Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = thermoplastic retainer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 7411 KiB  
Article
High-Temperature Tensile Performance of Fused Filament Fabricated Discontinuous Carbon Fiber-Reinforced Polyamide
by Theodor Florian Zach, Mircea Cristian Dudescu and Paul Bere
Polymers 2025, 17(13), 1732; https://doi.org/10.3390/polym17131732 - 21 Jun 2025
Viewed by 463
Abstract
Fused filament fabrication of thermoplastic composites has grown exponentially owing to its efficiency, thereby meeting numerous engineering demands. However, these materials have limitations owing to their structural vulnerability to elevated temperatures. To address this drawback, this study aims to investigate the tensile behavior [...] Read more.
Fused filament fabrication of thermoplastic composites has grown exponentially owing to its efficiency, thereby meeting numerous engineering demands. However, these materials have limitations owing to their structural vulnerability to elevated temperatures. To address this drawback, this study aims to investigate the tensile behavior of 3D-printed composites in a broad thermal domain from ambient temperature to the crystallization point. For this purpose, a commercial high-temperature-resilient polyamide carbon fiber was selected. To assess the optimal bead configuration and application range, the methodology includes tensile testing of five infill orientations across the four principal thermal domains of the polymers. The results highlight different bead arrangements under constant thermal conditions and demonstrate how temperature effects the tensile performance at similar raster angles, as further correlated with fracture mechanism analysis via scanning electron microscopy. The key findings indicate that raster orientation has a minor influence compared to temperature change. In accordance with the literature, a significantly decreased strength and an abrupt increase in plasticity is observed above the glass transition temperature. Nevertheless, the material retains one-third of its ambient tensile strength at 150 °C, demonstrating its potential for high-temperature applications. Full article
Show Figures

Figure 1

21 pages, 303 KiB  
Review
Cytotoxicity and Endocrine Disruption in Materials Used for Removable Orthodontic Retainers: A Comprehensive Review
by Katarzyna Chojnacka and Marcin Mikulewicz
Dent. J. 2025, 13(6), 269; https://doi.org/10.3390/dj13060269 - 17 Jun 2025
Cited by 1 | Viewed by 743
Abstract
Objective: To evaluate the cytotoxicity and endocrine-disrupting potential of materials used in removable orthodontic retainers. Methods: A literature search (2015–2025) covered in vitro cytotoxicity, estrogenicity, in vivo tissue responses, and clinical biomarkers in PMMA plates, thermoplastic foils, 3D-printed resins, PEEK, and fiber-reinforced composites. [...] Read more.
Objective: To evaluate the cytotoxicity and endocrine-disrupting potential of materials used in removable orthodontic retainers. Methods: A literature search (2015–2025) covered in vitro cytotoxicity, estrogenicity, in vivo tissue responses, and clinical biomarkers in PMMA plates, thermoplastic foils, 3D-printed resins, PEEK, and fiber-reinforced composites. Results: Thirty-eight in vitro and ten clinical studies met inclusion criteria, identified via a structured literature search of electronic databases (2015–2025). Photopolymer resins demonstrated the highest cytotoxicity, whereas thermoplastics and PMMA exhibited predominantly mild effects, which diminished further following 24 h water storage. Bisphenol-type compound release was reported, but systemic exposure remained below regulatory limits. No statistically significant mucosal alterations or endocrine-related effects were reported in clinical studies. Conclusions: Retainer materials are generally biocompatible, though data on long-term endocrine effects are limited. Standardized biocompatibility assessment protocols are necessary to enable comparative evaluation across diverse orthodontic materials. Single-use thermoplastics contribute to microplastic release and pose end-of-life management challenges, raising concerns regarding environmental sustainability. Full article
(This article belongs to the Special Issue Dental Materials Design and Innovative Treatment Approach)
28 pages, 7841 KiB  
Article
Investigation of the Effect of Exposure to Liquid Chemicals on the Strength Performance of 3D-Printed Parts from Different Filament Types
by Arslan Kaptan
Polymers 2025, 17(12), 1637; https://doi.org/10.3390/polym17121637 - 12 Jun 2025
Viewed by 1138
Abstract
Additive manufacturing (AM), particularly fused deposition modeling (FDM) 3D printing, has emerged as a versatile and accessible technology for prototyping and functional part production across a wide range of industrial applications. One of the critical performance-limiting factors in AM is the chemical resistance [...] Read more.
Additive manufacturing (AM), particularly fused deposition modeling (FDM) 3D printing, has emerged as a versatile and accessible technology for prototyping and functional part production across a wide range of industrial applications. One of the critical performance-limiting factors in AM is the chemical resistance of thermoplastic materials, which directly influences their structural integrity, durability, and suitability in chemically aggressive environments. This study systematically investigates the chemical resistance of eight different widely utilized FDM filaments—acrylonitrile butadiene styrene (ABS), acrylonitrile styrene acrylate (ASA), polyamide (PA, Nylon), polycarbonate (PC), polyethylene terephthalate glycol (PETG), polylactic acid (PLA), polypropylene (PP), and polyvinyl butyral (PVB)—by examining their tensile strength and impact resistance after immersion in representative chemical agents: distilled water, ethanol (99.5%), isopropyl alcohol (75% and 99%), acetic acid (8%), hydrochloric acid (37%), hydrogen peroxide (30%), and acetone (99.5%). Quantitative mechanical testing was conducted in accordance with ASTM D638 and ASTM D256 standards, and statistical variability was accounted for using triplicate measurements with standard deviation analysis. The results reveal that PP exhibits the highest chemical resilience, retaining over 97% of its mechanical properties even after 7 days of immersion in aggressive solvents like acetone. PETG and ASA also demonstrated quite successful stability (>90% retention) in mildly corrosive environments such as alcohols and weak acids. In contrast, PLA, due to its low crystallinity and polar ester backbone, and PVB, due to its high amorphous content, showed substantial degradation: tensile strength losses exceeding 70% and impact resistance dropping below 20% in acetone. Moderate resistance was observed in ABS and PC, which maintained structural properties in neutral or weakly reactive conditions but suffered mechanical deterioration (>50% loss) in solvent-rich media. A strong correlation (r > 0.95) between tensile and impact strength reduction was found for most materials, indicating that chemical attack affects both static and dynamic mechanical performance uniformly. The findings of this study provide a robust framework for selecting appropriate 3D printing materials in applications exposed to solvents, acids, or oxidizing agents. PP is recommended for harsh chemical environments; PETG and ASA are suitable for moderate exposure scenarios, whereas PLA and PVB should be limited to low-risk, esthetic, or disposable applications. Full article
(This article belongs to the Special Issue Polymer Mechanochemistry: From Fundamentals to Applications)
Show Figures

