Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,562)

Search Parameters:
Keywords = thick film deposition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 19050 KiB  
Article
Innovative Deposition of AZO as Recombination Layer on Silicon Nanowire Scaffold for Potential Application in Silicon/Perovskite Tandem Solar Cell
by Grażyna Kulesza-Matlak, Marek Szindler, Magdalena M. Szindler, Milena Kiliszkiewicz, Urszula Wawrzaszek, Anna Sypień, Łukasz Major and Kazimierz Drabczyk
Energies 2025, 18(15), 4193; https://doi.org/10.3390/en18154193 - 7 Aug 2025
Abstract
Transparent conductive aluminum-doped zinc oxide (AZO) films were investigated as potential recombination layers for perovskite/silicon tandem solar cells, comparing the results of atomic layer deposition (ALD) and magnetron sputtering (MS) on vertically aligned silicon nanowire (SiNW) scaffolds. Conformality and thickness control were examined [...] Read more.
Transparent conductive aluminum-doped zinc oxide (AZO) films were investigated as potential recombination layers for perovskite/silicon tandem solar cells, comparing the results of atomic layer deposition (ALD) and magnetron sputtering (MS) on vertically aligned silicon nanowire (SiNW) scaffolds. Conformality and thickness control were examined by cross-sectional SEM/TEM and profilometry, revealing fully conformal ALD coatings with tunable thicknesses (40–120 nm) versus tip-capped, semi-uniform MS films (100–120 nm). Optical transmission measurements on glass substrates showed that both 120 nm ALD and MS layers exhibit interference maxima near 450–500 nm and 72–89% transmission across 800–1200 nm; the thinnest ALD films reached up to 86% near-IR transparency. Four-point probe analysis demonstrated that ALD reduces surface resistance from 1150 Ω/□ at 40 nm to 245 Ω/□ at 120 nm, while MS layers achieved 317 Ω/□ at 120 nm. These results delineate the balance between conformality, transparency, and conductivity, providing design guidelines for AZO recombination interfaces in next-generation tandem photovoltaics. Full article
(This article belongs to the Special Issue Perovskite Solar Cells and Tandem Photovoltaics)
Show Figures

Figure 1

13 pages, 3623 KiB  
Article
Fabrication and Characterization of Ferroelectric Capacitors with a Symmetric Hybrid TiN/W/HZO/W/TiN Electrode Structure
by Ha-Jung Kim, Jae-Hyuk Choi, Seong-Eui Lee, So-Won Kim and Hee-Chul Lee
Materials 2025, 18(15), 3547; https://doi.org/10.3390/ma18153547 - 29 Jul 2025
Viewed by 270
Abstract
In this study, Hf0.5Zr0.5O2 (HZO) thin-films were deposited using a Co-plasma atomic layer deposition (CPALD) process that combined both remote plasma and direct plasma, for the development of ferroelectric memory devices. Ferroelectric capacitors with a symmetric hybrid TiN/W/HZO/W/TiN [...] Read more.
In this study, Hf0.5Zr0.5O2 (HZO) thin-films were deposited using a Co-plasma atomic layer deposition (CPALD) process that combined both remote plasma and direct plasma, for the development of ferroelectric memory devices. Ferroelectric capacitors with a symmetric hybrid TiN/W/HZO/W/TiN electrode structure, incorporating W electrodes as insertion layers, were fabricated. Rapid thermal annealing (RTA) was subsequently employed to control the crystalline phase of the films. The electrical and structural properties of the capacitors were analyzed based on the RTA temperature, and the presence, thickness, and position of the W insertion electrode layer. Consequently, the capacitor with 5 nm-thick W electrode layers inserted on both the top and bottom sides and annealed at 700 °C exhibited the highest remnant polarization (2Pr = 61.0 μC/cm2). Moreover, the symmetric hybrid electrode capacitors annealed at 500–600 °C also exhibited high 2Pr values of approximately 50.4 μC/cm2, with a leakage current density of approximately 4 × 10−5 A/cm2 under an electric field of 2.5 MV/cm. The findings of this study are expected to contribute to the development of electrode structures for improved performance of HZO-based ferroelectric memory devices. Full article
Show Figures

