Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,685)

Search Parameters:
Keywords = thermodynamics–dynamics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 1425 KB  
Article
Thermodynamics of Governance: Exergy Efficiency, Political Entropy, and Systemic Sustainability in Policy System
by Nurdan Güven and Zafer Utlu
Sustainability 2026, 18(2), 937; https://doi.org/10.3390/su18020937 - 16 Jan 2026
Abstract
This study investigates the sustainability, resilience, and institutional performance of urban governance systems by operationalizing key thermodynamic principles energy, exergy, entropy, equilibrium, open systems, and irreversibility within a political and behavioral systems framework. Urban political systems are conceptualized as open, non-equilibrium systems, characterized [...] Read more.
This study investigates the sustainability, resilience, and institutional performance of urban governance systems by operationalizing key thermodynamic principles energy, exergy, entropy, equilibrium, open systems, and irreversibility within a political and behavioral systems framework. Urban political systems are conceptualized as open, non-equilibrium systems, characterized by continuous flows of resources, information, and institutional feedback across metropolitan governance structures. Within this model, energy represents systemic inputs to urban governance, exergy denotes usable governing capacity at the city and metropolitan scale, and entropy reflects levels of institutional disorder, inefficiency, and systemic degradation affecting urban sustainability. The study first formulates a conceptual analytical model defining urban political entropy and systemic exergy as measurable variables associated with institutional stability, crisis-management capability, adaptability, and reform potential in urban and metropolitan governance. It then conducts a comparative empirical analysis of Germany, Türkiye, China, and South Africa using normalized indicators derived from international datasets for 2023, with particular attention to their implications for urban governance capacity and city-level institutional performance. These indicators are employed to construct proxy measures for the Exergy Efficiency Ratio, Societal and Institutional Entropy, and overall urban governance capacity. The comparative results reveal that open and decentralized governance systems tend to maintain higher exergy efficiency and lower entropy levels at the urban scale, whereas highly centralized systems, although effective in resource mobilization, tend to accumulate greater systemic entropy over time. Transitional governance systems exhibit hybrid and fluctuating thermodynamic characteristics in their urban institutional structures. The findings empirically support the Thermodynamic Model of Political Systems and demonstrate its utility as a predictive and diagnostic framework for evaluating urban institutional efficiency, resilience, and sustainability. By quantifying political energy flows and entropy dynamics within urban governance systems, this study contributes to the development of integrated systems thermodynamics of cities and provides a robust analytical foundation for sustainable urban governance, institutional reform, and long-term strategic policy design Full article
(This article belongs to the Section Sustainable Management)
Show Figures

Figure 1

16 pages, 3760 KB  
Article
A DFT Study on Sc-Catalyzed Diastereoselective Cyclization of 2-Picoline with 1,5-Hexadiene: Mechanism and Origins of Regio- and Stereoselectivity
by Guangli Zhou, Shuangxin Zhai, Xia Leng, Yunzhi Li, Qiying Xia and Yi Luo
Inorganics 2026, 14(1), 28; https://doi.org/10.3390/inorganics14010028 - 16 Jan 2026
Abstract
Density functional theory (DFT) calculations elucidate the mechanism of diastereoselective cyclization of 2-picoline with 1,5-hexadiene catalyzed by a cationic half-sandwich scandium complex. The catalytic cycle proceeds through four key stages: formation of active species, initial alkene insertion, cis-selective cyclization, and protonation. Central [...] Read more.
Density functional theory (DFT) calculations elucidate the mechanism of diastereoselective cyclization of 2-picoline with 1,5-hexadiene catalyzed by a cationic half-sandwich scandium complex. The catalytic cycle proceeds through four key stages: formation of active species, initial alkene insertion, cis-selective cyclization, and protonation. Central to the mechanism is the dual role of 2-picoline, which initially coordinates as a supporting ligand to facilitate C–H activation and regioselective 1,2-insertion but must dissociate to enable stereocontrol. The mono(2-picoline)-coordinated complex C3 is identified as the thermodynamically favored active species. C–H activation reactivity follows the trend: ortho-C(sp2)–H (2-picoline-free) > ortho-C(sp2)–H (2-picoline-coordinated) > benzylic C(sp3)–H (2-picoline-free) > benzylic C(sp3)–H (2-picoline-coordinated), a preference governed by a wider Cα–Sc–Cα′ angle and shorter Sc···X (X = Cα, Cα′, H) distances that enhance scandium–substrate interaction. Subsequent 1,5-hexadiene insertion proceeds with high 1,2-regioselectivity through a picoline-assisted pathway. The stereoselectivity-determining step reveals a mechanistic dichotomy: while picoline coordination is essential for initial activation, its dissociation is required for intramolecular cyclization. This ligand displacement avoids prohibitive steric repulsion in the transition state, directing the reaction exclusively toward the cis-cyclized product. The cycle concludes with a sterically accessible mono-coordinated protonation. This work establishes a “ligand-enabled then ligand-displaced” mechanism, highlighting dynamic substrate coordination as a critical design principle for achieving high selectivity in rare-earth-catalyzed C–H functionalization. Full article
(This article belongs to the Section Coordination Chemistry)
Show Figures