Figure 1

10 pages, 7299 KiB  
Article
Molding Process Effects on the Internal Structures of High-Performance Discontinuous Carbon Fiber Reinforced Thermoplastics
by Yi Wan and Jun Takahashi
J. Compos. Sci. 2025, 9(6), 270; https://doi.org/10.3390/jcs9060270 - 29 May 2025
Viewed by 490
Abstract
High-performance discontinuous carbon-fiber-reinforced thermoplastics (CFRTPs) offer promising manufacturing flexibility and recyclability for advanced composite applications. However, their mechanical performance and reliability strongly depend on the internal fiber architecture, which is largely determined by the molding process. In this study, three distinct compression molding [...] Read more.
High-performance discontinuous carbon-fiber-reinforced thermoplastics (CFRTPs) offer promising manufacturing flexibility and recyclability for advanced composite applications. However, their mechanical performance and reliability strongly depend on the internal fiber architecture, which is largely determined by the molding process. In this study, three distinct compression molding approaches—CFRTP sheet molding compounds (SMCs), bulk molding compounds (BMCs), and free-edge molding compounds (FMCs)—were systematically evaluated to investigate how processing parameters affect fiber orientation, tape deformation, and impregnation quality. X-ray micro-computed tomography (XCT) was employed to visualize and quantify the internal structures of each material, focusing on the visualization and quantification of in-plane and out-of-plane fiber alignment and other internal structure features. The results indicate that CFRTP-SMC retains largely intact tape layers and achieves better impregnation, leading to more uniform and predictable internal geometry. Although CFRTP-BMC exhibits greater tape deformation and splitting due to increased flow, its simpler molding process and better tolerance for tape shape distortion suggest potential advantages for recycled applications. In contrast, CFRTP-FMC shows significant tape fragmentation and poor impregnation, particularly near free edges. These findings underscore the critical role of a controlled molding process in achieving a consistent internal structure for these materials for the first time. This study highlights the utility of advanced XCT methods for optimizing process design and advancing the use of high-performance discontinuous CFRTP in industry. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