Figure 1

50 pages, 4603 KiB  
Review
Polymeric Composite Thin Films Deposited by Laser Techniques for Antimicrobial Applications—A Short Overview
by Anita Ioana Visan and Irina Negut
Polymers 2025, 17(15), 2020; https://doi.org/10.3390/polym17152020 - 24 Jul 2025
Viewed by 419
Abstract
Polymeric composite thin films have emerged as promising antimicrobial materials, particularly in response to rising antibiotic resistance. This review highlights the development and application of such films produced by laser-based deposition techniques, notably pulsed laser deposition and matrix-assisted pulsed laser evaporation. These methods [...] Read more.
Polymeric composite thin films have emerged as promising antimicrobial materials, particularly in response to rising antibiotic resistance. This review highlights the development and application of such films produced by laser-based deposition techniques, notably pulsed laser deposition and matrix-assisted pulsed laser evaporation. These methods offer precise control over film composition, structure, and thickness, making them ideal for embedding antimicrobial agents such as metal nanoparticles, antibiotics, and natural compounds into polymeric matrices. The resulting composite coatings exhibit enhanced antimicrobial properties against a wide range of pathogens, including antibiotic-resistant strains, by leveraging mechanisms such as ion release, reactive oxygen species generation, and membrane disruption. The review also discusses critical parameters influencing antimicrobial efficacy, including film morphology, composition, and substrate interactions. Applications include biomedical devices, implants, wound dressings, and surfaces in the healthcare and food industries. Full article
(This article belongs to the Special Issue Polymer Thin Films and Their Applications)
Show Figures

Figure 1

22 pages, 5670 KiB  
Article
Tailoring TiO2/TiN Bi-Layer Interfaces via Nitrogen Diffusion and Gold Functionalization for Advanced Photocatalysis
by Jelena P. Georgijević, Tijana Stamenković, Tijana Đorđević, Danilo Kisić, Vladimir Rajić and Dejan Pjević
Catalysts 2025, 15(8), 701; https://doi.org/10.3390/catal15080701 - 23 Jul 2025
Viewed by 457
Abstract
100 nm thick TiO2/TiN bilayers with varying thickness ratios were deposited via reactive sputtering of a Ti target in controlled oxygen and nitrogen atmospheres. Post-deposition annealing in air at 600 °C was performed to induce nitrogen diffusion through the oxygen-deficient TiO [...] Read more.
100 nm thick TiO2/TiN bilayers with varying thickness ratios were deposited via reactive sputtering of a Ti target in controlled oxygen and nitrogen atmospheres. Post-deposition annealing in air at 600 °C was performed to induce nitrogen diffusion through the oxygen-deficient TiO2 layer. The resulting changes in morphology and chemical environment were investigated in detail using transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and UV-Vis spectroscopy. Detailed TEM and XPS analyses have confirmed nitrogen diffusion across the TiO2 layer, with surface nitrogen concentration and the ratio of interstitial to substitutional nitrogen dependent on the TiO2/TiN mass ratio. Optical studies demonstrated modifications in optical constants and a reduction of the effective bandgap from 3.2 eV to 2.6 eV due to new energy states introduced by nitrogen doping. Changes in surface free energy induced by nitrogen incorporation showed a correlation to nitrogen doping sites on the surface, which had positive effects on overall photocatalytic activity. Photocatalytic activity, assessed through methylene blue degradation, showed enhancement attributed to nitrogen doping. Additionally, deposition of a 5 nm gold layer on the annealed sample enabled investigation of synergistic effects between nitrogen doping and gold incorporation, resulting in further improved photocatalytic performance. These findings establish the TiO2/TiN bilayer as a versatile platform for supporting thin gold films with enhanced photocatalytic properties. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalysis for Environmental Applications)
Show Figures

