Synthesis and Reactivity of Fluorinated Dithiocarboxylates to Prepare Thioamides—Effective Access to a 4-Styrenylthioamide-Cinchona Alkaloid Monomer
Abstract
:1. Introduction
2. Results
2.1. Synthesis of Dithioesters and Thionoesters
2.2. Aminolysis of Dithioesters and Thionoesters
3. Discussion
4. Materials and Methods
4.1. General Information
4.2. Experimental
4.2.1. General Procedure for the Preparation of Dithioesters 2a–d by Alkylation of Dithiocarboxylic Acid 1a
4.2.2. Characterization of Dithioesters
4.2.3. General Procedure for the Preparation of Dithioesters 3a, b, d by Alkylation of Dithiocarboxylic Acid 1b
4.2.4. Characterization of 4-Vinyldithioesters
4.2.5. Synthesis of 2,2,2-Trifluoroethyl 4-Vinyldithiobenzoate 3c by Cascade Reaction
4.2.6. Synthesis of 2,2,2-Trifluoropropyl 4-Vinylthiobenzoate 4
4.2.7. General Procedure for Thioamide 5a–c Synthesis
4.2.8. Synthesis of N-(9-Deoxyepicinchonidin-9-yl)-4-vinylbenzothioamide 5d
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Boreen, M.A.; Parker, B.F.; Hohloch, S.; Skeel, B.A.; Arnold, J. f-Block complexes of a m-terphenyl dithiocarboxylate ligand. Dalton Trans. 2018, 47, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Moad, G. Dithioesters in RAFT Polymerization; Wiley: Clayton, Australia, 2021. [Google Scholar]
- Murai, T. Chemistry of Thioamides; Springer: Gifu, Japan, 2019. [Google Scholar]
- Kumari, S.; Carmona, A.V.; Tiwari, A.K.; Trippier, P.C. Amide Bond Bioisosteres: Strategies, Synthesis, and Successes. J. Med. Chem. 2020, 63, 12290–12358. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhao, H.; Li, G.; Zhu, X.; Shang, L.; He, Y.; Liu, X.; Ma, Y.; Szostak, M. Transamidation of thioamides with nucleophilic amines: Thioamide N–C(S) activation by ground-state-destabilization. Org. Biomol. Chem. 2022, 20, 5981–5988. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, A.; Raines, R.T. An Evaluation of Peptide-Bond Isosteres. ChemBioChem 2011, 12, 1801–1807. [Google Scholar] [CrossRef]
- Nicolaou, K.C.; Hao, J.; Reddy, M.V.; Rao, P.B.; Rassias, G.; Snyder, S.A.; Huang, X.; Chen, D.Y.-K.; Brenzovich, W.E.; Giuseppone, N.; et al. Chemistry and Biology of Diazonamide A: Second Total Synthesis and Biological Investigations. J. Am. Chem. Soc. 2004, 126, 12897–12906. [Google Scholar] [CrossRef] [PubMed]
- Taily, I.M.; Saha, D.; Banerjee, P. Aza-Oxyallyl Cation Driven 3-Amido Oxetane Rearrangement to 2-Oxazolines: Access to Oxazoline Amide Ethers. J. Org. Chem. 2022, 87, 2155–2166. [Google Scholar] [CrossRef]
- Wang, C.; Han, C.; Yang, J.; Zhang, Z.; Zhao, Y.; Zhao, J. Ynamide-Mediated Thioamide and Primary Thioamide Syntheses. J. Org. Chem. 2022, 87, 5617–5629. [Google Scholar] [CrossRef]
- Ganesh, M.; Seidel, D. Catalytic Enantioselective Additions of Indoles to Nitroalkenes. J. Am. Chem. Soc. 2008, 130, 16464–16465. [Google Scholar] [CrossRef]
- Wang, B.; Liu, X.-W.; Liu, L.-Y.; Chang, W.-X.; Li, J. Highly Efficient Direct Asymmetric Aldol Reactions Catalyzed by a Prolinethioamide Derivative in Aqueous Media. Eur. J. Org. Chem. 2010, 2010, 5951–5954. [Google Scholar] [CrossRef]