12 pages, 2257 KiB  
Article
Study of Deformation and Strength Characteristics of Highly Filled Sand–Polymer Composites Based on Regenerated Thermoplastics
by Vassiliy Yurchenko, Vitali Haiduk, Alexandr Skaskevich, Olga Zharkevich, Gulnara Zhetessova, Olga Reshetnikova, Altay Smagulov and Medgat Mussayev
J. Compos. Sci. 2025, 9(5), 206; https://doi.org/10.3390/jcs9050206 - 24 Apr 2025
Viewed by 758
Abstract
As the volume of polymer waste continues to grow, the development of methods for their processing and the creation of composites is an urgent task. In this work, the characteristics of sand–polymer composites based on reclaimed thermoplastics (1:3 mixture of polyolefins) are investigated. [...] Read more.
As the volume of polymer waste continues to grow, the development of methods for their processing and the creation of composites is an urgent task. In this work, the characteristics of sand–polymer composites based on reclaimed thermoplastics (1:3 mixture of polyolefins) are investigated. It was found that composites containing up to 75 wt% silica sand (100–300 μm) retained acceptable compressive strength (at least 25 MPa) at a strain of no more than 5%. Sand surface treatment improved the interaction between polymer and filler, increasing compressive strength by 10–15% and impact strength by 10% at 70–75 wt% of filler. The deformation and strength parameters of composites modified with carbon nanocomponents were investigated. The dependencies of compressive and bending strength on technological parameters of formation were obtained. The role of modifying components in appretization and reinforcement was shown. The introduction of technological lubricants improved homogeneity but reduced strength. The strengthening effect was related to the increase in the proportion of polymer interacting with the filler surface when the thickness of the polymer matrix reached the nanostate. The introduction of silica nanoparticles (up to 0.1 wt%) increased the compressive strength by 15%. However, the decrease in melt fluidity limited the degree of filling. The obtained composites are promising for application as structural materials in hull products used in limited climatic conditions. Full article
(This article belongs to the Section Polymer Composites)
Show Figures

Figure 1

22 pages, 5025 KiB  
Article
Biodegradable Polymer Composites Based on Poly(butylene succinate) Copolyesters and Wood Flour
by Agnieszka Kozłowska, Krzysztof Gorący and Miroslawa El Fray
Polymers 2025, 17(7), 883; https://doi.org/10.3390/polym17070883 - 26 Mar 2025
Cited by 1 | Viewed by 934
Abstract
This study investigates the biodegradation behavior of poly(butylene succinate) (PBS) copolyesters containing dilinoleic acid (DLA) co-monomeric units and wood flour (WF) as a filler. PBS-DLA is a segmented thermoplastic elastomer (TPE), where the soft amorphous phase is formed by DLA ester segments, while [...] Read more.
This study investigates the biodegradation behavior of poly(butylene succinate) (PBS) copolyesters containing dilinoleic acid (DLA) co-monomeric units and wood flour (WF) as a filler. PBS-DLA is a segmented thermoplastic elastomer (TPE), where the soft amorphous phase is formed by DLA ester segments, while the hard phase consists of crystallizable PBS domains. Wood–plastic composites (WPCs) were prepared with WF at weight fractions of 10%, 20%, 30%, and 40% wt. and analyzed in terms of surface morphology, chemical structure, mechanical performance, and thermal stability before and after biodegradation in soil conditions. The results of microscopic analysis confirmed that the PBS-DLA copolymer and its composites undergo surface biodegradation as manifested by increased surface roughness and microcrack formation, particularly in composites with a higher WF content. ATR FT-IR spectroscopy indicated oxidation and hydrolysis, supporting the hypothesis of progressive surface erosion. Mechanical tests showed a decline in tensile strength and elongation at break, with the most pronounced changes in composites containing 20% WF. Thermal analysis (DSC, DMTA, and TGA) confirmed that the PBS-DLA copolymer retains its thermoplastic elastomeric behavior after a 3-month biodegradation experiment. The storage modulus (E′) remained stable, while only minor variations in melting and crystallization temperatures were observed. These findings reinforce the hypothesis of surface erosion rather than a bulk degradation mechanism. Given their biodegradability and retained thermoplastic behavior, WPC composites based on PBS-DLA copolyester could be promising for eco-friendly applications where controlled degradation is desirable, such as in packaging, agriculture, or biodegradable consumer goods. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

