Study of Deformation and Strength Characteristics of Highly Filled Sand–Polymer Composites Based on Regenerated Thermoplastics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Materials
2.2. Properties of Materials
2.3. Mechanical Testing
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HPPE | High-pressure polyethylene |
PP | Polypropylene |
SPC | Sand–polymer composite |
GOST | Interstate standard |
ISO | International Organization for Standardization |
References
- Laeth, H.; Praveen Sreerench, R.; Shilpa, P.; Alok, J.; Anandhi, R.J.; Praveena, K. The Development of Composites Materials: From Conventional to Innovative Uses. E3S Web Conf. 2024, 529, 01050. [Google Scholar]
- Huang, X.; Su, S.; Xu, Z.; Miao, Q.; Li, W.; Wang, L. Advanced Composite Materials for Structure Strengthening and Resilience Improvement. Buildings 2023, 13, 2406. [Google Scholar] [CrossRef]
- Lebedev, M.P.; Startsev, O.V.; Kychkin, A.K. The effects of aggressive environments on the mechanical properties of basalt plastics. Hellion 2020, 6, e03481. [Google Scholar] [CrossRef]
- Yi, H.; Oh, K.; Kou, R.; Qiao, Y. Sand-filler structural material with low content of polyethylene binder. Sustain. Mater. Technol. 2020, 25, e00194. [Google Scholar] [CrossRef]
- Terekhov, I.V.; Chistyakov, E.M. Binders Used for the Manufacturing of Composite Materials by Liquid Composite Molding. Polymers 2022, 14, 87. [Google Scholar] [CrossRef]
- Siraj, S.; Al-Marzouqi, A.H.; Iqbal, M.Z.; Ahmed, W. Impact of Micro Silica Filler Particle Size on Mechanical Properties of Polmeric Based Composite Material. Polymers 2022, 14, 4830. [Google Scholar] [CrossRef] [PubMed]
- Vinayagamoorthy, R. Effect of particle sizes on the mechanical behavior of limestone-reinforced hybrid plastics. Polym. Polym. Compos. 2020, 28, 410–420. [Google Scholar] [CrossRef]
- Poyraz, B.; Eren, S.; Subaşı, S. Filler Type and Particle Distribution Effect on Some Properties of Polymer Composites. Celal Bayar Univ. J. Sci. 2021, 17, 79–89. [Google Scholar] [CrossRef]
- Rao, P.V.C. Effects of matrix modification on mechanical and durability characteristics of polymer composites through variations in micro fillers, macro fillers and fibers. Constr. Build. Mater. 2020, 235, 117505. [Google Scholar] [CrossRef]
- Jesionowski, T.; Bula, K.; Janiszewski, J.; Jurga, J. The influence of filler modification on its aggregation and dispersion behaviour in silica/PBT composite January. Instrum. Sci. Technol. 2003, 10, 225–242. [Google Scholar] [CrossRef]
- Slieptsova, I.; Savchenko, B.; Sova, N.; Slieptsov, A. Polymer sand composites based on the mixed and heavily contaminated thermoplastic waste. IOP Conf. Ser. Mater. Sci. Eng. 2016, 111, 012027. [Google Scholar] [CrossRef]
- Sharshin, V.; Sukhorukov, D.; Sukhorukova, E. Polymer composite material for the manufacture of molds in the production of evaporative patterns. IOP Conf. Ser. Mater. Sci. Eng. 2020, 896, 012106. [Google Scholar] [CrossRef]
- Retnam, B.S.J.; Benin, M.A.; Dhas, J.E.R.; Samuel, G.D.; Prasad, A.; Veeranjaneyulu, K. Comparative analysis of tensile properties on thermoplastic & thermosetting polymer composites. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Uygunoglua, T.; Gunes, I.; Brostow, W. Physical and Mechanical Properties of Polymer Composites with High Content of Wastes Including Boron. Mater. Res. 2015, 18, 1188–1196. [Google Scholar] [CrossRef]
- Xie, F. Sustainable polymer composites: Functionality and applications. Funct. Compos. Mater 2021, 2, 15. [Google Scholar] [CrossRef]
- Shmoilov, E.; Fedotov, M.; Sharutin, I.; Ilyukhin, R.; Stepanov, S.; Panina, N.; Gurenchuk, L.; Kapyrin, P.; Kabantsev, O.; Kornev, O. Polymer composites for external reinforcement of building structures. Int. J. Comput. Civ. Struct. Eng. 2024, 20, 21–34. [Google Scholar] [CrossRef]
