Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (663)

Search Parameters:
Keywords = thermosensitive

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 7615 KB  
Review
Electroconductive Thermosensitive Shape Memory Polymers Manufactured by Fused Filament Fabrication: A Critical Review
by Laurane Roumy, Fabienne Touchard, Thuy-Quynh Truong-Hoang and Francisca Martinez-Hergueta
Appl. Sci. 2025, 15(21), 11641; https://doi.org/10.3390/app152111641 (registering DOI) - 31 Oct 2025
Abstract
The field of 4D printing has seen rapid advancement in recent years, making it a highly dynamic research domain. This new technology is promising for the development of brand-new lightweight, smart and reliable devices. This article is a literature review of the latest [...] Read more.
The field of 4D printing has seen rapid advancement in recent years, making it a highly dynamic research domain. This new technology is promising for the development of brand-new lightweight, smart and reliable devices. This article is a literature review of the latest research in 4D printing, focusing on electroconductive thermosensitive Shape Memory Polymers. They are promising thanks to their high strength-to-weight ratio and their large deformability. However, devices made of such materials are difficult to embed into larger systems because of the triggering mechanism needed to actuate them. Electroconductive Shape Memory Polymers can be stimulated by the Joule effect, but the intricacies and interdependence of their properties make them a great scientific challenge. The first part of this article provides a clear explanation of the main concepts of 4D printing. Afterwards, it focuses on Fused Filament Fabrication due to its high customisability and ease of use. A description of the properties of thermosensitive 4D printed specimens is provided in the third part. Finally, their main challenges and intricacies are discussed. Full article
(This article belongs to the Special Issue State of the Art in Smart Materials and Flexible Sensors)
Show Figures

Figure 1

23 pages, 15094 KB  
Article
Anemoside B4 Rectal Thermosensitive In Situ Gel to Treat Ulcerative Colitis by Overcoming Oral Bioavailability Barriers with Absorption Enhancer-Assisted Delivery
by Xiaomeng Lei, Canjian Wang, Mingyan Xia, Guansheng Zhang, Tangxun Wang, Yang Chen, Yufang Huang, Tiantian Wang, Dongxun Li, Wenliu Zhang and Guosong Zhang
Pharmaceutics 2025, 17(11), 1400; https://doi.org/10.3390/pharmaceutics17111400 - 29 Oct 2025
Viewed by 231
Abstract
Background: Anemoside B4 (AB4), the major bioactive saponin from Pulsatilla chinensis, exhibits anti-inflammatory, anti-tumor, anti-apoptotic, and analgesic properties. However, its clinical translation for ulcerative colitis (UC) is constrained by poor epithelial permeability and low oral bioavailability. Objective: This study’s objective was to engineer [...] Read more.
Background: Anemoside B4 (AB4), the major bioactive saponin from Pulsatilla chinensis, exhibits anti-inflammatory, anti-tumor, anti-apoptotic, and analgesic properties. However, its clinical translation for ulcerative colitis (UC) is constrained by poor epithelial permeability and low oral bioavailability. Objective: This study’s objective was to engineer and optimize thermosensitive rectal in situ gels (ISGs) of AB4, incorporating suitable absorption enhancers to improve mucosal permeation, bioavailability, and therapeutic efficacy against UC. Methods: Screening of effective permeation enhancers was conducted using Caco-2 cell monolayers and Franz diffusion cells. Critical formulation variables such as poloxamer 407 (P407), poloxamer 188 (P188), and hydroxypropyl methyl cellulose (HPMC) were optimized, employing single-factor experiments coupled with the Box–Behnken design response surface methodology (BBD-RSM). Comprehensive characterization encompassed in vitro release kinetics, in vivo pharmacokinetics, rectal tissue tolerability, rectal retention time, and pharmacodynamic efficacy in a UC model. Results: We used 2.5% hydroxypropyl-β-cyclodextrin (HP-β-CD) and 1.0% sodium caprate (SC) as the appropriate absorption enhancers, and the amounts of P407, P188, and HPMC were 17.41%, 4.07%, and 0.44%, respectively, to yield the corresponding in situ gels HP-β-CD-AB4-ISG and SC-AB4-ISG. The gel characterization, such as gelation temperature, gelation time, pH, gelation strength, etc., was in accordance with requirements. The ISGs did not stimulate or damage rectal tissue and remained in the rectum for a prolonged period. More importantly, an improvement in bioavailability and alleviation of UC were noted. Conclusion: Absorption enhancer-assisted, poloxamer-based thermosensitive rectal ISGs provide a safe, convenient, and effective platform for targeted delivery of AB4 to the colorectum. This strategy addresses key limitations of oral dosing and warrants further clinical development for UC and related colorectal inflammatory diseases. Full article
(This article belongs to the Special Issue Advances in Emulsifying Drug Delivery Systems)
Show Figures