16 pages, 7739 KiB  
Article
Development of Short Jute Fiber-Reinforced Thermoplastic Pre-Preg Tapes
by Mengyuan Dun, Haitao Fu, Jianxiu Hao and Weihong Wang
Polymers 2025, 17(3), 388; https://doi.org/10.3390/polym17030388 - 31 Jan 2025
Cited by 2 | Viewed by 1288
Abstract
Jute fibers are renewable, light, and strong, allowing them to be considered as attractive materials in composite manufacturing. In the present work, a simple and effective method for preparing continuous pre-preg tapes from short jute fiber bundles (without twist) is developed and its [...] Read more.
Jute fibers are renewable, light, and strong, allowing them to be considered as attractive materials in composite manufacturing. In the present work, a simple and effective method for preparing continuous pre-preg tapes from short jute fiber bundles (without twist) is developed and its application in winding forming is evaluated. Linear low-density polyethylene film (LLDPE) with good flexibility and weather resistance was used as the thermoplastic matrix; jute fiber bundles were first spread parallel to each other on an LLDPE film and then rolled up to form a pre-roll. The pre-roll enclosing fiber bundles was hot-pressed in a designed mold to form a pre-preg tape, where the fiber bundles were more parallel to the tape than the fibers in twine. Although the untwisted structure exhibited a lower tensile strength for the fiber bundle, it could be processed into a continuous pre-preg with higher tensile strength than the jute twine-impregnated pre-preg. This is based on the good impregnation of the short fiber bundle and its unidirectional, uniform strengthening in the continuous pre-preg. The tensile strength and modulus of the fiber bundle-reinforced pre-preg increased by 16.70% and 257.14%, respectively, compared with jute twine-reinforced pre-preg (within the fiber proportion of 40.wt%). When applied to winding, the fiber bundle-reinforced pre-preg showed advantages of interlayer fusion, surface flatness, and ring stiffness. In contrast, the twisted continuous structure did not retain its advantage in pre-preg. The development of pre-preg tapes by discontinuous fibers might be a good way for utilizing natural fibers in the field of green engineering due to its diverse secondary processing. Full article
(This article belongs to the Special Issue Fiber Reinforced Polymers: Manufacture, Properties and Applications)
Show Figures

Figure 1

13 pages, 11740 KiB  
Article
Reinforcement of Polyethylene with Potassium Hexatitanate Whiskers: Importance of Polyvinylpyrrolidone Additive
by Qin Pan, Qinxiang Jia, Jin Xie, Xiaoyong Li, Yong Wu, Yang Sun, Suihong Chu, Bo Yang, Zhexi Chen and Kewei Peng
J. Compos. Sci. 2025, 9(1), 11; https://doi.org/10.3390/jcs9010011 - 2 Jan 2025
Viewed by 856
Abstract
Potassium hexatitanate whiskers are prepared and characterized in this study. The reinforcement of polyethylene with potassium hexatitanate whiskers is also investigated. The potassium hexatitanate whiskers are prepared through the calcination of TiO2 and K2CO3 at 1000 °C. It is [...] Read more.
Potassium hexatitanate whiskers are prepared and characterized in this study. The reinforcement of polyethylene with potassium hexatitanate whiskers is also investigated. The potassium hexatitanate whiskers are prepared through the calcination of TiO2 and K2CO3 at 1000 °C. It is determined that a polyvinylpyrrolidone additive is crucial for the formation of slender rod-like structures with smooth and flat surfaces and a high length-to-diameter ratio. For the surface modification of the whiskers, γ-aminopropyl triethoxysilane has been identified as the most effective coupling agent for enhancing mechanical properties. The whiskers have little change in shape after surface modification, and the majority of the whiskers still retain a considerable length-to-diameter ratio. The results of mechanical tests indicate that the tensile strength and the modulus of elasticity, as well as the shear strength and the shear elasticity, are enhanced to some extent. The tensile strength and the modulus of elasticity increase by 18.6% and 3.6%, respectively. The modified polyethylene composites show enhanced softness and elasticity. The elongation at the break for the prepared PE/PHT-2-1 composites increases significantly to 38.1%, significantly exceeding that of unfilled polyethylene (6.84%). Nevertheless, a suitable method is established for reinforcing thermoplastic polymers using inexpensive potassium hexatitanate whiskers. Full article
(This article belongs to the Section Polymer Composites)
Show Figures