- Yusuf, M.; Salami, O.; Amusat, W.O. Advances in carbon-fiber reinforced polymers and composites for sustainable concrete structures. World J. Adv. Res. Rev. 2024, 23, 2308–2330. [Google Scholar] [CrossRef]
- Aguiar, J.B.; Ozkul, M.H.; Cunha, S. Report from 13th ICPIC and 7th ASPIC: New Trends on Concrete-Polymer Composites. Adv. Mater. Res. 2013, 687, 45–56. [Google Scholar] [CrossRef]
- Saikaew, C.; Weingwiset, S. Optimization of molding sand composition for quality improvement of iron castings. Appl. Clay Sci. 2012, 67–68, 26–31. [Google Scholar] [CrossRef]
- Geier, N.; Pereszlai, C. Analysis of Characteristics of Surface Roughness of Machined CFRP Composites. Period. Polytech. Mech. Eng. 2019, 64, 67–80. [Google Scholar] [CrossRef]
- Onyango, W.A.; Czel, G. Strength evaluation and melt rheology of highly mineral filled polymer composites. Conf. MultiSci. XXXVII. Microcad Int. Multidiscip. Sci. Conf. 2024, 14, 149–166. [Google Scholar] [CrossRef]
- Zhang, T.; Ping, S.; Mei, Z.; Cheng, Z. Microstructure Deformation and Fracture Mechanism of Highly Filled Polymer Composites under Large Tensile Deformation. J. Phys. Conf. Ser. 2013, 419, 012014. [Google Scholar] [CrossRef]
- Mazitova, A.K.; Zaripov, I.I.; Aminova, G.K.; Ovod, M.V.; Suntsova, N.L. Fillers for polymer composite materials. Nanotechnol. Constr. A Sci. Internet-J. 2022, 14, 294–299. [Google Scholar] [CrossRef]
- Mukherjee, G.S.; Jain, A.; Banerjee, M. Engineering Matrix Materials for Composites: Their Variety, Scope and Applications. Fine Chem. Eng. 2023, 4, 13. [Google Scholar] [CrossRef]
- Semakina, O.K.; Phomenko, A.N.; Leonteva, A.A.; Rymanova, I.E. Research of surface properties of fillers for polymers. Procedia Chem. 2015, 15, 79–83. [Google Scholar] [CrossRef]
- Stepashkin, A.A.; Chukov, D.I.; Olifirov, L.K.; Salimon, A.I.; Tcherdyntsev, V.V. Quasicrystalline Powders as the Fillers for Polymer-Based Composites: Production, Introduction to Polymer Matrix Properties. In Proceedings of the Scientific-Practical Conference “Research and Development—2016”; Springer: Berlin/Heidelberg, Germany, 2016; pp. 429–437. [Google Scholar]
- Pérez, E.; Berna, C.; Piacquadio, M. Multifractal analysis of tensile toughness and filler dispersion for polypropylene–CaCO3 composites. Appl. Surf. Sci. 2012, 258, 8940–8945. [Google Scholar] [CrossRef]
- Onoprienko, N.N.; Rahimbaev, S.M. Influence of composition of functional additives and deformation modes on flow behavior of polymer composite materials. IOP Conf. Ser. Mater. Sci. Eng. 2018, 327, 32043. [Google Scholar] [CrossRef]
- Akulova, M.V.; Koksharov, S.A.; Meteleva, O.V.; Fedosov, S.V. On Some Features of Nanostructural Modification of Polymer-Inorganic Composite Materials for Light Industry and for Building Industry. In Proceedings of the Scientific-Practical Conference “Research and Development—2016”; Springer: Berlin/Heidelberg, Germany, 2017; pp. 491–500. [Google Scholar]
- Wang, Y.; Desroches, G.J.; Macfarlane, R.J. Ordered polymer composite materials: Challenges and opportunities. Nanoscale 2021, 13, 426–443. [Google Scholar] [CrossRef]
- Sorokin, A.E.; Sagomonova, V.A.; Petrova, A.P.; Solov’yanchik, L.V. Thermoplastic-Based Binders for Polymer-Composite Materials (Literature Review). Polym. Sci. Ser. D Glues Seal. Mater. 2022, 15, 359–365. [Google Scholar] [CrossRef]
- Zhukova, I.; Flik, E.; Shubina, E.; Mishurov, V.; Kashparov, I. Synergism of the action of some stabilisers against the destruction of polymer materials. E3S Web Conf. 2021, 273, 04014. [Google Scholar] [CrossRef]
- Bai, Y.; Liu, J.; Song, Z.; Chen, Z.; Jiang, C.; Lan, X.; Shi, X.; Bu, F.; Kanungo, D.P. Unconfined Compressive Properties of Composite Sand Stabilized with Organic Polymers and Natural Fibers. Polymers 2019, 11, 1576. [Google Scholar] [CrossRef] [PubMed]
