacterium: Advances in Anti-Tubercular Agents Disrupting Cell Wall Biosynthesis
by Ahmad Diab, Henry Dickerson and Othman Al Musaimi
Pharmaceuticals 2025, 18(1), 70; https://doi.org/10.3390/ph18010070 - 9 Jan 2025
Cited by 1 | Viewed by 2958
Abstract
Mycobacterium tuberculosis infections continue to pose a significant global health challenge, particularly due to the rise of multidrug-resistant strains, random mycobacterial mutations, and the complications associated with short-term antibiotic regimens. Currently, five approved drugs target cell wall biosynthesis in Mycobacterium tuberculosis. This [...] Read more.
Mycobacterium tuberculosis infections continue to pose a significant global health challenge, particularly due to the rise of multidrug-resistant strains, random mycobacterial mutations, and the complications associated with short-term antibiotic regimens. Currently, five approved drugs target cell wall biosynthesis in Mycobacterium tuberculosis. This review provides a comprehensive analysis of these drugs and their molecular mechanisms. Isoniazid, thioamides, and delamanid primarily disrupt mycolic acid synthesis, with recent evidence indicating that delamanid also inhibits decaprenylphosphoryl-β-D-ribose-2-epimerase, thereby impairing arabinogalactan biosynthesis. Cycloserine remains the sole approved drug that inhibits peptidoglycan synthesis, the foundational layer of the mycobacterial cell wall. Furthermore, ethambutol interferes with arabinogalactan synthesis by targeting arabinosyl transferase enzymes, particularly embB- and embC-encoded variants. Beyond these, six promising molecules currently in Phase II clinical trials are designed to target arabinan synthesis pathways, sutezolid, TBA 7371, OPC-167832, SQ109, and both benzothiazinone derivatives BTZ043 and PBTZ169, highlighting advancements in the development of cell wall-targeting therapies. Full article
(This article belongs to the Special Issue Advances in Drug Analysis and Drug Development)
Show Figures

Figure 1

23 pages, 6407 KiB  
Article
Synthesis, Cytotoxicity and Antioxidant Activity Evaluation of Some Thiazolyl–Catechol Compounds
by Alexandra Cătălina Cornea, Gabriel Marc, Ioana Ionuț, Cristina Moldovan, Ionel Fizeșan, Andreea-Elena Petru, Ionuț-Valentin Creștin, Adrian Pîrnău, Laurian Vlase and Ovidiu Oniga
Antioxidants 2024, 13(8), 937; https://doi.org/10.3390/antiox13080937 - 1 Aug 2024
Cited by 3 | Viewed by 1709
Abstract
A series of thiazolyl–catechol compounds with antioxidant and cytotoxic activities were synthesized by a Hantzsch heterocyclization, using diverse thioamides as the thiocarbonyl component and 4-chloroacetyl-catechol as haloketone. These compounds were characterized by MS, IR spectroscopy, and NMR. Their antioxidant potential was evaluated by [...] Read more.
A series of thiazolyl–catechol compounds with antioxidant and cytotoxic activities were synthesized by a Hantzsch heterocyclization, using diverse thioamides as the thiocarbonyl component and 4-chloroacetyl-catechol as haloketone. These compounds were characterized by MS, IR spectroscopy, and NMR. Their antioxidant potential was evaluated by antiradical, electron transfer, and ferrous ion chelation assays using ascorbic acid, Trolox, and EDTA-Na2 as references. The cytotoxicity of the synthesized compounds was evaluated on two different cell types, normal human foreskin fibroblasts (BJ) and human pulmonary malignant cells (A549), using gefitinib as a reference anticancer drug. The results obtained from the tests highlighted compounds 3g and 3h with significant antioxidant activities. The highest cytotoxic potency against A549 cells was exhibited by compounds 3i and 3j, while compound 3g demonstrated exceptional selectivity on malignant cells compared to gefitinib. These promising results encourage further investigation into targeted modifications on position 2 of the thiazole ring, in order to develop novel therapeutic agents. Full article
(This article belongs to the Special Issue Phenolic Antioxidants)
Show Figures