Graphical abstract

21 pages, 9203 KiB  
Article
Nucleation, Development and Healing of Micro-Cracks in Shape Memory Polyurethane Subjected to Subsequent Tension Cycles
by Maria Staszczak, Leszek Urbański, Arkadiusz Gradys, Mariana Cristea and Elżbieta Alicja Pieczyska
Polymers 2024, 16(13), 1930; https://doi.org/10.3390/polym16131930 - 6 Jul 2024
Cited by 2 | Viewed by 1718 | Correction
Abstract
Thermoresponsive shape memory polymers (SMPs) have garnered increasing interest for their exceptional ability to retain a temporary shape and recover the original configuration through temperature changes, making them promising in various applications. The SMP shape change and recovery that happen due to a [...] Read more.
Thermoresponsive shape memory polymers (SMPs) have garnered increasing interest for their exceptional ability to retain a temporary shape and recover the original configuration through temperature changes, making them promising in various applications. The SMP shape change and recovery that happen due to a combination of mechanical loading and appropriate temperatures are related to its particular microstructure. The deformation process leads to the formation and growth of micro-cracks in the SMP structure, whereas the subsequent heating over its glass transition temperature Tg leads to the recovery of its original shape and properties. These processes also affect the SMP microstructure. In addition to the observed macroscopic shape recovery, the healing of micro-crazes and micro-cracks that have nucleated and developed during the loading occurs. Therefore, our study delves into the microscopic aspect, specifically addressing the healing of micro-cracks in the cyclic loading process. The proposed research concerns a thermoplastic polyurethane shape memory polymer (PU-SMP) MM4520 with a Tg of 45 °C. The objective of the study is to investigate the effect of the number of tensile loading-unloading cycles and thermal shape recovery on the evolution of the PU-SMP microstructure. To this end, comprehensive research starting from structural characterization of the initial state and at various stages of the PU-SMP mechanical loading was conducted. Dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), wide-angle X-ray scattering (WAXS) and scanning electron microscopy (SEM) were used. Moreover, the shape memory behavior in the thermomechanical loading program was investigated. The obtained average shape fixity value was 99%, while the shape recovery was 92%, which confirmed good shape memory properties of the PU-SMP. Our findings reveal that even during a single loading-unloading tension cycle, crazes and cracks nucleate on the surface of the PU-SMP specimen, whereas the subsequent temperature-induced shape recovery process carried out at the temperature above Tg enables the healing of micro-cracks. Interestingly, the surface of the specimen after three and five loading-unloading cycles did not exhibit crazes and cracks, although some traces of cracks were visible. The traces disappeared after exposing the material to heating at Tg + 20 °C (65 °C) for 30 min. The crack closure phenomenon during deformation, even without heating over Tg, occurred within three and five subsequent cycles of loading-unloading. Notably, in the case of eight loading-unloading cycles, cracks appeared on the surface of the PU-SMP and were healed only after thermal recovery at the particular temperature over Tg. Upon reaching a critical number of cycles, the proper amount of energy required for crack propagation was attained, resulting in wide-open cracks on the material’s surface. It is worth noting that WAXS analysis did not indicate strong signs of typical highly ordered structures in the PU-SMP specimens in their initial state and after the loading history; however, some orientation after the cyclic deformation was observed. Full article
Show Figures