Graphical abstract

17 pages, 3668 KB  
Article
Physical Properties of Bacterial Nanocellulose as an Encapsulant Material of Vitamin B12
by Hasbleidy Palacios-Hinestroza, María Camila López-Jaramillo, Julián Paul Martínez-Galán, Carlos Molina-Ramírez and Diego Mauricio Sánchez-Osorno
Molecules 2025, 30(21), 4172; https://doi.org/10.3390/molecules30214172 - 23 Oct 2025
Viewed by 375
Abstract
This study presents a comprehensive comparison of bacterial nanocellulose (BNC) and maltodextrin (MDX) as encapsulating agents for vitamin B12, using spray drying. The research focuses on the physical powder characteristics, such as flowability and cohesion, which are critical for industrial applications. The encapsulation [...] Read more.
This study presents a comprehensive comparison of bacterial nanocellulose (BNC) and maltodextrin (MDX) as encapsulating agents for vitamin B12, using spray drying. The research focuses on the physical powder characteristics, such as flowability and cohesion, which are critical for industrial applications. The encapsulation of vitamin B12 was confirmed by ATR-FTIR analysis, which showed characteristic band shifts at 2138 cm−1 indicating interaction between the vitamin and the encapsulant matrices. Powder flow analysis revealed that BNC-based powders exhibited lower cohesion (CI = 13.3) and better flowability compared to MDX-based powders (CI = 7.7–13.7). Scanning electron microscopy (SEM) showed that all powders consisted of micrometric spherical particles ranging from 2 to 8 µm, with BNC producing particles with a more defined and less agglomerated structure. Thermogravimetric analysis (TGA) demonstrated that both matrices enhanced the thermal stability of vitamin B12, with BNC increasing the degradation onset temperature from 200 °C to 260 °C and the maximum degradation temperature from 274 °C to 317 °C providing a slightly higher onset degradation temperature. The results suggest that BNC is a promising alternative to traditional encapsulants like maltodextrin, offering up to 43 °C higher thermal protection and improved physical properties for encapsulating thermosensitive compounds in dietary applications. Full article
Show Figures

Figure 1

22 pages, 6784 KB  
Article
Investigation of Rheological Characteristics of Thermosensitive Nasal In Situ Gels Based on P407 and Their Effect on Spray Pattern
by Natalia Menshutina, Vladislav Derkach, Elizaveta Mokhova and Mariia Gordienko
Gels 2025, 11(10), 841; https://doi.org/10.3390/gels11100841 - 21 Oct 2025
Viewed by 444
Abstract
This article presents the results of a study on the rheological characteristics of in situ thermosensitive nasal gels based on poloxamer 407 (P407) and their effect on spray angle. The development of new drug delivery systems based on in situ thermosensitive gels can [...] Read more.
This article presents the results of a study on the rheological characteristics of in situ thermosensitive nasal gels based on poloxamer 407 (P407) and their effect on spray angle. The development of new drug delivery systems based on in situ thermosensitive gels can overcome several shortcomings of traditional nasal sprays associated with mucociliary clearance and low mucoadhesion. Using the cold method, samples based on P407 were prepared in pure form, in combination with poloxamer 188 (P188), and with the addition of several mucoadhesive polymers: chitosan, sodium alginate, and hydroxypropyl methylcellulose (HPMC). Analytical studies were carried out for all obtained samples, which showed that the gelling temperature (Tsol–gel) of compositions with P407 was inversely dependent on its concentration, decreasing from 32.71 °C to 24.63 °C. The addition of hydrophilic P188 increased Tsol–gel. The addition of mucoadhesive polymers had varying effects on Tsol–gel: chitosan and HPMC increased the temperature, while sodium alginate decreased it. The addition of mucoadhesive polymers significantly affected the viscosity of the formulations; for example, the addition of sodium alginate resulted in a fivefold increase, making the formulations unsuitable for spraying. A study of the spray angles of Tsol–gel samples in the range of 27–31 °C using the SprayVIEW measuring system revealed an inverse relationship between the viscosity of the formulations and the spray angle. A mathematical model of the solution droplet trajectory was presented, enabling the spray angle to be predicted depending on the formulation composition. The relative error of the computational experiments did not exceed 10%. This approach has the potential to reduce the number of full-scale experiments, and consequently their cost. Full article
(This article belongs to the Section Gel Processing and Engineering)
Show Figures