Figure 1

30 pages, 10231 KiB  
Article
Novel C3-Methylene-Bridged Indole Derivatives with and without Substituents at N1: The Influence of Substituents on Their Hemolytic, Cytoprotective, and Antimicrobial Activity
by Karolina Babijczuk, Natalia Berdzik, Damian Nowak, Beata Warżajtis, Urszula Rychlewska, Justyna Starzyk, Lucyna Mrówczyńska and Beata Jasiewicz
Int. J. Mol. Sci. 2024, 25(10), 5364; https://doi.org/10.3390/ijms25105364 - 14 May 2024
Cited by 5 | Viewed by 1620
Abstract
Alkaloids are natural compounds useful as scaffolds for discovering new bioactive molecules. This study utilized alkaloid gramine to synthesize two groups of C3-substituted indole derivatives, which were either functionalized at N1 or not. The compounds were characterized by spectroscopic methods. The protective effects [...] Read more.
Alkaloids are natural compounds useful as scaffolds for discovering new bioactive molecules. This study utilized alkaloid gramine to synthesize two groups of C3-substituted indole derivatives, which were either functionalized at N1 or not. The compounds were characterized by spectroscopic methods. The protective effects of the new compounds against in vitro oxidative hemolysis induced by standard oxidant 2,2′-azobis(2-amidinopropane dihydro chloride (AAPH) on human erythrocytes as a cell model were investigated. Additionally, the compounds were screened for antimicrobial activity. The results indicated that most of the indole derivatives devoid of the N1 substitution exhibited strong cytoprotective properties. The docking studies supported the affinities of selected indole-based ligands as potential antioxidants. Furthermore, the derivatives obtained exhibited potent fungicidal properties. The structures of the eight derivatives possessing indole moiety bridged to the imidazole-, benzimidazole-, thiazole-, benzothiazole-, and 5-methylbenzothiazoline-2-thiones were determined by X-ray diffraction. The C=S bond lengths in the thioamide fragment pointed to the involvement of zwitterionic structures of varying contribution. The predominance of zwitterionic mesomers may explain the lack of cytoprotective properties, while steric effects, which limit multiple the hydrogen-bond acceptor properties of a thione sulfur, seem to be responsible for the high hemolytic activity. Full article
Show Figures

Figure 1

4 pages, 1771 KiB  
Proceeding Paper
One-Pot Synthesis of New 4,5,6,7-tetrahydro-3H-[1,2]dithiolo[3,4-b]pyridines Starting from N,N’-Diphenyldithiomalondiamide
by Ekaterina A. Varzieva, Anna E. Sinotsko, Victor V. Dotsenko and Nicolai A. Aksenov
Chem. Proc. 2023, 14(1), 21; https://doi.org/10.3390/ecsoc-27-16134 - 15 Nov 2023
Viewed by 886
Abstract
Active methylene compounds such as thioamides are widely used in the organic chemistry for the construction of a variety of heterocyclic systems, such as thieno[2,3-b]pyridines, 1,2,4-dithiazoles, isothiazoles, 1,2,3-thiadiazoles, etc. N,N′-Diphenyldithiomalondiamide (dithiomalondianilide) as a compound with methylene active group is also [...] Read more.
Active methylene compounds such as thioamides are widely used in the organic chemistry for the construction of a variety of heterocyclic systems, such as thieno[2,3-b]pyridines, 1,2,4-dithiazoles, isothiazoles, 1,2,3-thiadiazoles, etc. N,N′-Diphenyldithiomalondiamide (dithiomalondianilide) as a compound with methylene active group is also of interest as a starting reagent for the synthesis of new N,S-containing heterocycles with potential pharmacological application. However, the reactions of dithiomalondianilide are poorly studied. In the present study, we report the synthesis of new 4,5,6,7-tetrahydro[1,2]dithiolo[3,4-b]dithiolopyridine-5-carboxamides through the reaction of dithiomalondianilide with 3-aryl-2-cyanoacrylamides. The products were characterized using FTIR and NMR spectroscopy as well as X-ray analysis. Full article
Show Figures