Figure 1

13 pages, 726 KiB  
Review
A Comparative Analysis of Mechanical Properties of Polyetheretherketone (PEEK) vs. Standard Materials Used in Orthodontic Fixed Appliances: A Systematic Review
by Pyi Phyo Win, Oak Gar Moe, Daniel De-Shing Chen, Tzu-Yu Peng and Johnson Hsin-Chung Cheng
Polymers 2024, 16(9), 1271; https://doi.org/10.3390/polym16091271 - 2 May 2024
Cited by 2 | Viewed by 2376
Abstract
Polyetheretherketone (PEEK), an organic thermoplastic polymer, has gained interest in dentistry due to its excellent mechanical strength, flexibility, and biocompatibility. Furthermore, the ability to utilize CAD/CAM in the fabrication of PEEK enhances accuracy, reliability, and efficiency while also saving time. Hence, several orthodontic [...] Read more.
Polyetheretherketone (PEEK), an organic thermoplastic polymer, has gained interest in dentistry due to its excellent mechanical strength, flexibility, and biocompatibility. Furthermore, the ability to utilize CAD/CAM in the fabrication of PEEK enhances accuracy, reliability, and efficiency while also saving time. Hence, several orthodontic studies have explored the utilization of PEEK in various applications, such as archwires, brackets, fixed lingual retainers, palatal expansion devices, transpalatal arches, Tübingen palatal plates, different types of space maintainers, mini-implant insertion guides, and more. However, a complete systematic review of the available data comparing the performance of PEEK with traditional orthodontic materials has not yet been conducted. Therefore, this systematic review seeks to assess if PEEK material meets the required mechanical criteria to serve as an alternative to conventional orthodontic appliances. To ensure clarity and precision, this review will specifically concentrate on fixed appliances. This systemic review followed the PRISMA guidelines and utilized databases including PubMed/MEDLINE, Embase, Springer, Web of Science, and Wiley. Searches were restricted to English language articles from January 2013 to February 2024. Keywords such as “Polyetheretherketone” or “PEEK” and “Orthodontic” or “Orthodontic device” or “Orthodontic materials” were employed across all databases. Nine studies were incorporated, covering orthodontic archwires, brackets, and fixed lingual retainers. Based on the reviewed literature, PEEK demonstrates promising potential in orthodontic fixed appliances, offering advantages in force delivery, friction reduction, and aesthetic appeal. Further research is needed to fully explore its capabilities and optimize its application in clinical practice. Full article
Show Figures

Figure 1

21 pages, 6603 KiB  
Article
Optimization of Environment-Friendly and Sustainable Polylactic Acid (PLA)-Constructed Triply Periodic Minimal Surface (TPMS)-Based Gyroid Structures
by Syed Saarim Razi, Salman Pervaiz, Rahmat Agung Susantyoko and Mozah Alyammahi
Polymers 2024, 16(8), 1175; https://doi.org/10.3390/polym16081175 - 22 Apr 2024
Cited by 3 | Viewed by 3173
Abstract
The demand for robust yet lightweight materials has exponentially increased in several engineering applications. Additive manufacturing and 3D printing technology have the ability to meet this demand at a fraction of the cost compared with traditional manufacturing techniques. By using the fused deposition [...] Read more.
The demand for robust yet lightweight materials has exponentially increased in several engineering applications. Additive manufacturing and 3D printing technology have the ability to meet this demand at a fraction of the cost compared with traditional manufacturing techniques. By using the fused deposition modeling (FDM) or fused filament fabrication (FFF) technique, objects can be 3D-printed with complex designs and patterns using cost-effective, biodegradable, and sustainable thermoplastic polymer filaments such as polylactic acid (PLA). This study aims to provide results to guide users in selecting the optimal printing and testing parameters for additively manufactured/3D-printed components. This study was designed using the Taguchi method and grey relational analysis. Compressive test results on nine similarly patterned samples suggest that cuboid gyroid-structured samples perform the best under compression and retain more mechanical strength than the other tested triply periodic minimal surface (TPMS) structures. A printing speed of 40 mm/s, relative density of 60%, and cell size of 3.17 mm were the best choice of input parameters within the tested ranges to provide the optimal performance of a sample that experiences greater force or energy to compress until failure. The ninth experiment on the above-mentioned conditions improved the yield strength by 16.9%, the compression modulus by 34.8%, and energy absorption by 29.5% when compared with the second-best performance, which was obtained in the third experiment. Full article
(This article belongs to the Special Issue Mechanical and Physical Properties of 3D Printed Polymer Materials)
Show Figures