Figure 1

21 pages, 3069 KB  
Article
Chitosan-graft-poly(N-vinylcaprolactam) Nanoparticles Containing Crotalus atrox Snake Venom: Biological and Physicochemical Characterization
by Serena Sophia Rudy, Jorge Jimenez-Canale, Jose A. Sarabia-Sainz, Ana María Guzmán Partida, Alexel J. Burgara-Estrella, Erika Silva-Campa, Aracely Angulo Molina, Marcelino Montiel-Herrera, Nelly Flores-Ramírez, Paul Zavala-Rivera and Daniel Fernández-Quiroz
Nanomaterials 2025, 15(19), 1538; https://doi.org/10.3390/nano15191538 - 9 Oct 2025
Viewed by 501
Abstract
The development of snake venom-loaded nanobiosystems based on smart biopolymers represents a promising therapeutic approach in several biomedical research fields. Specifically, the western diamondback rattlesnake (Crotalus atrox) contains various bioactive peptides and proteins with reported antitumor activity. This research aimed to [...] Read more.
The development of snake venom-loaded nanobiosystems based on smart biopolymers represents a promising therapeutic approach in several biomedical research fields. Specifically, the western diamondback rattlesnake (Crotalus atrox) contains various bioactive peptides and proteins with reported antitumor activity. This research aimed to establish a simplistic, facile and straightforward protocol for preparing chitosan-g-poly(N-vinylcaprolactam) nanoparticles containing C. atrox venom for potential use as a therapeutic nanocarrier against breast carcinoma cell lines. Herein, the physicochemical properties of venom-loaded nanoparticles were evaluated by FTIR, DLS, and SDS-PAGE. Also, the biological properties of both C. atrox venom and Cs-Venom NPs such as hemagglutination and hemolysis activity were evaluated in vitro. Finally, we evaluated their cytotoxic activity against two breast carcinoma cell lines (T-47D and MDA-MB-231). The most suitable formulation exhibited a hydrodynamic size of 222 nm, a ζ-potential of 42.0 mV and an encapsulation efficiency of 88.6%. C. atrox venom exhibited hemagglutination at concentrations >15 µg/mL but, no hemagglutination or hemolysis was observed for the CS-Venom NPs. Lastly, the IC50 of Cs-Venom NPs was determined for the T-47D and MDA-MB-231 cell lines, at 61.7 and 59.0 µg/mL, respectively. Thus, Cs-Venom NPs exhibit promising properties that can be considered a feasible alternative for developing controlled-release therapeutic systems. Full article
(This article belongs to the Special Issue Fabrication and Application of Polymer-Based Nanomaterials)
Show Figures

Graphical abstract

25 pages, 5895 KB  
Article
Oral Gel Formulation of Cotinus coggygria Scop. Stem Bark Extract: Development, Characterization, and Therapeutic Efficacy in a Rat Model of Aphthous Stomatitis
by Jovana Bradic, Miona Vuletic, Vladimir Jakovljevic, Jasmina Sretenovic, Suzana Zivanovic, Marina Tomovic, Jelena Zivkovic, Aleksandar Kocovic and Nina Dragicevic
Pharmaceutics 2025, 17(10), 1293; https://doi.org/10.3390/pharmaceutics17101293 - 2 Oct 2025
Viewed by 539
Abstract
Background/Objectives: Encouraged by the traditional use of Cotinus coggygria Scop. (European smoketree) for its anti-inflammatory and antioxidant properties, and considering the limitations of current therapies for recurrent aphthous stomatitis (RAS), we aimed to develop and evaluate a mucoadhesive oral gel containing C. coggygria [...] Read more.
Background/Objectives: Encouraged by the traditional use of Cotinus coggygria Scop. (European smoketree) for its anti-inflammatory and antioxidant properties, and considering the limitations of current therapies for recurrent aphthous stomatitis (RAS), we aimed to develop and evaluate a mucoadhesive oral gel containing C. coggygria stem bark extract. Methods: A thermosensitive gel was formulated using Carbopol® 974P NF and poloxamer 407, enriched with 5% C. coggygria extract (CC gel), and characterized for its organoleptic properties, pH, electrical conductivity, and storage stability over six months. Therapeutic efficacy was assessed in a Wistar albino rat model of chemically induced oral ulcers. Animals were divided into three groups: untreated controls (CTRL), rats treated with gel base (GB), and those treated with CC gel over a 10-day period. Healing progression was monitored macroscopically (ulcer size reduction), biochemically (oxidative stress markers in plasma and tissue), and histologically. Results: The CC gel demonstrated satisfactory physicochemical stability and mucosal compatibility. Moreover, it significantly accelerated ulcer contraction and achieved complete re-epithelialization by day 6. Biochemical analyses revealed reduced TBARS and increased SOD, CAT, and GSH levels in ulcer tissue, indicating enhanced local antioxidant defense. Histological evaluation confirmed early resolution of inflammation, pronounced fibroblast activity, capillary proliferation, and full epithelial regeneration in the CC group, in contrast to delayed healing and persistent inflammatory infiltration in the GB and CTRL groups. Conclusions: These findings indicate that the CC gel has potential as a natural, topical formulation with antioxidant and regenerative properties for RAS, although further studies, including clinical evaluation, are required to confirm its overall efficacy and long-term safety. Full article
Show Figures