Figure 1

14 pages, 2646 KiB  
Article
Analog Resistive Switching Phenomena in Titanium Oxide Thin-Film Memristive Devices
by Karimul Islam, Rezwana Sultana and Robert Mroczyński
Materials 2025, 18(15), 3454; https://doi.org/10.3390/ma18153454 - 23 Jul 2025
Viewed by 376
Abstract
Memristors with resistive switching capabilities are vital for information storage and brain-inspired computing, making them a key focus in current research. This study demonstrates non-volatile analog resistive switching behavior in Al/TiOx/TiN/Si(n++)/Al memristive devices. Analog resistive switching offers gradual, controllable [...] Read more.
Memristors with resistive switching capabilities are vital for information storage and brain-inspired computing, making them a key focus in current research. This study demonstrates non-volatile analog resistive switching behavior in Al/TiOx/TiN/Si(n++)/Al memristive devices. Analog resistive switching offers gradual, controllable conductance changes, which are essential for mimicking brain-like synaptic behavior, unlike digital/abrupt switching. The amorphous titanium oxide (TiOx) active layer was deposited using the pulsed-DC reactive magnetron sputtering technique. The impact of increasing the oxide thickness on the electrical performance of the memristors was investigated. Electrical characterizations revealed stable, forming-free analog resistive switching, achieving endurance beyond 300 DC cycles. The charge conduction mechanisms underlying the current–voltage (I–V) characteristics are analyzed in detail, revealing the presence of ohmic behavior, Schottky emission, and space-charge-limited conduction (SCLC). Experimental results indicate that increasing the TiOx film thickness from 31 to 44 nm leads to a notable change in the current conduction mechanism. The results confirm that the memristors have good stability (>1500 s) and are capable of exhibiting excellent long-term potentiation (LTP) and long-term depression (LTD) properties. The analog switching driven by oxygen vacancy-induced barrier modulation in the TiOx/TiN interface is explained in detail, supported by a proposed model. The remarkable switching characteristics exhibited by the TiOx-based memristive devices make them highly suitable for artificial synapse applications in neuromorphic computing systems. Full article
Show Figures

Figure 1

20 pages, 1471 KiB  
Article
A New Approach for Interferent-Free Amperometric Biosensor Production Based on All-Electrochemically Assisted Procedures
by Rosanna Ciriello, Maria Assunta Acquavia, Giuliana Bianco, Angela Di Capua and Antonio Guerrieri
Biosensors 2025, 15(8), 470; https://doi.org/10.3390/bios15080470 - 22 Jul 2025
Viewed by 304
Abstract
A new approach in amperometric enzyme electrodes production based on all-electrochemically assisted procedures will be described. Enzyme (glucose oxidase) immobilization was performed by in situ co-crosslinking of enzyme molecules through electrophoretic protein deposition, assuring enzyme immobilization exclusively onto the transducer surface (Pt electrode). [...] Read more.
A new approach in amperometric enzyme electrodes production based on all-electrochemically assisted procedures will be described. Enzyme (glucose oxidase) immobilization was performed by in situ co-crosslinking of enzyme molecules through electrophoretic protein deposition, assuring enzyme immobilization exclusively onto the transducer surface (Pt electrode). Analogously, the poor selectivity of the transducer was dramatically improved by the electrosynthesis of non-conducting polymers with built-in permselectivity, permitting the formation of a thin permselective film onto the transducer surface, able to reject common interferents usually found in real samples. Since both approaches required a proper and distinct electrochemical perturbation (a pulsed current sequence for electrophoretic protein deposition and cyclic voltammetry for the electrosynthesis of non-conducting polymers), an appropriate coupling of the two all-electrochemical approaches was assured by a thorough study of the likely combinations of the electrosynthesis of permselective polymers with enzyme immobilization by electrophoretic protein deposition and by the use of several electrosynthesized polymers. For each investigated combination and for each polymer, the analytical performances and the rejection capabilities of the resulting biosensor were acquired so to gain information about their sensing abilities eventually in real sample analysis. This study shows that the proper coupling of the two all-electrochemical approaches and the appropriate choice of the electrosynthesized, permselective polymer permits the easy fabrication of novel glucose oxidase biosensors with good analytical performance and low bias in glucose measurement from typical interferent in serum. This novel approach, resembling classical electroplating procedures, is expected to allow all the advantages expected from such procedures like an easy preparation biosensor, a bi-dimensional control of enzyme immobilization and thickness, interferent- and fouling-free transduction of the electrodic sensor and, last but not the least, possibility of miniaturization of the biosensing device. Full article
(This article belongs to the Special Issue Novel Designs and Applications for Electrochemical Biosensors)
Show Figures