Figure 1

13 pages, 2378 KiB  
Article
Synthesis and Reactivity of Fluorinated Dithiocarboxylates to Prepare Thioamides—Effective Access to a 4-Styrenylthioamide-Cinchona Alkaloid Monomer
by Aimar Gonzalo-Barquero, Bénédicte Lepoittevin, Jacques Rouden and Jérôme Baudoux
Molecules 2023, 28(21), 7333; https://doi.org/10.3390/molecules28217333 - 30 Oct 2023
Cited by 1 | Viewed by 1939
Abstract
A simple and rapid access to fluorinated dithioesters was developed by a one-pot sequence corresponding to a Grignard reaction—Mitsunobu type substitution. These activated dithioesters have shown excellent reactivity in an aminolysis reaction from simple or more complex primary amines such as cinchona alkaloids. [...] Read more.
A simple and rapid access to fluorinated dithioesters was developed by a one-pot sequence corresponding to a Grignard reaction—Mitsunobu type substitution. These activated dithioesters have shown excellent reactivity in an aminolysis reaction from simple or more complex primary amines such as cinchona alkaloids. A stoichiometric amount of amine was sufficient to prepare various thioamides, including a 4-styrenylthioamide cinchonidine monomer, under environmentally friendly conditions, at room temperature, and in a very short time. Full article
(This article belongs to the Special Issue Synthetic Transformations of Amides and Esters in Organic Synthesis)
Show Figures

Graphical abstract

18 pages, 2989 KiB  
Article
Towards Symmetric Thioamides: Microwave-Aided Synthesis of Terephthalic Acid Derivatives
by Andrzej Bak, Violetta Kozik, Aleksandra Swietlicka, Wojciech Baran, Adam Smolinski and Andrzej Zięba
Pharmaceuticals 2023, 16(7), 984; https://doi.org/10.3390/ph16070984 - 9 Jul 2023
Cited by 1 | Viewed by 2398
Abstract
The multistep synthesis of novel bis-terephthalthioamides based on methyl esters of amino acids (AAs) was proposed using conventional heating and microwave-assisted approaches. In fact, the comparative case study on the thionation of new symmetrical diamides with Lawesson’s reagent (LR) was performed. The [...] Read more.
The multistep synthesis of novel bis-terephthalthioamides based on methyl esters of amino acids (AAs) was proposed using conventional heating and microwave-assisted approaches. In fact, the comparative case study on the thionation of new symmetrical diamides with Lawesson’s reagent (LR) was performed. The microwave-accelerated small-scale methodology was successfully employed on the whole pathway from substrates (Gly, Ala, Val, Tyr, Ser) to products (symmetrical dithioamides of terephthalic acid), resulting in significantly reduced reaction time, energy requirements, and slightly increased reaction yields when compared to conventional heating. Moreover, the intermolecular similarity of novel terephthalic acid derivatives was estimated in the multidimensional space (mDS) of the structure/property-related in silico descriptors using principal component analysis (PCA) and hierarchical clustering analysis (HCA). The distance-oriented structure/property distribution was also correlated with the experimental lipophilic data. Full article
(This article belongs to the Special Issue Methyl-Containing Pharmaceuticals)
Show Figures

Graphical abstract

6 pages, 966 KiB  
Short Note
(R)-(+)-3,5-Dinitro-N-(1-phenylethyl)benzothioamide
by Matthew G. Donahue and Emily Crull
Molbank 2023, 2023(2), M1650; https://doi.org/10.3390/M1650 - 20 May 2023
Viewed by 1724
Abstract
(R)-(+)-3,5-dinitro-N-(1-phenylethyl)benzothioamide 1 is a potential chiral solvating agent (CSA) for the spectral resolution of enantiomers via 1H NMR spectroscopy. The single enantiomer of 1 was synthesized from commercially available (R)-(+)-a-methylbenzylamine 2 in two steps with 85% yield. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Figure 1