- Almasi, D.; Alonso, D.A.; Nájera, C. Prolinamides versus Prolinethioamides as Recyclable Catalysts in the Enantioselective Solvent-Free Inter- and Intramolecular Aldol Reactions. Adv. Synth. Catal. 2008, 350, 2467–2472. [Google Scholar] [CrossRef]
- Gryko, D.; Lipiński, R. L-Prolinethioamides—Efficient Organocatalysts for the Direct Asymmetric Aldol Reaction. Adv. Synth. Catal. 2005, 347, 1948–1952. [Google Scholar] [CrossRef]
- Gryko, D.; Lipiński, R. Asymmetric Direct Aldol Reaction Catalysed by L-Prolinethioamides. Eur. J. Org. Chem. 2006, 2006, 3864–3876. [Google Scholar] [CrossRef]
- Alemán, C. On the Ability of Modified Peptide Links to Form Hydrogen Bonds. J. Phys. Chem. A 2001, 105, 6717–6723. [Google Scholar] [CrossRef]
- Lee, H.-J.; Choi, Y.-S.; Lee, K.-B.; Park, J.; Yoon, C.-J. Hydrogen Bonding Abilities of Thioamide. J. Phys. Chem. A 2002, 106, 7010–7017. [Google Scholar] [CrossRef]
- Singjunla, Y.; Pigeaux, M.; Laporte, R.; Baudoux, J.; Rouden, J. Thioamide-Substituted Cinchona Alkaloids as Efficient Organocatalysts for Asymmetric Decarboxylative Reactions of MAHOs. Thioamide-Substituted Cinchona Alkaloids as Efficient Organocatalysts for Asymmetric Decarboxylative Reactions of MAHOs. Eur. J. Org. Chem. 2017, 2017, 4319–4323. [Google Scholar] [CrossRef]
- Lepoittevin, B.; Baudoux, J.; Bray, D.; Gonzalo-Barquero, A.; Rouden, J. Polymer-supported thioamide-derived cinchona alkaloids as efficient organocatalysts for the enantioselective decarboxylative protonation. React. Funct. Polym. 2023, 192, 105731. [Google Scholar] [CrossRef]
- Cortez-Lemus, N.A.; Salgado-Rodriguez, R.; Licea-Claverie, A. Preparation of α,ω-telechelic hexyl acrylate polymers with -OH, -COOH, and -NH2 functional groups by RAFT. J. Polym. Sci. Part A Polym. Chem. 2010, 48, 3033–3051. [Google Scholar] [CrossRef]
- Thuillier, A. Dithioesters in Organic Synthesis. Phosphorus Sulfur Relat. Elem. 1985, 23, 253–276. [Google Scholar] [CrossRef]
- Westmijze, H.; Kleijn, H.; Meijer, J.; Vermeer, P. Synthesis of Dithioesters from Organocopper(I) Compounds. Synthesis 1979, 1979, 432–434. [Google Scholar] [CrossRef]
- Grote, J.; Friedrich, F.; Berthold, K.; Hericks, L.; Neumann, B.; Stammler, H.-G.; Mitzel, N.W. Dithiocarboxylic Acids: An Old Theme Revisited and Augmented by New Preparative, Spectroscopic and Structural Facts. Chem. Eur. J. 2018, 24, 2626–2633. [Google Scholar] [CrossRef]
- Woth, A.C.; Needham, C.E.; Franklin, D.B.; Lampkins, A.J. Facile Synthesis of Lipophilic δ-Amino Acid Conjugates from 4-Alkoxy-dithionaphthoic Acids. Synth. Commun. 2012, 42, 2694–2706. [Google Scholar]
- Yeo, S.K.; Choi, B.G.; Kim, J.D.; Lee, J.H. A Convenient Method for the Synthesis of Thiobenzamide Derivatives and O-Thiobenzoates by Use of 2-Benzothiazolyl Dithiobenzoate as Effective Thiobenzoylation Reagent. Bull. Korean Chem. Soc. 2002, 23, 1029–1030. [Google Scholar] [CrossRef]
- Matysiak, J.; Niewiadomy, A. Application of Sulfinyl bis(2,4-dihydroxythiobenzoyl) in the Synthesis of N-Substituted 2-Amino-5-(2,4-dihydroxyphenyl)-1,3,4-thiadiazoles. Synth. Commun. 2006, 36, 1621–1630. [Google Scholar] [CrossRef]
- Matysiak, J.; Niewiadomy, A. Synthesis and antimycotic activity of N-azolyl-2,4-dihydroxythiobenzamides. Bioorg. Med. Chem. 2003, 11, 2285–2291. [Google Scholar] [CrossRef]