Figure 1

21 pages, 5914 KiB  
Article
Simple Spin-Coating Preparation of Hydrogel and Nanoparticle-Loaded Hydrogel Thin Films
by Sara Calistri, Chiara Ciantelli, Sebastiano Cataldo, Vincenzo Cuzzola, Roberta Guzzinati, Simone Busi and Alberto Ubaldini
Coatings 2025, 15(7), 859; https://doi.org/10.3390/coatings15070859 - 21 Jul 2025
Viewed by 376
Abstract
Hydrogel films receive significant attention among researchers because they combine increased stimuli responsiveness and faster responses to the already excellent properties of their component materials. However, their preparation is complex and requires that many difficulties are overcome. The present work presents a new [...] Read more.
Hydrogel films receive significant attention among researchers because they combine increased stimuli responsiveness and faster responses to the already excellent properties of their component materials. However, their preparation is complex and requires that many difficulties are overcome. The present work presents a new study regarding the preparation of pure and nanoparticle-loaded alginate-based films by spin-coating. Two-microliter solutions of sodium alginate and calcium chloride with different concentrations were deposited on a glass substrate and subjected to rapid rotations of between 100 and 1000 RPM. Film formation can be achieved by optimizing the ratio between the viscosity of the solutions, depending on their concentrations and the rotation speed. When these conditions are in the right range, a homogeneous film is obtained, showing good adherence to the substrate and uniform thickness. Films containing silver nanoparticles were prepared, exploiting the reaction between sodium borohydride and silver nitrate. The two reagents were added to the sodium alginate and calcium nitrate solution, respectively. Their concentration is the driving force for the formation of a uniform film: particles of about 50 nm that are well-dispersed throughout the film are obtained using AgNO3 at 4 mM and NaBH4 at 2 or 0.2 mM; meanwhile, at higher concentrations, one can also obtain the precipitation of inorganic crystals. Full article
(This article belongs to the Section Thin Films)
Show Figures

Graphical abstract

15 pages, 3200 KiB  
Article
Stress Compensation in TiO2/SiO2 Optical Coatings by Manipulating the Thickness Modulation Ratio
by Bo Wang, Taiqi Wu, Weidong Gao, Gang Hu and Changjun Wang
Coatings 2025, 15(7), 848; https://doi.org/10.3390/coatings15070848 - 19 Jul 2025
Viewed by 336
Abstract
With the rapid advancement of high-precision optical systems, increasingly stringent demands are imposed on the surface figure accuracy of optical components. The magnitude of residual stress in multilayer films directly influences the post-coating surface figure stability of these components, making the control of [...] Read more.
With the rapid advancement of high-precision optical systems, increasingly stringent demands are imposed on the surface figure accuracy of optical components. The magnitude of residual stress in multilayer films directly influences the post-coating surface figure stability of these components, making the control of multilayer film stress a critical factor in enhancing optical surface figure accuracy. In this study, which addresses the process constraints and substrate damage risks associated with conventional annealing-based stress compensation for large-aperture optical components, we introduce an active stress engineering strategy rooted in in situ deposition process optimization. By systematically tailoring film deposition parameters and adjusting the thickness modulation ratio of TiO2 and SiO2, we achieve dynamic compensation of residual stress in multilayer structures. This approach demonstrates broad applicability across diverse optical coatings, where it effectively mitigates stress-induced surface distortions. Unlike annealing methods, this intrinsic stress polarity manipulation strategy obviates the need for high-temperature post-processing, eliminating risks of material decomposition or substrate degradation. By enabling precise nanoscale stress regulation in large-aperture films through controlled process parameters, it provides essential technical support for manufacturing ultra-precision optical devices, such as next-generation laser systems and space-based stress wave detection instruments, where minimal stress-induced deformation is paramount to functional performance. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