28 pages, 11924 KiB  
Review
Towards More Practical Methods for the Chemical Synthesis of Thioamides Using Sulfuration Agents: A Decade Update
by Qiang Zhang, Laurent Soulère and Yves Queneau
Molecules 2023, 28(8), 3527; https://doi.org/10.3390/molecules28083527 - 17 Apr 2023
Cited by 13 | Viewed by 5041
Abstract
Compounds possessing a thioamide function play a crucial role in organic synthesis, serving as key building blocks. They are also important in the pharmaceutical chemistry and drug design, owing to their ability to mimic the amide function in biomolecules while retaining or developing [...] Read more.
Compounds possessing a thioamide function play a crucial role in organic synthesis, serving as key building blocks. They are also important in the pharmaceutical chemistry and drug design, owing to their ability to mimic the amide function in biomolecules while retaining or developing biological activity. From the synthetic viewpoint, several methods have been developed for preparing thioamides using sulfuration agents. The purpose of this review is to give an update of the last decade of contributions focusing on the formation of thioamides employing different sulfur sources. When appropriate, the cleanness and practicality of the new methods are highlighted. Full article
(This article belongs to the Special Issue Organosulfur and Organoselenium Chemistry)
Show Figures

Figure 1

11 pages, 1271 KiB  
Review
Therapeutic Plasma Exchange for the Treatment of Hyperthyroidism: Approach to the Patient with Thyrotoxicosis or Antithyroid-Drugs Induced Agranulocytosis
by Irene Tizianel, Chiara Sabbadin, Simona Censi, Cristina Clausi, Anna Colpo, Anca Irina Leahu, Maurizio Iacobone, Caterina Mian, Carla Scaroni and Filippo Ceccato
J. Pers. Med. 2023, 13(3), 517; https://doi.org/10.3390/jpm13030517 - 13 Mar 2023
Cited by 3 | Viewed by 5761
Abstract
Primary hyperthyroidism is an endocrine disorder characterized by excessive thyroid hormone synthesis and secretion by the thyroid gland. Clinical manifestations of hyperthyroidism can vary from subclinical to overt forms. In rare cases, hyperthyroidism may represent a clinical emergency, requiring admission to an intensive [...] Read more.
Primary hyperthyroidism is an endocrine disorder characterized by excessive thyroid hormone synthesis and secretion by the thyroid gland. Clinical manifestations of hyperthyroidism can vary from subclinical to overt forms. In rare cases, hyperthyroidism may represent a clinical emergency, requiring admission to an intensive care unit due to an acute and severe exacerbation of thyrotoxicosis, known as a thyroid storm. First-line treatment of hyperthyroidism is almost always based on medical therapy (with thioamides, beta-adrenergic blocking agents, glucocorticoids), radioactive iodine or total thyroidectomy, tailored to the patient’s diagnosis. In cases of failure/intolerance/adverse events or contraindication to these therapies, as well as in life-threatening situations, including a thyroid storm, it is necessary to consider an alternative treatment with extracorporeal systems, such as therapeutic plasma exchange (TPE). This approach can promptly resolve severe conditions by removing circulating thyroid hormones. Here we described two different applications of TPE in clinical practice: the first case is an example of thyrotoxicosis due to amiodarone treatment, while the second one is an example of a severe adverse event to antithyroid drugs (agranulocytosis induced by methimazole). Full article
(This article belongs to the Section Personalized Therapy and Drug Delivery)
Show Figures