Figure 1

31 pages, 3530 KB  
Review
In Situ Forming Poloxamer-Based Thermo-Sensitive Hydrogels for Ocular Application: A Focus on the Derivatives 407 and 188
by Emanuela Longo, Elena Giuliano, Agnese Gagliardi, Valeria Gaetano, Marialaura Frisina, Mario Verdiglione and Donato Cosco
Gels 2025, 11(9), 752; https://doi.org/10.3390/gels11090752 - 17 Sep 2025
Viewed by 963
Abstract
In ophthalmology, developing effective drug delivery systems is crucial to overcome anatomical and physiological barriers, such as rapid tear turnover and blinking, which limit the efficacy of conventional formulations like eye drops. Poloxamers, especially the derivatives 407 (P407) and 188, are amphiphilic triblock [...] Read more.
In ophthalmology, developing effective drug delivery systems is crucial to overcome anatomical and physiological barriers, such as rapid tear turnover and blinking, which limit the efficacy of conventional formulations like eye drops. Poloxamers, especially the derivatives 407 (P407) and 188, are amphiphilic triblock copolymers characterized by an intriguing thermo-reversible behavior, making them ideal candidates for the development of in situ hydrogels for ocular applications. Various thermo-sensitive poloxamer-based hydrogels were designed to be easily instilled as liquids at room temperature, gelling promptly upon contact with the corneal surface. These systems promoted a controlled release of active compounds, significantly improving their adhesion to the ocular surface. This review discusses the most relevant scientific literature on the topic, with particular attention to studies published in recent years. The results demonstrated that poloxamer formulations are capable of overcoming typical ocular barriers, thereby increasing drug bioavailability. The intrinsic biocompatibility of poloxamers contributes to the safety and tolerability of the system. Furthermore, P407 showed additional wound healing features. The combination of biocompatibility and thermo-reversible behavior makes poloxamer-based hydrogels a promising platform for the development of innovative ocular drug delivery systems able to enhance therapeutic efficacy and patient comfort. Full article
(This article belongs to the Special Issue Innovative Gels: Structure, Properties, and Emerging Applications)
Show Figures