Graphical abstract

18 pages, 1617 KB  
Article
Adsorption of Methylene Blue on PVDF Membrane and PVDF/TiO2 Hybrid Membrane: Batch and Cross-Flow Filtration Studies
by Fengmei Shi, Boming Fan, Shuqi Ma, Hao Lv, Chao Lin, Jin Ma, Wei Jiang and Yuxin Ma
Polymers 2026, 18(2), 233; https://doi.org/10.3390/polym18020233 - 16 Jan 2026
Abstract
The adsorption of methylene blue (MB) on poly(vinylidene fluoride) (PVDF) and PVDF/titanium dioxide(TiO2) membranes with 1.5 wt% dosage was examined through batch adsorption and dynamic cross-flow filtration experiments. The effects of pH, temperature, and initial MB concentration on adsorption performance were [...] Read more.
The adsorption of methylene blue (MB) on poly(vinylidene fluoride) (PVDF) and PVDF/titanium dioxide(TiO2) membranes with 1.5 wt% dosage was examined through batch adsorption and dynamic cross-flow filtration experiments. The effects of pH, temperature, and initial MB concentration on adsorption performance were evaluated via batch experiments. The Thomas model was applied to analyze the membrane filtration process, while kinetic, isothermal, and thermodynamic models were integrated to elucidate the adsorption mechanisms. Results demonstrated that low temperature and high initial MB concentration significantly improved MB adsorption on both membranes. Under neutral pH conditions (pH = 7), the maximum adsorption capacities of PVDF and PVDF/TiO2 membranes reached 1.518 ± 0.025 mg/g and 0.189 ± 0.008 mg/g, respectively. The adsorption processes on both membranes conformed to the pseudo-second-order kinetic model, with optimal fitting to the Langmuir isotherm model. Thermodynamic analysis revealed physical adsorption mechanisms, as evidenced by adsorption free energy (E) calculated via the Dubinin–Radushrevich model Notably, PVDF membrane exhibited a more pronounced mass transfer zone height (hZ = 2.3 ± 0.1 cm) and achieved higher adsorption capacity (2.1 ± 0.09 mg/g) than PVDF/TiO2 membranes (0.25 ± 0.01 mg/g). The TiO2 incorporation reduced hybrid membrane adsorption capacity and significantly mitigated membrane fouling caused by adsorption, with PVDF/TiO2 membranes showing a 32 ± 2.5% lower flux decline rate than PVDF membranes with less MB into the pores. This study provides fundamental data supporting the combined application of “adsorption–subsequent oxidation” using PVDF-based membranes in dye wastewater treatment. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