Figure 1

15 pages, 4217 KiB  
Article
Alkyl 4-Aryl-6-amino-7- phenyl-3-(phenylimino)-4,7-dihydro- 3H-[1,2]dithiolo[3,4-b]pyridine-5-carboxylates: Synthesis and Agrochemical Studies
by Victor V. Dotsenko, Anna E. Sinotsko, Vladimir D. Strelkov, Ekaterina A. Varzieva, Alena A. Russkikh, Arina G. Levchenko, Azamat Z. Temerdashev, Nicolai A. Aksenov and Inna V. Aksenova
Molecules 2023, 28(2), 609; https://doi.org/10.3390/molecules28020609 - 6 Jan 2023
Cited by 8 | Viewed by 2446
Abstract
The reaction between dithiomalondianilide (N,N’-diphenyldithiomalondiamide) and alkyl 3-aryl-2-cyanoacrylates in the presence of morpholine in the air atmosphere leads to the formation of alkyl 6-amino-4-aryl-7-phenyl-3-(phenylimino)-4,7-dihydro-3H-[1,2]dithiolo[3,4-b]- pyridine-5-carboxylates in 37–72% yields. The same compounds were prepared in 23–65% yields by ternary condensation of aromatic aldehydes, ethyl(methyl) [...] Read more.
The reaction between dithiomalondianilide (N,N’-diphenyldithiomalondiamide) and alkyl 3-aryl-2-cyanoacrylates in the presence of morpholine in the air atmosphere leads to the formation of alkyl 6-amino-4-aryl-7-phenyl-3-(phenylimino)-4,7-dihydro-3H-[1,2]dithiolo[3,4-b]- pyridine-5-carboxylates in 37–72% yields. The same compounds were prepared in 23–65% yields by ternary condensation of aromatic aldehydes, ethyl(methyl) cyanoacetate and dithiomalondianilide. The reaction mechanism is discussed. The structure of ethyl 6-amino-4-(4-methoxyphenyl)-7-phenyl-3-(phenylimino)-4,7-dihydro-3H-[1,2]dithiolo[3,4-b]pyridine-5-carboxylate was confirmed by X-ray crystallography. Two of the prepared compounds showed a moderate growth-stimulating effect on sunflower seedlings. Three of the new compounds were recognized as strong herbicide safeners with respect to herbicide 2,4-D in the laboratory and field experiments on sunflower. Full article
Show Figures

Figure 1

29 pages, 4405 KiB  
Article
Inhibition of Cancer Cell Proliferation and Bacterial Growth by Silver(I) Complexes Bearing a CH3-Substituted Thiadiazole-Based Thioamide
by Despoina Varna, Elena Geromichalou, Georgia Karlioti, Rigini Papi, Panagiotis Dalezis, Antonios G. Hatzidimitriou, George Psomas, Theodora Choli-Papadopoulou, Dimitrios T. Trafalis and Panagiotis A. Angaridis
Molecules 2023, 28(1), 336; https://doi.org/10.3390/molecules28010336 - 1 Jan 2023
Cited by 3 | Viewed by 3247
Abstract
Ag(I) coordination compounds have recently attracted much attention as antiproliferative and antibacterial agents against a wide range of cancer cell lines and pathogens. The bioactivity potential of these complexes depends on their structural characteristics and the nature of their ligands. Herein, we present [...] Read more.
Ag(I) coordination compounds have recently attracted much attention as antiproliferative and antibacterial agents against a wide range of cancer cell lines and pathogens. The bioactivity potential of these complexes depends on their structural characteristics and the nature of their ligands. Herein, we present a series of four Ag(I) coordination compounds bearing as ligands the CH3-substituted thiadiazole-based thioamide 5-methyl-1,3,4-thiadiazole-2-thiol (mtdztH) and phosphines, i.e., [AgCl(mtdztH)(PPh3)2] (1), [Ag(mtdzt)(PPh3)3] (2), [AgCl(mtdztH)(xantphos)] (3), and [AgmtdztH)(dppe)(NO3)]n (4), where xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene and dppe = 1,2-bis(diphenylphosphino)ethane, and the assessment of their in vitro antibacterial and anti-cancer efficiency. Among them, diphosphine-containing compounds 3 and 4 were found to exhibit broad-spectrum antibacterial activity characteristics against both Gram-(+) and Gram-(–) bacterial strains, showing high in vitro bioactivity with IC50 values as low as 4.6 μΜ. In vitro cytotoxicity studies against human ovarian, pancreatic, lung, and prostate cancer cell lines revealed the strong cytotoxic potential of 2 and 4, with IC50 values in the range of 3.1–24.0 μΜ, while 3 and 4 maintained the normal fibroblast cells’ viability at relatively higher levels. Assessment of these results, in combination with those obtained for analogous Ag(I) complexes bearing similar heterocyclic thioamides, suggest the pivotal role of the substituent groups of the thioamide heterocyclic ring in the antibacterial and anti-cancer efficacy of the respective Ag(I) complexes. Compounds 14 exhibited moderate in vitro antioxidant capacity for free radicals scavenging, as well as reasonably strong ability to interact with calf-thymus DNA, suggesting the likely implication of these properties in their bioactivity mechanisms. Complementary insights into the possible mechanism of their anti-cancer activity were provided by molecular docking calculations, exploring their ability to bind to the overexpressed fibroblast growth factor receptor 1 (FGFR1), affecting cancer cells’ functionalities. Full article
(This article belongs to the Special Issue Heterocycles: Design, Synthesis and Biological Evaluation)
Show Figures