21 pages, 9529 KiB  
Article
Development of a Highly Reliable PbS QDs-Based SWIR Photodetector Based on Metal Oxide Electron/Hole Extraction Layer Formation Conditions
by JinBeom Kwon, Yuntae Ha, Suji Choi and Donggeon Jung
Nanomaterials 2025, 15(14), 1107; https://doi.org/10.3390/nano15141107 - 16 Jul 2025
Viewed by 308
Abstract
Recently, with the development of automation technology in various fields, much research has been conducted on infrared photodetectors, which are the core technology of LiDAR sensors. However, most infrared photodetectors are expensive because they use compound semiconductors based on epitaxial processes, and they [...] Read more.
Recently, with the development of automation technology in various fields, much research has been conducted on infrared photodetectors, which are the core technology of LiDAR sensors. However, most infrared photodetectors are expensive because they use compound semiconductors based on epitaxial processes, and they have low safety because they use the near-infrared (NIR) region that can damage the retina. Therefore, they are difficult to apply to automation technologies such as automobiles and factories where humans can be constantly exposed. In contrast, short-wavelength infrared photodetectors based on PbS QDs are actively being developed because they can absorb infrared rays in the eye-safe region by controlling the particle size of QDs and can be easily and inexpensively manufactured through a solution process. However, PbS QDs-based SWIR photodetectors have low chemical stability due to the electron/hole extraction layer processed by the solution process, making it difficult to manufacture them in the form of patterning and arrays. In this study, bulk NiO and ZnO were deposited by sputtering to achieve uniformity and patterning of thin films, and the performance of PbS QDs-based photodetectors was improved by optimizing the thickness and annealing conditions of the thin films. The fabricated photodetector achieved a high response characteristic of 114.3% through optimized band gap and improved transmittance characteristics. Full article
(This article belongs to the Special Issue Quantum Dot Materials and Their Optoelectronic Applications)
Show Figures

Figure 1

20 pages, 6738 KiB  
Article
Biocompatible Inorganic PVD MeSiON Thin Films (Me = Cr or Zr) Used to Enhance the Bond Strength Between NiCr-Based Metallic Frameworks and Ceramic in Dental Restorations
by Mihaela Dinu, Cosmin Mihai Cotrut, Alina Vladescu (Dragomir), Florin Baciu, Anca Constantina Parau, Iulian Pana, Lidia Ruxandra Constantin and Catalin Vitelaru
Dent. J. 2025, 13(7), 318; https://doi.org/10.3390/dj13070318 - 14 Jul 2025
Viewed by 234
Abstract
Background/Objectives: The increasing demand for aesthetics in dentistry has driven significant advancements in both materials and techniques. The primary cause of ceramic detachment in dental restorations is extensive mechanical stress, which often results in detachment and clinical complications. This study aims to improve [...] Read more.
Background/Objectives: The increasing demand for aesthetics in dentistry has driven significant advancements in both materials and techniques. The primary cause of ceramic detachment in dental restorations is extensive mechanical stress, which often results in detachment and clinical complications. This study aims to improve the bond strength between NiCr-based metal frameworks and ceramic coatings by introducing biocompatible inorganic MeSiON thin films (Me = Cr or Zr) as interlayers. Methods: MeSiON coatings with a thickness of ~2 μm were deposited on NiCr alloy using cathodic arc evaporation. To tailor the stoichiometry, morphology, and mechanical properties of the coatings, the substrate bias voltage was varied: −50 V, −100 V, −150 V, −200 V. Structural and surface characterization was performed using SEM/EDS, XRD, profilometry, and contact angle analysis. The coating adhesion was evaluated by using standardized scratch testing, while the bond strength was evaluated using a three-point bending test. Results: The NiCr alloy exhibited a dendritic microstructure, and the ceramic layer consisted mainly of quartz, feldspar, kaolin, and ZrO2. ZrSiON coatings showed superior roughness, elemental incorporation, and adhesion compared to Cr-based coatings, these properties being further improved by increasing the substrate bias. The highest bond strength was achieved with a ZrSiON coating deposited at −200 V, a result we attributed to increased surface roughness and mechanical interlocking at the ceramic-metal interface. Conclusions: CrSiON and ZrSiON interlayers enhanced ceramic-to-metal adhesion in NiCr-based dental restorations. The enhancement in bond strength is primarily ascribed to substrate bias-induced modifications in the coating’s stoichiometry, roughness, and adhesion. Full article
(This article belongs to the Special Issue Dental Materials Design and Innovative Treatment Approach)
Show Figures