27 pages, 5553 KB  
Article
Retrieving Boundary Layer Height Using Doppler Wind Lidar and Microwave Radiometer in Beijing Under Varying Weather Conditions
by Chen Liu, Zhifeng Shu, Lu Yang, Hui Wang, Chang Cao, Yuxing Hou and Shenghuan Wen
Remote Sens. 2026, 18(2), 296; https://doi.org/10.3390/rs18020296 - 16 Jan 2026
Abstract
Understanding the evolution of the atmospheric boundary layer height (BLH) is essential for characterizing air–surface exchange and air pollution processes. This study investigates the consistency and applicability of three BLH retrieval methods based on multi-source remote sensing observations at Beijing Southern Suburb station [...] Read more.
Understanding the evolution of the atmospheric boundary layer height (BLH) is essential for characterizing air–surface exchange and air pollution processes. This study investigates the consistency and applicability of three BLH retrieval methods based on multi-source remote sensing observations at Beijing Southern Suburb station during autumn–winter 2023. Using Doppler wind lidar (DWL) and microwave radiometer (MWR) data, the Haar wavelet covariance transform (HWCT), vertical velocity variance (Var), and parcel methods were applied, and 10 min averages were used to suppress short-term fluctuations. Statistical analysis shows good overall consistency among the methods, with the strongest correlation between HWCT and Var method (R = 0.62) and average systematic positive bias of 0.4–0.6 km for the parcel method. Case studies under clear-sky, cloudy, and hazy conditions reveal distinct responses: HWCT effectively captures aerosol gradients but fails under cloud contamination, the Var method reflects turbulent dynamics and requires adaptive thresholds, and the Parcel method robustly describes thermodynamic evolution. The results demonstrate that the three methods are complementary in capturing the material, dynamic, and thermodynamic characteristics of the boundary layer, providing a comprehensive framework for evaluating BLH variability and improving multi-sensor retrievals under diverse meteorological conditions. Full article
Show Figures

Graphical abstract

23 pages, 3888 KB  
Article
From MAX to MXene: Unveiling Robust Magnetism and Half-Metallicity in Cr2ZnC and Its Half-Metallic 2D Cr2C Through Ab-Initio Investigation
by Ahmed Lokbaichi, Ahmed Gueddouh, Djelloul Gueribiz, Mourad Rougab, Brahim Lagoun, Fatima Elhamra, Ahmed Mahammedi and Brahim Marfoua
Nanomaterials 2026, 16(2), 110; https://doi.org/10.3390/nano16020110 - 14 Jan 2026
Abstract
A first-principles investigation was conducted to characterize the novel Cr2ZnC MAX phase and its exfoliated MXene nanosheet, Cr2C. The study critically examines the effect of electron correlations on the bulk phase, revealing that the PBE+U framework, unlike standard PBE, [...] Read more.
A first-principles investigation was conducted to characterize the novel Cr2ZnC MAX phase and its exfoliated MXene nanosheet, Cr2C. The study critically examines the effect of electron correlations on the bulk phase, revealing that the PBE+U framework, unlike standard PBE, yields a dramatically enhanced magnetic moment of 12.80 μB (vs. 1.88 μB), confirming the necessity of this approach for Cr-based carbides. The phase stability is confirmed through rigorous analysis of its thermodynamic, dynamic, and mechanical properties. For the derived 2D Cr2C, results confirm a robust half-metallic state with a total magnetic moment of 8.00 μB, characterized by a metallic spin-majority channel and a semiconducting spin-minority channel with a 2.41 eV direct gap, leading to near-ideal spin polarization. These combined features establish Cr2C as a highly promising candidate for next-generation spintronic applications and 2D magnetic devices requiring room-temperature stability. Full article
(This article belongs to the Special Issue Advances in Nanoscale Spintronics)
Show Figures