- Guan, X.; Drake, M.R.; Tan, Z. Total Synthesis of Human Galanin-Like Peptide through an Aspartic Acid Ligation. Org. Lett. 2013, 15, 6128–6131. [Google Scholar] [CrossRef]
- Katritzky, A.R.; Moutou, J.-L.; Yang, Z. A New Versatile One-Pot Synthesis of Functionalized Thioamides from Grignards, Carbon Disulfide and Amines. Synthesis 1995, 12, 1497–1505. [Google Scholar] [CrossRef]
- Delêtre, M.; Levesque, G. Kinetics and Mechanism of Polythioamidation in Solution. 1. Reaction of Mono- and Bis(dithioester)s with Excess Amine. Macromolecules 1990, 23, 4733–4741. [Google Scholar] [CrossRef]
- Oh, H.K.; Woo, S.Y.; Shin, C.H.; Park, Y.S.; Lee, I. Kinetics and Mechanism of the Aminolysis of Phenyl Dithioacetates in Acetonitrile. J. Org. Chem. 1997, 62, 5780–5784. [Google Scholar] [CrossRef]
- Oh, H.K.; Shin, C.H.; Lee, I. Kinetics and mechanism of the aminolysis of phenyl dithiobenzoates. J. Chem. Soc. Perkin Trans 2 1995, 6, 1169–1173. [Google Scholar] [CrossRef]
- Kpegba, K.; Metzner, P. Synthesis of Dithioic Acid Esters by a Mitsunobu-Type Reaction of Alkanedithioic Acids and Alcohols. Synthesis 1989, 48, 137–139. [Google Scholar] [CrossRef]
- Ho, P.-T.; Davies, N. Reaction of alcohols with zinc halide, diethyl azodicarboxylate, and triphenylphosphine. An effective method for the preparation of halides. J. Org. Chem. 1984, 49, 3027–3029. [Google Scholar] [CrossRef]
- Viaud, M.C.; Rollin, P. Zinc Azide Mediated Mitsunobu Substitution. An Expedient Method for the One-Pot Azidation of Alcohols. Synthesis 1990, 1990, 130–132. [Google Scholar] [CrossRef]
- Manna, S.; Falck, J.R. A convenient preparation of alkyl halides and cyanides from alcohols by modification of the Mitsunobu procedure. Synth. Commun. 1985, 15, 663–668. [Google Scholar] [CrossRef]
Entry | Dithioacids | R1 | R2 | Yield (%) b | Dithioesters |
---|---|---|---|---|---|
1 | 1a | H | CH3 | 68 | 2a |
2 | H | CH2CH3 | 72 | 2b | |
3 | H | CH2CF3 | 72 | 2c | |
4 | H | CH2CH2CF3 | 78 | 2d | |
5 | 1b | vinyl | CH3 | 35 | 3a |
6 | vinyl | CH2CH3 | 49 | 3b | |
7 | vinyl | CH2CF3 | 21 | 3c | |
8 | vinyl | CH2CH2CF3 | 53 | 3d |
Entry | R1 | R2 | Yield (%) | Dithioesters |
---|---|---|---|---|
1 | H | CH2CH3 | 73 | 2b |
2 | H | CH2CF3 | 71 | 2c |
3 | H | CH2Ph | 59 | 2e |
4 | vinyl | CH2CF3 | 40 | 3c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalo-Barquero, A.; Lepoittevin, B.; Rouden, J.; Baudoux, J. Synthesis and Reactivity of Fluorinated Dithiocarboxylates to Prepare Thioamides—Effective Access to a 4-Styrenylthioamide-Cinchona Alkaloid Monomer. Molecules 2023, 28, 7333. https://doi.org/10.3390/molecules28217333
Gonzalo-Barquero A, Lepoittevin B, Rouden J, Baudoux J. Synthesis and Reactivity of Fluorinated Dithiocarboxylates to Prepare Thioamides—Effective Access to a 4-Styrenylthioamide-Cinchona Alkaloid Monomer. Molecules. 2023; 28(21):7333. https://doi.org/10.3390/molecules28217333
Chicago/Turabian StyleGonzalo-Barquero, Aimar, Bénédicte Lepoittevin, Jacques Rouden, and Jérôme Baudoux. 2023. "Synthesis and Reactivity of Fluorinated Dithiocarboxylates to Prepare Thioamides—Effective Access to a 4-Styrenylthioamide-Cinchona Alkaloid Monomer" Molecules 28, no. 21: 7333. https://doi.org/10.3390/molecules28217333