Figure 1

20 pages, 11339 KiB  
Article
Polymer Waste Recycling of Injection Molding Purges with Softening for Cutting with Fresnel Solar Collector—A Real Problem Linked to Sustainability and the Circular Economy
by Ma. Guadalupe Plaza, Maria Luisa Mendoza López, José de Jesús Pérez Bueno, Joaquín Pérez Meneses and Alejandra Xochitl Maldonado Pérez
Polymers 2024, 16(7), 1012; https://doi.org/10.3390/polym16071012 - 8 Apr 2024
Cited by 4 | Viewed by 2444
Abstract
A plastic injection waste known as “purge” cannot be reintegrated into the recycling chain due to its shape, size, and composition. Grinding these cannot be carried out with traditional mills due to significant variations in size and shape. This work proposes a process [...] Read more.
A plastic injection waste known as “purge” cannot be reintegrated into the recycling chain due to its shape, size, and composition. Grinding these cannot be carried out with traditional mills due to significant variations in size and shape. This work proposes a process and the design of a device that operates with solar energy to cut the purges without exceeding the degradation temperature. The size reduction allows reprocessing, revalorization, and handling. The purges are mixtures of processed polymers, so their characterization information is unavailable. Some characterizations were conducted before the design of the process and after the cut of the purges. Some of the most representative purges in a recycling company were evaluated. The flame test determines that all material mixtures retain thermoplasticity. The hardness (Shore D) presented changes in four of the purges being assessed, with results in a range of 59–71 before softening and 60–68 after softening. Young’s modulus was analyzed by the impulse excitation technique (IET), which was 2.38–3.95 GPa before softening and 1.7–4.28 after softening. The feasibility of cutting purges at their softening temperature was evaluated. This was achieved in all the purges evaluated at 250–280 °C. FTIR allowed for corroboration of no significant change in the purges after softening. The five types of purges evaluated were polypropylene-ABS, polycarbonate-ABS-polypropylene, yellow nylon 66, acetal, and black nylon 66 with fillers, and all were easily cut at their softening temperature, allowing their manipulation in subsequent process steps. Full article
(This article belongs to the Special Issue Polymer Waste Recycling and Management II)
Show Figures

Figure 1

25 pages, 16651 KiB  
Article
Analysis of the Uniformity of Mechanical Properties along the Length of Wire Rod Designed for Further Cold Plastic Working Processes for Selected Parameters of Thermoplastic Processing
by Konrad Błażej Laber
Materials 2024, 17(4), 905; https://doi.org/10.3390/ma17040905 - 15 Feb 2024
Cited by 1 | Viewed by 1775
Abstract
This study presents the results of research, the aim of which was to analyze the uniformity of the distribution of selected mechanical properties along the length of a 5.5 mm diameter wire rod of 20MnB4 steel for specific thermoplastic processing parameters. The scope [...] Read more.
This study presents the results of research, the aim of which was to analyze the uniformity of the distribution of selected mechanical properties along the length of a 5.5 mm diameter wire rod of 20MnB4 steel for specific thermoplastic processing parameters. The scope of the study included, inter alia, metallographic analyses, microhardness tests, thermovision investigations, and tests of the wire rod mechanical properties (yield strength, ultimate tensile strength, elongation, relative reduction in area at fracture), along with their statistical analysis, for three technological variants of the rolling process differing by rolling temperature in the final stage of the rolling process (Reducing Sizing Mill rolling block [RSM]) and by cooling rate using STELMOR® cooling process. The obtained results led to the conclusion that the analyzed rolling process is characterized by a certain disparity of the analyzed mechanical properties along the length of the wire rod, which, however, retains a certain stability. This disparateness is caused by a number of factors. One of them, which ultimately determines the properties of the finished wire rod, is the process of controlled cooling in the STELMOR® line. Despite technological advances concerning technical solutions (among them, increasing the roller track speed in particular sections), it is currently not possible to completely eliminate the temperature difference along the length of the wire rod caused by the contact of individual coils with each other. From this point of view, for the analyzed thermoplastic processing parameters, there is no significant impact by the production process parameters on the quality of the finished steel product. Whereas, while comparing the mechanical properties and microstructure of the wire rod produced in the different technological combinations, it was found that the wire rod rolled in an RSM block at 850 °C and cooled after the rolling process on a roller conveyor at 10 °C/s had the best set of mechanical properties and the smallest microstructure variations. The wire rod produced in this way had the required level of plasticity reserve, which enables further deformation of the given type of steel in compression tests with a relative plastic strain of 75%. The uniformity of mechanical properties along the length of wire rods designed for further cold plastic working processes is an important problem. This is an important issue, given that wire rods made from 20MnB4 steel are an input material for further cold plastic working processes, e.g., for the drawing processes or the production of nails. Full article
(This article belongs to the Special Issue Metalworking Processes: Theoretical and Experimental Study)
Show Figures