Graphical abstract

12 pages, 264 KB  
Article
Timelike Thin-Shell Evolution in Gravitational Collapse: Classical Dynamics and Thermodynamic Interpretation
by Axel G. Schubert
Entropy 2026, 28(1), 96; https://doi.org/10.3390/e28010096 - 13 Jan 2026
Viewed by 45
Abstract
This work explores late-time gravitational collapse using timelike thin-shell methods in classical general relativity. A junction surface separates a regular de Sitter interior from a Schwarzschild or Schwarzschild–de Sitter exterior in a post-transient regime with fixed exterior mass M (ADM for [...] Read more.
This work explores late-time gravitational collapse using timelike thin-shell methods in classical general relativity. A junction surface separates a regular de Sitter interior from a Schwarzschild or Schwarzschild–de Sitter exterior in a post-transient regime with fixed exterior mass M (ADM for Λ+=0), modelling a vacuum–energy core surrounded by an asymptotically classical spacetime. The configuration admits a natural thermodynamic interpretation based on a geometric area functional SshellR2 and Tolman redshift, both derived from classical junction conditions and used as an entropy-like coarse-grained quantity rather than a fundamental statistical entropy. Key results include (i) identification of a deceleration mechanism at the balance radius Rthr=(3M/Λ)1/3 for linear surface equations of state p=wσ; (ii) classification of the allowable radial domain V(R)0 for outward evolution; (iii) bounded curvature invariants throughout the shell-supported spacetime region; and (iv) a mass-scaled frequency bound fcRSξ/(33π) for persistent near-shell spectral modes. All predictions follow from standard Israel junction techniques and provide concrete observational tests. The framework offers an analytically tractable example of regular thin-shell collapse dynamics within classical general relativity, with implications for alternative compact object scenarios. Full article
(This article belongs to the Special Issue Coarse and Fine-Grained Aspects of Gravitational Entropy)
25 pages, 44747 KB  
Article
Small-Sample Thermal Fault Diagnosis Using Knowledge Graph and Generative Adversarial Networks
by Ke Chen, Gang Xu, Yunjie Zhang and Yi Wang
Electronics 2026, 15(2), 355; https://doi.org/10.3390/electronics15020355 - 13 Jan 2026
Viewed by 66
Abstract
The scarcity of fault samples significantly impedes the generalization of data-driven diagnosis models for local thermal imbalances in integrated energy systems. To overcome this limitation, this paper proposes a novel knowledge graph-guided conditional generative adversarial network (KG-GAN) framework. The approach begins by constructing [...] Read more.
The scarcity of fault samples significantly impedes the generalization of data-driven diagnosis models for local thermal imbalances in integrated energy systems. To overcome this limitation, this paper proposes a novel knowledge graph-guided conditional generative adversarial network (KG-GAN) framework. The approach begins by constructing a dynamically updatable fault knowledge graph for district heating systems, which explicitly encapsulates pipeline topology, thermodynamic principles, and fault propagation mechanisms. The derived knowledge embeddings are then fused with physics-based constraints into the adversarial learning process, effectively alleviating the issue of physically implausible sample generation that plagues conventional data-centric models. Experimental validation on a district heating platform, involving four common fault types, demonstrates the superiority of our method. With only 100 samples per fault category, a diagnostic model trained on KG-GAN-generated data achieves a classification accuracy of 91.7%, outperforming a GAN-based baseline by 8.3%. Furthermore, t-Distributed Stochastic Neighbor Embedding (t-SNE) visualization reveals a 92.3% feature distribution consistency between generated and real samples, confirming the method’s capability to enhance diagnostic robustness and physical interpretability under small-sample conditions. Full article
Show Figures

Figure 1

18 pages, 999 KB  
Article
Direct Liquid Phase Hydroxylation of Benzene to Phenol over Iron-Containing Mordenite Catalysts: Combined DLS–EPR Study and Thermodynamic–Stability Analysis
by E. H. Ismailov, L. Kh. Qasimova, S. N. Osmanova, A. I. Rustamova, L. V. Huseynova, S. A. Mammadkhanova and Sh. F. Tagiyeva
Catalysts 2026, 16(1), 89; https://doi.org/10.3390/catal16010089 - 13 Jan 2026
Viewed by 137
Abstract
Direct hydroxylation of benzene to phenol using hydrogen peroxide is a cornerstone of sustainable green chemistry. This paper presents the results of a stability study of an iron-containing mordenite catalyst in the liquid-phase hydroxylation of benzene to phenol with a 30% aqueous hydrogen [...] Read more.
Direct hydroxylation of benzene to phenol using hydrogen peroxide is a cornerstone of sustainable green chemistry. This paper presents the results of a stability study of an iron-containing mordenite catalyst in the liquid-phase hydroxylation of benzene to phenol with a 30% aqueous hydrogen peroxide solution. The study utilizes a combination of catalytic activity measurements, dynamic light scattering (DLS), and electron paramagnetic resonance (EPR) spectra. The system is initially shown to exhibit high phenol selectivity; however, over time, DLS measurements indicate aggregation of the catalyst particles with an increase in the average particle diameter from 1.8 to 2.6 μm and the formation of byproducts–dihydroxybenzenes. Iron is present predominantly as magnetite nanoparticles (Fe3O4) ~10 nm in diameter, stabilized on the outer surface of mordenite, with minor leaching (<10%) due to the formation of iron ion complexes with ascorbic acid as a result of the latter’s interaction with magnetite particles. Using a thermodynamic approach based on the Ulich formalism (first and second approximations), it is shown that the reaction of benzene hydroxylation H2O2 in the liquid phase is thermodynamically quite favorable (ΔG° = −(289–292) kJ·mol−1 in the range of 293–343 K, K = 1044–1052). It is shown that ascorbic acid acts as a redox mediator (reducing Fe3+ to Fe2+) and a regulator of the catalytic medium activity. The stability of the catalytic system is examined in terms of the Lyapunov criterion: it is shown that the total Gibbs free energy (including the surface contribution) can be considered as a Lyapunov functional describing the evolution of the system toward a steady state. Ultrasonic (US) treatment of the catalytic system is shown to redisperse aggregated particles and restore its activity. It is established that the catalytic activity is due to nanosized Fe3O4 particles, which react with H2O2 to form hydroxyl radicals responsible for the selective hydroxylation of benzene to phenol. Full article
Show Figures