Graphical abstract

14 pages, 4267 KiB  
Article
Synthesis and Characterization of Novel 2-(1,2,3-Triazol-4-yl)-4,5-dihydro-1H-pyrazol-1-yl)thiazoles and 2-(4,5-Dihydro-1H-pyrazol-1-yl)-4-(1H-1,2,3-triazol-4-yl)thiazoles
by Benson M. Kariuki, Bakr F. Abdel-Wahab, Hanan A. Mohamed, Mohamed S. Bekheit and Gamal A. El-Hiti
Molecules 2022, 27(24), 8904; https://doi.org/10.3390/molecules27248904 - 14 Dec 2022
Cited by 10 | Viewed by 3361
Abstract
Reactions of 1-(5-methyl)-1H-1,2,3-triazol-4-yl)ethan-1-ones and benzaldehydes in ethanol under basic conditions gave the corresponding chalcones. Reactions of the chalcones combined with thiosemicarbazide in dry ethanol containing sodium hydroxide afforded the corresponding pyrazolin-N-thioamides. Reactions of the synthesized pyrazolin-N-thioamides and [...] Read more.
Reactions of 1-(5-methyl)-1H-1,2,3-triazol-4-yl)ethan-1-ones and benzaldehydes in ethanol under basic conditions gave the corresponding chalcones. Reactions of the chalcones combined with thiosemicarbazide in dry ethanol containing sodium hydroxide afforded the corresponding pyrazolin-N-thioamides. Reactions of the synthesized pyrazolin-N-thioamides and several ketones (namely, ethyl 2-chloro-3-oxobutanoate, 2-bromoacetylbenzofuran, and hydrazonoyl chloride) gave the corresponding novel 2-(1,2,3-triazol-4-yl)-4,5-dihydro-1H-pyrazol-1-yl)thiazoles in high yields (77–90%). Additionally, 2-(4,5-dihydro-1H-pyrazol-1-yl)-4-(1H-1,2,3-triazol-4-yl)thiazoles were obtained in high yields (84–87%) from reactions with N-pyrazoline-thioamides and 4-bromoacetyl-1,2,3-triazoles under basic conditions. The structures of six of the newly synthesized heterocycles were confirmed by X-ray crystallography. Full article
(This article belongs to the Special Issue Feature Papers in Organic Chemistry)
Show Figures

Graphical abstract

9 pages, 1140 KiB  
Article
Transformation of Amides to Thioamides Using an Efficient and Novel Thiating Reagent
by Mohamed S. Gomaa, Gaber El Enany, Walid Fathalla, Ibrahim A. I. Ali and Samir. M. El Rayes
Molecules 2022, 27(23), 8275; https://doi.org/10.3390/molecules27238275 - 27 Nov 2022
Cited by 2 | Viewed by 2618
Abstract
A convenient protocol was developed for the transformation of N-aryl-substituted benzamides to N-aryl-substituted benzothioamides using N-isopropyldithiocarbamate isopropyl ammonium salt as a novel thiating reagent. The major advantages of this protocol are its one-pot procedure, short reaction times, mild conditions, simple [...] Read more.
A convenient protocol was developed for the transformation of N-aryl-substituted benzamides to N-aryl-substituted benzothioamides using N-isopropyldithiocarbamate isopropyl ammonium salt as a novel thiating reagent. The major advantages of this protocol are its one-pot procedure, short reaction times, mild conditions, simple work-up, high yields and pure products. Full article
Show Figures