Figure 1

15 pages, 1784 KiB  
Review
A Review of Grain Refinement and Texture Engineering in Aluminum Alloy Magnetron Sputtering Targets
by Run-Xin Song, Dong Wang, Yiqiao Yang, Jinjiang He, Song Li, Hai-Le Yan and Liang Zuo
Materials 2025, 18(14), 3235; https://doi.org/10.3390/ma18143235 - 9 Jul 2025
Viewed by 320
Abstract
Aluminum and its alloy magnetron sputtering targets, owing to their superior electrical/thermal conductivity and robust substrate adhesion, serve as critical materials in advanced electronics and information technologies. It is known that the microstructure of the target, including grain uniformity and crystallographic texture, directly [...] Read more.
Aluminum and its alloy magnetron sputtering targets, owing to their superior electrical/thermal conductivity and robust substrate adhesion, serve as critical materials in advanced electronics and information technologies. It is known that the microstructure of the target, including grain uniformity and crystallographic texture, directly affects the sputtering performance and the quality of the deposited thin film. Despite extensive research efforts, the review paper focused on the microstructure of aluminum target materials is still absent. In that context, the recent progress on the Al alloy target is reviewed, focusing on grain refinement and texture control strategies. The roles of alloying elements, such as Si, Cu, and rare-earth Sc and Nd, are described first. The two conventional manufacturing techniques of fabricating Al targets, including melting and powder metallurgy, are introduced. Then, studies on grain refinement by thermomechanical processing routes (hot/cold rolling, annealing and forging) are summarized. Lastly, texture engineering through deformation and heat treatment protocols (unidirectional/multidirectional rolling, deformation thickness, and composite deformation modes) is reviewed. By establishing the relationship between thermomechanical processing and microstructure, this review provides insights for designing high-performance aluminum targets tailored to next-generation advanced thin-film applications. Full article
Show Figures