Graphical abstract

17 pages, 17543 KB  
Article
Characteristics and Synoptic-Scale Background of Low-Level Wind Shear Induced by Downward Momentum Transport: A Case Study at Xining Airport, China
by Yuqi Wang, Dongbei Xu, Ziyi Xiao, Xuan Huang, Wenjie Zhou and Hongyu Liao
Atmosphere 2026, 17(1), 75; https://doi.org/10.3390/atmos17010075 - 13 Jan 2026
Viewed by 134
Abstract
This study investigates the characteristics and causes of a low-level wind shear (LLWS) event induced by downward momentum transport at Xining Airport, China on 5 April 2023. By utilizing Doppler Wind Lidar (DWL), Automated Weather Observing System (AWOS), and ERA5 reanalysis data, the [...] Read more.
This study investigates the characteristics and causes of a low-level wind shear (LLWS) event induced by downward momentum transport at Xining Airport, China on 5 April 2023. By utilizing Doppler Wind Lidar (DWL), Automated Weather Observing System (AWOS), and ERA5 reanalysis data, the detailed structure and synoptic-scale mechanisms of the event were analyzed. The LLWS manifested as a non-convective, meso-γ scale (2–20 km) directional wind shear, characterized by horizontal variations in wind direction. The system moved from northwest to southeast and persisted for approximately three hours. The shear zone was characterized by westerly flow to the west and easterly flow to the east, with their convergence triggering upward motion. The Range Height Indicator (RHI) and Doppler Beam Swinging (DBS) modes of the DWL clearly revealed the features of westerly downward momentum transport. Diagnostic analysis of the synoptic-scale environment reveals that a developing 300-hPa trough steered the merging of the subtropical and polar front jets. This interaction provided a robust source of momentum. The secondary circulation excited in the jet entrance region promoted active vertical motion, facilitating the exchange of momentum and energy between levels. Simultaneously, the development of the upper-level trough led to the intrusion of high potential vorticity (PV) air from the upper levels (100–300 hPa) into the middle troposphere (approximately 500 hPa), which effectively transported high-momentum air downward and dynamically induced convergence in the low-level wind field. Furthermore, the establishment of a deep dry-adiabatic mixed layer in the afternoon provided a favorable thermodynamic environment for momentum transport. These factors collectively led to the occurrence of the LLWS. This study will further deepen the understanding of the formation mechanism of momentum-driven LLWS at plateau airports, and provide a scientific basis for improving the forecasting and warning of such hazardous aviation weather events. Full article
(This article belongs to the Special Issue Aviation Meteorology: Developments and Latest Achievements)
Show Figures