Scheme 1

12 pages, 2730 KiB  
Article
New Cycloadditon Reaction of 2-Chloroprop-2-enethioamides with Dialkyl Acetylenedicarboxylates: Synthesis of Dialkyl 2-[4,5-bis(alkoxycarbonyl)-2-(aryl{alkyl}imino)-3(2H)-thienylidene]-1,3-dithiole-4,5-dicarboxylates
by Vladimir A. Ogurtsov and Oleg A. Rakitin
Molecules 2022, 27(20), 6887; https://doi.org/10.3390/molecules27206887 - 14 Oct 2022
Cited by 1 | Viewed by 1747
Abstract
The 1,3-dipolar cycloaddition of 1,2-dithiole-3-thiones with alkynes to form 1,3-dithioles is one of the most studied reactions in this class of polysulfur-containing heterocycles. Nucleophilic substitution of chlorine atoms in dimethyl 2-(1,2-dichloro-2-thioxoethylidene)-1,3-dithiole-4,5-dicarboxylate, which was obtained by addition one molecules of DMAD to 4,5-dichloro-3H [...] Read more.
The 1,3-dipolar cycloaddition of 1,2-dithiole-3-thiones with alkynes to form 1,3-dithioles is one of the most studied reactions in this class of polysulfur-containing heterocycles. Nucleophilic substitution of chlorine atoms in dimethyl 2-(1,2-dichloro-2-thioxoethylidene)-1,3-dithiole-4,5-dicarboxylate, which was obtained by addition one molecules of DMAD to 4,5-dichloro-3H-1,2-dithiole-3-thione, led to a series of 2-chloro-2-(1,3-dithiol-2-ylidene)ethanethioamides. Cycloaddition reaction of 2-chloro-2-(1,3-dithiol-2-ylidene)ethanethioamides with activated alkynes led to the unexpected formation of 2-(thiophen-3(2H)-ylidene)-1,3-dithioles via new intermediate, 1-(1,3-dithiol-2-ylidene)-N-phenylethan-1-yliumimidothioate. Structure of dimethyl 2-(4,5-bis(methoxycarbonyl)-2-(phenylimino)thiophen-3(2H)-ylidene)-1,3-dithiole-4,5-dicarboxylate was finally proven by single crystal X-ray diffraction study. Optimized reaction conditions and a mechanistic rationale for the 1,3-dipolar cycloaddition of novel intermediate are presented. Full article
(This article belongs to the Special Issue Polysulfur- and Sulfur-Nitrogen Heterocycles II)
Show Figures

Figure 1

11 pages, 3280 KiB  
Article
Design, Synthesis, and Biological Evaluations of Novel Azothiazoles Based on Thioamide
by Abdelwahed R. Sayed, Hany Elsawy, Saad Shaaban, Sobhi M. Gomha and Yasair S. Al-Faiyz
Curr. Issues Mol. Biol. 2022, 44(7), 2956-2966; https://doi.org/10.3390/cimb44070204 - 1 Jul 2022
Cited by 11 | Viewed by 2542
Abstract
Herein we studied the preparation of different thiazoles via the reaction of 2-(3,4-dimethoxybenzylidene)hydrazine-1-carbothioamide (1) with hydrazonoyl halides under base-catalyzed conditions. The reactions proceed through nucleophilic substitution attack at the halogen atom of the hydrazonoyl halides by the thiol nucleophile to form [...] Read more.
Herein we studied the preparation of different thiazoles via the reaction of 2-(3,4-dimethoxybenzylidene)hydrazine-1-carbothioamide (1) with hydrazonoyl halides under base-catalyzed conditions. The reactions proceed through nucleophilic substitution attack at the halogen atom of the hydrazonoyl halides by the thiol nucleophile to form an S-alkylated intermediate. The latter intermediate undergoes cyclization by the loss of water to afford the final products. The structures of the azo compounds were confirmed by FTIR, MS, NMR, and elemental analyses. Indeed, the newly synthesized azo compounds were estimated for their potential anticancer activities by an MTT assay against different human cancer cells, such as lung adenocarcinoma (A549) and colorectal adenocarcinoma (DLD-1). The caspase-3 levels were also estimated using Western blotting and the dual staining technique to evaluate the potency of the titled compounds to promote apoptosis. Full article
Show Figures

Figure 1

Back to TopTop