Graphical abstract

16 pages, 1635 KB  
Article
Design and Characterization of Thermosensitive Niosomes as Platforms for Daunorubicin Delivery
by Viliana Gugleva, Katerina Ahchiyska, Elena Drakalska-Sersemova, Rositsa Mihaylova, Natalia Toncheva-Moncheva, Erik Dimitrov, Krum Aleksandrov, Aleksander Forys, Barbara Trzebicka and Denitsa Momekova
Pharmaceuticals 2025, 18(9), 1375; https://doi.org/10.3390/ph18091375 - 15 Sep 2025
Viewed by 465
Abstract
Background/Objectives: The study describes the elaboration and evaluation of thermosensitive niosomes intended for the systemic application of daunorubicin hydrochloride. The attained stimulus sensitivity would determine the release of the chemotherapeutic predominantly at the target site, which ensures a higher drug concentration and leads [...] Read more.
Background/Objectives: The study describes the elaboration and evaluation of thermosensitive niosomes intended for the systemic application of daunorubicin hydrochloride. The attained stimulus sensitivity would determine the release of the chemotherapeutic predominantly at the target site, which ensures a higher drug concentration and leads to reduced systemic toxicity. The latter is highly beneficial, as the anthracycline antibiotic is known for its dose-dependent cardiotoxic effects. Methods: Conventional and copolymer-modified niosomes were prepared via thin-film hydration and the transmembrane ammonium gradient method, allowing us to assess the impacts of copolymer type-DHP-PiPOX (1,3-dihexadecyl-propane-2-ol-poly(2-isopropyl-2-oxazoline)) or DHP-PETEGA (1,3-dihexadecyl-propane-2-ol-poly(ethoxytriethylene glycol acrylate)) and their concentrations (0.5, 1, and 2.5 mol%), as well as the method of preparation, on the main physicochemical properties of the vesicles. Niosomes were characterized in terms of their size, polydispersity index (PDI), zeta potential, entrapment efficiency, morphology, and drug release properties. Thermosensitivity was evaluated by fluorescence studies, and the antiproliferative activity of optimized formulations was assessed against the acute myelocyte leukemia-derived HL-60 cell line. Results: Daunorubicin-loaded niosomes modified with DHP-PiPOX and DHP-PETEGA at 2.5 mol% exhibited suitable physicochemical properties for systemic application, with sizes below 200 nm (155 and 158 nm respectively), low PDI values of 0.25 and 0.29, spherical morphology, and high daunorubicin entrapment efficiency (68.6 and 66.5% respectively). The vesicles showed temperature-dependent drug release properties and superior antiproliferative activity compared to the free daunorubicin (IC50 values of 6.91 and 8.54 vs. 12.14). Conclusions: The obtained results indicate that the developed thermosensitive nanovesicles may serve as a suitable drug delivery system for the systemic application of daunorubicin hydrochloride. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

16 pages, 3216 KB  
Article
Bio-Based Silica-Reinforced Chitosan/Collagen Thermogels: Synthesis, Structure, and Rheological Behavior
by Amakorn Poommoon, Piyanut Nookong, Santamon Pengoubol and Panjaporn Wongwithayakool
Polymers 2025, 17(18), 2476; https://doi.org/10.3390/polym17182476 - 13 Sep 2025
Viewed by 668
Abstract
Silica-reinforced chitosan/collagen hydrogels are useful for biomedical applications. In this study, thermosensitive chitosan/collagen hydrogels were prepared with different amounts of rice husk ash-derived silica (RHA-Si). Fourier-transform infrared (FTIR) spectroscopy was used to analyze the chemical structure. Results showed that adding RHA-Si did not [...] Read more.
Silica-reinforced chitosan/collagen hydrogels are useful for biomedical applications. In this study, thermosensitive chitosan/collagen hydrogels were prepared with different amounts of rice husk ash-derived silica (RHA-Si). Fourier-transform infrared (FTIR) spectroscopy was used to analyze the chemical structure. Results showed that adding RHA-Si did not change the main chemical groups but caused slight shifts, indicating physical interactions. Micro-Computed Tomography (Micro-CT) revealed that RHA-Si altered the shape and size of the pores in the hydrogel. The pore structure became more spherical at certain RHA-Si levels, but not consistently. Rheological tests showed that increasing RHA-Si made the hydrogel stiffer and reduced the gelation time. However, the hydrogel weakened under high strain due to broken physical bonds. Compression tests indicated that low RHA-Si (1% w/v) improved the hydrogel’s strength during small deformations. In contrast, the hydrogel was less resistant to compression at higher RHA-Si levels (2–3% w/v). In summary, adding RHA-Si can improve the structure and strength of chitosan/collagen hydrogels, but excessive RHA-Si may reduce flexibility. The RHA-Si content should be adjusted to match the intended application of the hydrogel. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