Figure 1

45 pages, 1648 KiB  
Review
Tribological Performance Enhancement in FDM and SLA Additive Manufacturing: Materials, Mechanisms, Surface Engineering, and Hybrid Strategies—A Holistic Review
by Raja Subramani, Ronit Rosario Leon, Rajeswari Nageswaren, Maher Ali Rusho and Karthik Venkitaraman Shankar
Lubricants 2025, 13(7), 298; https://doi.org/10.3390/lubricants13070298 - 7 Jul 2025
Viewed by 863
Abstract
Additive Manufacturing (AM) techniques, such as Fused Deposition Modeling (FDM) and Stereolithography (SLA), are increasingly adopted in various high-demand sectors, including the aerospace, biomedical engineering, and automotive industries, due to their design flexibility and material adaptability. However, the tribological performance and surface integrity [...] Read more.
Additive Manufacturing (AM) techniques, such as Fused Deposition Modeling (FDM) and Stereolithography (SLA), are increasingly adopted in various high-demand sectors, including the aerospace, biomedical engineering, and automotive industries, due to their design flexibility and material adaptability. However, the tribological performance and surface integrity of parts manufactured by AM are the biggest functional deployment challenges, especially in wear susceptibility or load-carrying applications. The current review provides a comprehensive overview of the tribological challenges and surface engineering solutions inherent in FDM and SLA processes. The overview begins with a comparative overview of material systems, process mechanics, and failure modes, highlighting prevalent wear mechanisms, such as abrasion, adhesion, fatigue, and delamination. The effect of influential factors (layer thickness, raster direction, infill density, resin curing) on wear behavior and surface integrity is critically evaluated. Novel post-processing techniques, such as vapor smoothing, thermal annealing, laser polishing, and thin-film coating, are discussed for their potential to endow surface durability and reduce friction coefficients. Hybrid manufacturing potential, where subtractive operations (e.g., rolling, peening) are integrated with AM, is highlighted as a path to functionally graded, high-performance surfaces. Further, the review highlights the growing use of finite element modeling, digital twins, and machine learning algorithms for predictive control of tribological performance at AM parts. Through material-level innovations, process optimization, and surface treatment techniques integration, the article provides actionable guidelines for researchers and engineers aiming at performance improvement of FDM and SLA-manufactured parts. Future directions, such as smart tribological, sustainable materials, and AI-based process design, are highlighted to drive the transition of AM from prototyping to end-use applications in high-demand industries. Full article
(This article belongs to the Special Issue Wear and Friction in Hybrid and Additive Manufacturing Processes)
Show Figures

Figure 1

18 pages, 6590 KiB  
Article
Synthesis of ZnS Nano-Powders and Fabrication of ZnS Thin Films via Electron-Beam Evaporation: Structural and Optical Characterization
by Ahmed Al-Mobydeen, Ehab AlShamaileh, Bashar Lahlouh, Mariam Al-Qderat, Ahmed N. AL-Masri, Wadah Mahmoud, Imad Hamadneh, Muayad Esaifan and Iessa Sabbe Moosa
Coatings 2025, 15(7), 796; https://doi.org/10.3390/coatings15070796 - 7 Jul 2025
Viewed by 481
Abstract
Nanoscale zinc sulfide (ZnS) powders have attracted considerable interest due to their unique properties and diverse applications in various fields, including wastewater treatment, optics, electronics, photocatalysis, and solar systems. In this study, nano-powder ZnS was chemically synthetized starting from Zn powder, diluted HCl, [...] Read more.
Nanoscale zinc sulfide (ZnS) powders have attracted considerable interest due to their unique properties and diverse applications in various fields, including wastewater treatment, optics, electronics, photocatalysis, and solar systems. In this study, nano-powder ZnS was chemically synthetized starting from Zn powder, diluted HCl, and laboratory-prepared Na2S. The obtained ZnS was studied using an SEM coupled with EDS, XRD analysis, UV–Visible spectroscopy, and FTIR techniques. The XRD results showed that the synthesized nanoscale ZnS powder was approximately 2.26 nm. Meanwhile, the EDS and XRD patterns confirmed the high purity of the obtained ZnS powder. In addition, the ZnS powder was compacted and sintered in an argon atmosphere at 400 °C for 8 h to prepare the required pellets for thin-film deposition via E-beam evaporation. The microscopic structure of the sintered pellets was investigated using the SEM/EDS. Furthermore, the optical properties of the deposited thin films were studied using UV–Visible spectroscopy in the wavelength range of 190–1100 nm and the FTIR technique. The bandgap energies of the deposited thin films with thicknesses of 111 nm and 40 nm were determined to be around 4.72 eV and 5.82 eV, respectively. This article offers a facile production route of high-purity ZnS powder, which can be compacted and sintered as a suitable source for thin-film deposition. Full article
(This article belongs to the Special Issue Trends in Coatings and Surface Technology, 2nd Edition)
Show Figures