- Badache, A.; Benosman, A.S.; Senhadji, Y.; Mouli, M. Thermo-physical and mechanical characteristics of sand-based lightweight composite mortars with recycled high-density polyethylene (HDPE). Constr. Build. Mater. 2018, 163, 40–52. [Google Scholar] [CrossRef]
- Shalygina, T.A.; Rudenko, M.S.; Nemtsev, I.V.; Parfenov, V.A.; Voronina, S.Y.; Simonov-Emelyanov, I.D.; Borisova, P.E. Influence of the Filler Particles’ Surface Morphology on the Polyurethane Matrix’s Structure Formation in the Composite. Polymers 2021, 13, 3864. [Google Scholar] [CrossRef]
- Riazati, A.; Ghafoori, M. Investigating the effect of the amount of solid particles on the rheological behavior of highly filled composites. J. Chem. Lett. 2024, 5, 144–151. [Google Scholar] [CrossRef]
- Alias, A.H.; Norizan, M.N.; Sabaruddin, F.A.; Asyraf, M.R.M.; Norrrahim, M.N.F.; Ilyas, A.R.; Kuzmin, A.M.; Rayung, M.; Shazleen, S.S.; Nazrin, A. Hybridization of MMT/Lignocellulosic Fiber Reinforced Polymer Nanocomposites for Structural Applications: A Review. Coatings 2021, 11, 1355. [Google Scholar] [CrossRef]
- Auchynnikau, Y.; Avdeychik, S.; Antonov, A.; Skaskevich, A.A.; Kravchenko, V. Mechanisms for the formation of anti-based coatings fluorinated polymeroligomeric compositions. In Proceedings of the Mechanika 2015: 20th International Scientific Conference, Kaunas, Lithuania, 23–24 April 2015. [Google Scholar]
- Šupová, M.; Martynková, G.S.; Barabaszová, K. Effect of Nanofillers Dispersion in Polymer Matrices: A Review. Sci. Adv. Mater. 2011, 3, 1–25. [Google Scholar] [CrossRef]
- Jagadeesh, P.; Madhu, P.; Gowda, Y.T.G.; Sanjay, M.R.; Siengchin, S. A comprehensive review on the effect of synthetic filler materials on fiber-reinforced hybrid polymer composites. J. Text. Inst. 2021, 113, 1231–1239. [Google Scholar] [CrossRef]
Sample | Component Content, wt% | |||
---|---|---|---|---|
High-Pressure Polyethylene | Polypropylene | Stearic Acid | Quartz Sand (0.1 mm) | |
SPC 60 | 9 | 28 | 3 | 60 |
SPC 65 | 8 | 23.7 | 3.3 | 65 |
SPC 70 | 6.6 | 19.9 | 3.5 | 70 |
SPC 75 | 5.3 | 15.9 | 3.8 | 75 |
SPC 80 | 4 | 12 | 4.0 | 80 |
Material | ρ, g/cm3 |
---|---|
SPC (60 wt% quartz) | 1.43 |
SPC (65 wt% quartz) | 1.49 |
SPC (70 wt% quartz) | 1.51 |
SPC (75 wt% quartz) | 1.52 |
SPC (80 wt% quartz) | 1.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yurchenko, V.; Haiduk, V.; Skaskevich, A.; Zharkevich, O.; Zhetessova, G.; Reshetnikova, O.; Smagulov, A.; Mussayev, M. Study of Deformation and Strength Characteristics of Highly Filled Sand–Polymer Composites Based on Regenerated Thermoplastics. J. Compos. Sci. 2025, 9, 206. https://doi.org/10.3390/jcs9050206
Yurchenko V, Haiduk V, Skaskevich A, Zharkevich O, Zhetessova G, Reshetnikova O, Smagulov A, Mussayev M. Study of Deformation and Strength Characteristics of Highly Filled Sand–Polymer Composites Based on Regenerated Thermoplastics. Journal of Composites Science. 2025; 9(5):206. https://doi.org/10.3390/jcs9050206
Chicago/Turabian StyleYurchenko, Vassiliy, Vitali Haiduk, Alexandr Skaskevich, Olga Zharkevich, Gulnara Zhetessova, Olga Reshetnikova, Altay Smagulov, and Medgat Mussayev. 2025. "Study of Deformation and Strength Characteristics of Highly Filled Sand–Polymer Composites Based on Regenerated Thermoplastics" Journal of Composites Science 9, no. 5: 206. https://doi.org/10.3390/jcs9050206
APA StyleYurchenko, V., Haiduk, V., Skaskevich, A., Zharkevich, O., Zhetessova, G., Reshetnikova, O., Smagulov, A., & Mussayev, M. (2025). Study of Deformation and Strength Characteristics of Highly Filled Sand–Polymer Composites Based on Regenerated Thermoplastics. Journal of Composites Science, 9(5), 206. https://doi.org/10.3390/jcs9050206