20 pages, 2264 KB  
Article
Development and Characterization of Citalopram-Loaded Thermosensitive Polymeric Micelles for Nasal Administration
by Fatima Rajab, Bence Sipos, Gábor Katona and Ildikó Csóka
Pharmaceutics 2025, 17(9), 1147; https://doi.org/10.3390/pharmaceutics17091147 - 1 Sep 2025
Viewed by 854
Abstract
Background/Objectives: The intranasal (IN) route of administration is a promising non-invasive approach for brain targeting, bypassing the blood–brain barrier and enhancing bioavailability. Citalopram hydrobromide (CT), a widely prescribed sparingly water-soluble selective serotonin reuptake inhibitor (SSRI), faces challenges with oral and intravenous administration, including [...] Read more.
Background/Objectives: The intranasal (IN) route of administration is a promising non-invasive approach for brain targeting, bypassing the blood–brain barrier and enhancing bioavailability. Citalopram hydrobromide (CT), a widely prescribed sparingly water-soluble selective serotonin reuptake inhibitor (SSRI), faces challenges with oral and intravenous administration, including delayed onset, adverse effects, and patient compliance issues. Methods: This study aimed to develop a novel thermoresponsive polymeric micelle (PM) system based on Pluronic® copolymers (Pluronic F127 and Poloxamer 188) improving CT’s solubility, stability, and nasal permeability for enhanced antidepressant efficacy. A preliminary study was conducted to select the optimized formulation. The preparation process involved using the thin-film hydration method, followed by freeze-drying. Comprehensive evaluations of optimized formulation characteristics included Z-average, polydispersity index (PdI), thermal behavior (lower critical solution temperature, LCST), encapsulation efficiency, X-ray powder diffraction (XRPD), thermodynamic solubility, and biological stability. Additionally, in vitro CT release and CT permeability in nasal conditions were studied. Stability under storage was also evaluated. Results: The optimized CT-PM formulation showed nanoscale micelle size (Z-average of 31.41 ± 0.99 nm), narrow size distribution (polydispersity index = 0.241), and a suitable thermal behavior for intranasal delivery (lower critical solution temperature (LCST) ~31 °C). Encapsulation efficiency reached approximately 90%, with an amorphous structure confirmed via XRPD, leading to a 95-fold increase in CT solubility. The formulation demonstrated appropriate biological and physical stability. In vitro studies showed a 25-fold faster CT release from optimized formulation compared to the initial CT, while CT-PM permeability in nasal conditions increased four-fold. Conclusions: This novel nanoscale thermosensitive formulation is a value-added strategy for nasal drug delivery systems, offering enhanced drug solubility, rapid drug release, stability, and improved permeability. This smart nanosystem represents a promising platform to overcome the limitations of conventional CT administration, improving therapeutic outcomes and patient compliance in depression management. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Graphical abstract

19 pages, 3958 KB  
Article
Thermal Runaway Suppression Mechanism of Thermosensitive Microcapsules for Lithium-Ion Batteries
by Zujin Bai, Pei Zhang, Furu Kang, Zeyang Song and Yang Xiao
Polymers 2025, 17(17), 2374; https://doi.org/10.3390/polym17172374 - 31 Aug 2025
Viewed by 1103
Abstract
Lithium-ion batteries (LIBs) have garnered extensive application across various domains. However, frequent safety incidents associated with these LIBs have emerged as a significant impediment to their further advancement. Consequently, there is an urgent necessity to develop a novel fire extinguishing agent that possesses [...] Read more.
Lithium-ion batteries (LIBs) have garnered extensive application across various domains. However, frequent safety incidents associated with these LIBs have emerged as a significant impediment to their further advancement. Consequently, there is an urgent necessity to develop a novel fire extinguishing agent that possesses both rapid fire suppression and efficient cooling capabilities, thereby effectively mitigating the occurrence and propagation of fires in LIBs. This study pioneers the development of an adaptive thermosensitive microcapsule (TM) fire extinguishing agent synthesized via in situ polymerization. The TM encapsulates a ternary composite core—perfluorohexanone (C6F12O), heptafluorocyclopentane (C5H3F7), and 2-bromo-3,3,3-trifluoropropene (2-BTP)—within a melamine–urea–formaldehyde (MUF) resin shell. The TM was prepared via in situ polymerization, combined with FE-SEM, FTIR, TG–DSC, and laser particle size analysis to verify that the TM had a uniform particle size and complete coating structure. The results demonstrate that the TM can effectively suppress the thermal runaway (TR) of LIBs through the synergistic effects of physical cooling, chemical suppression, and gas isolation. Specifically, the peak TR temperature of a single-cell LIB is reduced by 14.0 °C, and the heating rate is decreased by 0.17 °C/s. Additionally, TM successfully blocked the propagation of TR thereby preventing its spread in the dual-LIB module test. Limitations of single-component agents are overcome by this innovative system by leveraging the ternary core’s complementary functionalities, enabling autonomous TR suppression without external systems. Furthermore, the TM design integrates precise thermal responsiveness, environmental friendliness, and cost-effectiveness, offering a transformative safety solution for next-generation LIBs. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