Figure 1

28 pages, 53432 KiB  
Article
Deposition of Mesoporous Silicon Dioxide Films Using Microwave PECVD
by Marcel Laux, Ralf Dreher, Rudolf Emmerich and Frank Henning
Materials 2025, 18(13), 3205; https://doi.org/10.3390/ma18133205 - 7 Jul 2025
Viewed by 286
Abstract
Mesoporous silicon dioxide films have been shown to be well suited as adhesion-promoting interlayers for generating high-strength polymer–metal interfaces. These films can be fabricated via microwave plasma-enhanced chemical vapor deposition using the precursor hexamethyldisiloxane and oxygen as working gas. The resulting mesoporous structures [...] Read more.
Mesoporous silicon dioxide films have been shown to be well suited as adhesion-promoting interlayers for generating high-strength polymer–metal interfaces. These films can be fabricated via microwave plasma-enhanced chemical vapor deposition using the precursor hexamethyldisiloxane and oxygen as working gas. The resulting mesoporous structures enable polymer infiltration during overmolding, which leads to a nanoscale form-locking mechanism after solidification. This mechanism allows for efficient stress transfer across the interface and makes the resulting adhesion highly dependent on the morphology of the deposited film. To gain a deeper understanding of the underlying deposition mechanisms and improve process stability, this work investigates the growth behavior of mesoporous silica films using a multiple regression analysis approach. The seven process parameters coating time, distance, chamber pressure, substrate temperature, flow rate, plasma pulse duration, and pause-to-pulse ratio were systematically varied within a Design of Experiments framework. The resulting films were characterized by their free surface area, mean agglomerate diameter, and film thickness using digital image analysis, white light interferometry, and atomic force microscopy. The deposited films exhibit a wide range of morphological appearances, ranging from quasi-dense to dust-like structures. As part of this research, the free surface area varied from 15 to 55 percent, the mean agglomerate diameter from 17 to 126 nm, and the film thickness from 35 to 1600 nm. The derived growth model describes the deposition process with high statistical accuracy. Furthermore, all coatings were overmolded via injection molding and subjected to mechanical testing, allowing a direct correlation between film morphology and their performance as adhesion-promoting interlayers. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

14 pages, 4175 KiB  
Article
Alluvial Fan Scree Deposits: Formation Characteristics and Erosion Mitigation Strategies
by Fengling Ji, Wei Li, Qingfeng Lv, Zhongping Chen and Xi Yu
Appl. Sci. 2025, 15(13), 7289; https://doi.org/10.3390/app15137289 - 28 Jun 2025
Viewed by 204
Abstract
Alluvial fan scree deposits (AFSDs) in arid/semi-arid regions are highly susceptible to rainfall-induced erosion, posing significant risks to infrastructure like oil pipelines. This study evaluates the efficacy of SH polymer materials in enhancing AFSD erosion resistance through three experimental approaches: film characterization, rainfall [...] Read more.
Alluvial fan scree deposits (AFSDs) in arid/semi-arid regions are highly susceptible to rainfall-induced erosion, posing significant risks to infrastructure like oil pipelines. This study evaluates the efficacy of SH polymer materials in enhancing AFSD erosion resistance through three experimental approaches: film characterization, rainfall erosion simulation, and environmental compatibility assessment. Tensile tests demonstrated that SH polymer films (0.16–0.56 mm thick) retained >80% mass after prolonged immersion, exhibiting prolonged ductility (250 mm elongation) and stable post-immersion softening, ideal for enduring cyclic erosion. Rainfall simulations (200 mm/h intensity) revealed that SH application rates ≥ 1.5 kg/m2 reduced soil loss by >90%, with 2.0 kg/m2 ensuring near-complete slope integrity across planar/curved morphologies. Ecological tests confirmed SH’s environmental friendliness, as treated soils supported robust tall fescue growth without permeability inhibition. The findings advocate SH polymers as a sustainable solution for AFSD stabilization, combining mechanical resilience, terrain adaptability, and eco-compatibility. Full article
Show Figures

Figure 1

Back to TopTop