Figure 1

16 pages, 9517 KiB  
Article
Polyolefin Blends with Selectively Crosslinked Disperse Phase Based on Silane-Modified Polyethylene
by Markus Gahleitner, Tung Pham and Doris Machl
Polymers 2023, 15(24), 4692; https://doi.org/10.3390/polym15244692 - 13 Dec 2023
Cited by 1 | Viewed by 2130
Abstract
Polypropylene-based multiphase compositions with a disperse elastomer phase provide superior impact strength. Making this property indifferent to processing steps requires stabilization of the morphology of these materials. Various approaches have been tested over time, each of which shows limitations in terms of performance [...] Read more.
Polypropylene-based multiphase compositions with a disperse elastomer phase provide superior impact strength. Making this property indifferent to processing steps requires stabilization of the morphology of these materials. Various approaches have been tested over time, each of which shows limitations in terms of performance or applicability. Using polyethylene (PE) homo- and copolymers capable of silane-based crosslinking as modifiers was explored in the present study, which allows decoupling of the mixing and crosslinking processes. Commercial silane-copolymerized low-density PE (LD-PEX) from a high-pressure process and silane-grafted high-density PE (HD-PEX) were studied as impact modifiers for different types of PP copolymers, including non-modified reference PE grades, LDPE and HDPE. Blends based on ethylene–propylene random copolymers (PPR) and based on impact- (PPI) and random-impact (PPRI) copolymers show improvements of the stiffness–impact balance; however, to different degrees. While the absolute softest and most ductile compositions are achieved with the already soft PPRI copolymer base, the strongest relative effects are found for the PPR based blends. Modifiers with lower density are clearly superior in the toughening effect, with the LD-PEX including acrylate as second comonomer sticking out due to its glass transition around −40 °C. The impact strength improvement found in most compositions (except at very high content) results, however, not from the expected phase stabilization. For comparable systems, particle sizes are normally higher with crosslinking, probably because the process already starts during mixing. Thermoplastic processability could be retained in all cases, but the drop in melt flow rate limits the practical applicability of such systems. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Graphical abstract

16 pages, 15406 KiB  
Article
Experimental and Numerical Study of Healing Effect on Delamination Defect in Infusible Thermoplastic Composite Laminates
by Paulius Griskevicius, Kestutis Spakauskas, Swarup Mahato, Valdas Grigaliunas, Renaldas Raisutis, Darius Eidukynas, Dariusz M. Perkowski and Andrius Vilkauskas
Materials 2023, 16(20), 6764; https://doi.org/10.3390/ma16206764 - 19 Oct 2023
Cited by 3 | Viewed by 2028
Abstract
The integrity of delaminated composite structures can be restored by introducing a thermally-based healing effect on continuous fiber-reinforced thermoplastic composites (CFRTPC). The phenomenon of thermoplastics retaining their properties after melting and consolidation has been applied by heating the delaminated composite plates above their [...] Read more.
The integrity of delaminated composite structures can be restored by introducing a thermally-based healing effect on continuous fiber-reinforced thermoplastic composites (CFRTPC). The phenomenon of thermoplastics retaining their properties after melting and consolidation has been applied by heating the delaminated composite plates above their glass transition temperature under pressure. In the current investigation, the composite is comprised of Methyl methacrylate (MMA)-based infusible lamination resin combined with benzoyl peroxide initiator, which polymerizes into a Polymethyl methacrylate (PMMA) matrix. For the reinforcement, unidirectional 220 gr/m2 glass filament fabric was used. Delamination damage is artificially induced during the fabrication of laminate plates. The distributed delamination region before and after thermally activated healing was determined by using non-destructive testing with active thermography. An experimental approach is employed to characterize the thermal healing effect on mechanical properties. Experimentally determined technological parameters for thermal healing have been successfully applied to repair delamination defects on composite plates. Based on the compression-after-impact (CAI) test methodology, the intact, damaged, and healed composite laminates were loaded cyclically to evaluate the healing effect on stiffness and strength. During the CAI test, the 3D digital image correlation (DIC) technique was used to measure the displacement and deformation fields. Experimental results reveal the difference between the behavior of healed and damaged specimens. Additionally, the numerical models of intact, damaged, and healed composite laminates were developed using the finite element code LS-Dyna. Numerical models with calibrated material properties and tie-break contact constants provide good correlation with experimental results and allow for the prediction of the mechanical behavior of intact, damaged, and healed laminated plates. The comparison analysis based on CAI test results and modal characteristics obtained by the 3D Laser Doppler Vibrometer (Polytec GmbH, Karlsbad, Germany) proved that thermal healing partially restores the mechanical properties of damaged laminate plates. In contrast, active thermography does not necessarily indicate a healing effect. Full article
Show Figures

Figure 1

Back to TopTop