21 pages, 2108 KB  
Article
Valorization of Carménère Grape Pomace: Extraction, Microencapsulation, and Evaluation of the Bioactivity of Polyphenols in Caco-2 Cells
by Paula Valenzuela-Bustamante, Paula Cornejo, Nicolás Nolan, Alina Concepción-Alvarez, Raquel Bridi, Miguel Ángel Rincón-Cervera, Omar Porras, Adriano Costa de Camargo and M. Fernanda Arias-Santé
Int. J. Mol. Sci. 2025, 26(16), 7994; https://doi.org/10.3390/ijms26167994 - 19 Aug 2025
Cited by 1 | Viewed by 901
Abstract
Grape pomace is a major by-product of winemaking and a rich source of phenolic compounds with antioxidant potential. The Carménère variety, emblematic of Chilean viticulture, remains underutilized despite its high anthocyanin and flavanol content. This study aimed to develop a cost-effective method to [...] Read more.
Grape pomace is a major by-product of winemaking and a rich source of phenolic compounds with antioxidant potential. The Carménère variety, emblematic of Chilean viticulture, remains underutilized despite its high anthocyanin and flavanol content. This study aimed to develop a cost-effective method to recover and stabilize bioactive compounds from Carménère grape pomace. Five extracts were obtained using ethanol–water mixtures (0–100%) and characterized by HPLC-DAD and antioxidant assays (DPPH, FRAP, ORAC-FL). The 80% ethanol extract (EET-80) showed the highest antioxidant capacity (FRAP: 2909.3 ± 37.6; ORAC-FL: 1864.3 ± 157.8 µmol TE/g dw) and was selected for microencapsulation via spray drying using maltodextrin. This scalable technique protects thermosensitive compounds and enhances their applicability. The optimized 1:50 extract-to-carrier ratio achieved high encapsulation efficiency (85.7 ± 0.7%). In Caco-2 cells, the microencapsulated extract (5–250 µg/mL) showed no alteration in metabolic activity and significantly reduced intracellular ROS levels (65% inhibition at 250 µg/mL). Solvent polarity selectively influenced polyphenol recovery—50% ethanol favored catechin (581.1 µg/g) and epicatechin (1788.3 µg/g), while 80% ethanol enhanced malvidin-3-O-glucoside (118.0 µg/g). These findings support the valorization of Carménère grape pomace as a sustainable source of antioxidants and highlight the role of microencapsulation in improving extract stability and functionality. Full article
(This article belongs to the Special Issue Bioactive Compounds and Their Antioxidant Role: 2nd Edition)
Show Figures

Graphical abstract

13 pages, 9916 KB  
Article
Near-Infrared Dye-Loaded Thermosensitive Hydrogels as Novel Fluorescence Tissue Markers
by Seon Sook Lee and Yongdoo Choi
Gels 2025, 11(8), 649; https://doi.org/10.3390/gels11080649 - 15 Aug 2025
Viewed by 752
Abstract
Accurate intraoperative localization of deep-seated lesions remains a major challenge in minimally invasive procedures such as laparoscopic and robotic surgeries. Current marking strategies—including ink tattooing and metallic clips—are limited by dye diffusion, or poor intraoperative visibility. To address these issues, we developed and [...] Read more.
Accurate intraoperative localization of deep-seated lesions remains a major challenge in minimally invasive procedures such as laparoscopic and robotic surgeries. Current marking strategies—including ink tattooing and metallic clips—are limited by dye diffusion, or poor intraoperative visibility. To address these issues, we developed and evaluated four thermosensitive injectable hydrogel systems incorporating indocyanine green-human serum albumin (ICG-HSA) complexes: (1) hexanoyl glycol chitosan (HGC), (2) Pluronic F-127, (3) PCL–PEG–PCL, and (4) PLA–PEG–PLA. All hydrogel formulations exhibited sol–gel transitions at physiological temperatures, facilitating in situ dye entrapment and prolonged fluorescence retention. In vivo fluorescence imaging revealed that HGC and Pluronic F-127 hydrogels retained signals for up to five and two days, respectively. In contrast, polyester-based hydrogels (PCL–PEG–PCL and PLA–PEG–PLA) preserved fluorescence for up to 21–30 days. PLA–PEG–PLA showed the highest signal-to-background ratios and sustained intensity, while PCL–PEG–PCL also achieved long-term retention. These findings suggest that thermosensitive hydrogels incorporating ICG-HSA complexes represent promising tissue marker platforms for real-time, minimally invasive, and long-term fluorescence-guided lesion tracking. Full article
Show Figures

Figure 1

15 pages, 1514 KB  
Article
Injectable Thermosensitive Hydrogel Containing Bakuchiol Reduces Periodontal Inflammation and Alveolar Bone Loss in a Rat Model
by Seong-Jin Shin, Gyu-Yeon Shim, Seong-Hee Moon, Yu-Jin Kim, Hyun-Jin Kim, Seunghan Oh, Jung-Hwan Lee and Ji-Myung Bae
J. Funct. Biomater. 2025, 16(8), 292; https://doi.org/10.3390/jfb16080292 - 13 Aug 2025
Viewed by 1645
Abstract
This study aimed to develop and evaluate a bakuchiol-loaded thermosensitive hydrogel (BTH) as a novel local drug delivery system for the management of periodontitis. Bakuchiol, a natural phenolic compound extracted from Psoralea corylifolia, was incorporated into a hydrogel composed of poloxamers and [...] Read more.
This study aimed to develop and evaluate a bakuchiol-loaded thermosensitive hydrogel (BTH) as a novel local drug delivery system for the management of periodontitis. Bakuchiol, a natural phenolic compound extracted from Psoralea corylifolia, was incorporated into a hydrogel composed of poloxamers and carboxymethylcellulose. The gelation behavior, physicochemical properties, and drug release profile were analyzed. Additionally, antibacterial activity against Porphyromonas gingivalis was assessed. Cytotoxicity was evaluated in human gingival fibroblasts and RAW 264.7 cells. Anti-inflammatory effects were determined by measuring proinflammatory cytokine expression in lipopolysaccharide-stimulated RAW 264.7 macrophages. Furthermore, alveolar bone loss, cytokine expression, and histological findings were assessed in a rat model of ligature-induced periodontitis. BTH demonstrated sol–gel transition at body temperature, with sustained drug release over 15 days. Moreover, it exhibited significant antibacterial activity against P. gingivalis and was non-cytotoxic at an extract concentration of 6.25%. In vitro, it significantly downregulated inflammatory cytokines in activated macrophages. In vivo, BTH application reduced alveolar bone loss and interleukin-1β expression in gingival tissues. Histological analysis confirmed decreased inflammatory cell infiltration and alveolar bone destruction. Thus, BTH demonstrated both antibacterial and anti-inflammatory activities, exhibiting potential as a promising therapeutic strategy for localized periodontal treatment. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

21 pages, 5921 KB  
Article
Synthesis and Properties of Silver Nanoparticles Functionalized with β-Cyclodextrin and Their Loading with Lupinine and Its Acetyl Derivatives
by Serik D. Fazylov, Zhangeldy S. Nurmaganbetov, Oralgazy A. Nurkenov, Akmaral Z. Sarsenbekova, Olzhas T. Seilkhanov, Roza B. Seidakhmetova, Anel Z. Mendibayeva, Ryszhan Y. Bakirova and Zainulla M. Muldakhmetov
Molecules 2025, 30(16), 3354; https://doi.org/10.3390/molecules30163354 - 12 Aug 2025
Viewed by 612
Abstract
This study presents the results of a study of the synthesis and properties of 2-hydroxy-β-cyclodextrin functionalized by silver nanoparticles and its loading with a bioactive component. As a reducing agent and stabilizer, 2-Hydroxy-β-cyclodextrin (2gβCD) was used in the production of silver nanoparticles. The [...] Read more.
This study presents the results of a study of the synthesis and properties of 2-hydroxy-β-cyclodextrin functionalized by silver nanoparticles and its loading with a bioactive component. As a reducing agent and stabilizer, 2-Hydroxy-β-cyclodextrin (2gβCD) was used in the production of silver nanoparticles. The use of 2gβCD-AgNPs in loading molecules of the plant alkaloid lupinine (Lup) and its acetyl derivative (Lac) with bactericidal properties were studied. The formation of Lup-2gβCD-AgNPs and Lac-2gβCD-AgNPs was confirmed by UV spectroscopy and X-ray diffraction spectroscopy (XRD). Transmission electron microscopy (TEM) showed that the synthesized AgNPs had a spherical shape. 1H-, 13C-NMR nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy (FT-IR) confirmed the reduction and encapsulation of AgNPs by 2gβCD. Thermographic data show that the obtained Lup and its derivative inclusion complexes reduced energy barriers. This makes them promising components for thermosensitive functional materials. Encapsulated complexes of Lup and its acetate inclusion with silver nanoparticles demonstrated significantly (p < 0.05) higher antibacterial, cytotoxic, and moderately pronounced analgesic activity. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Figure 1

Back to TopTop