Figure 1

18 pages, 3463 KB  
Article
Numerical Simulation of Typical River Closure Process and Sensitivity Analysis of Influencing Factors
by Lan Ma, Chao Li, Zhanquan Yao and Xuefei Ji
Hydrology 2026, 13(1), 29; https://doi.org/10.3390/hydrology13010029 - 12 Jan 2026
Viewed by 134
Abstract
River ice is a common natural phenomenon in cold regions during winter, and it is also one of the key factors that must be considered in the development and utilization of water resources in these areas. In this paper, based on a two-dimensional [...] Read more.
River ice is a common natural phenomenon in cold regions during winter, and it is also one of the key factors that must be considered in the development and utilization of water resources in these areas. In this paper, based on a two-dimensional hydrodynamic model and ice dynamics model coupled with a linear thermodynamic process, this study simulates and validates the formation, decay, transport, and accumulation of river ice at the Toudaoguai reach of the Yellow River in Inner Mongolia during the winters of 2019–2020 and 2020–2021. The influence of different parameters on backwater level variations caused by ice jams is further investigated using a modified Morris sensitivity analysis method. The results show that (1) the coupled thermal-dynamic model can accurately simulate the formation, transport, and accumulation process of river ice in natural river, as well as the freeze-up patterns and corresponding hydraulic characteristics. (2) Due to the influence of river topography, flow rate, and flow density, the freeze-up form is slightly different in different years, and the low discharge process favor a more stable freeze-up. (3) According to the modified Morris screening method, discharge (Q) and ice concentration (N) are the most sensitive to the change in the backwater water level after the ice jam, and the sensitivity is more than 50%. The next most sensitive factor is the ice-cover roughness (ni), whereas ice porosity (ef) exhibits a negative sensitivity to the water level after ice jam. Thus, this study provides effective tools to reproduce the process of river ice transport and accumulation in the reach of the Yellow River (Inner Mongolia section) and offers technical support and insights for ice-flood prevention and mitigation in this section. Full article
Show Figures

Figure 1

26 pages, 2593 KB  
Review
Experimental and In Silico Approaches to Study Carboxylesterase Substrate Specificity
by Sergio R. Ribone and Mario Alfredo Quevedo
J. Xenobiot. 2026, 16(1), 11; https://doi.org/10.3390/jox16010011 - 12 Jan 2026
Viewed by 181
Abstract
Human carboxylesterases (CES) are enzymes that play a central role in the metabolism and biotransformation of diverse endogenous substances and xenobiotics. The two most relevant isoforms, CES1 and CES2, are crucial in clinical pharmacotherapy as they catalyze the hydrolysis of numerous approved drugs [...] Read more.
Human carboxylesterases (CES) are enzymes that play a central role in the metabolism and biotransformation of diverse endogenous substances and xenobiotics. The two most relevant isoforms, CES1 and CES2, are crucial in clinical pharmacotherapy as they catalyze the hydrolysis of numerous approved drugs and prodrugs. Elucidating the structural basis of CES isoform substrate specificity is essential not only for understanding and anticipating the biological fate of administered drugs, but also for designing prodrugs with optimized site-specific bioactivation. Additionally, this knowledge is also important for the design of biomedically useful molecules such as subtype-targeted CES inhibitors and fluorescent probes. In this context, both experimental and computational methodologies have been used to explore the mechanistic and thermodynamic properties of CES-mediated catalysis. Experimental designs commonly employ recombinant CES or human tissue microsomes as enzyme sources, utilizing quantification methods such as spectrophotometry (UV and fluorescence) and mass spectrometry. Computational approaches fall into two categories: (1) modeling substrate: CES recognition and affinity (molecular docking, molecular dynamics simulation, and free-energy binding calculations), and (2) modeling substrate: CES reaction coordinates (hybrid QM/MM simulations). While experimental and theoretical approaches are highly synergistic in studying the catalytic properties of CES subtypes, they represent distinct technical and scientific fields. This review aims to provide an integrated discussion of the key concepts and the interplay between the most commonly used wet-lab and dry-lab strategies for investigating CES catalytic activity. We hope this report will serve as a concise resource for researchers exploring CES isoform specificity, enabling them to effectively utilize both experimental and computational methods. Full article
Show Figures

Figure 1

24 pages, 1309 KB  
Article
Experimental 3E Assessment of a PLC-Controlled Solar Air Heater with Adjustable Baffle
by Ayşe Bilgen Aksoy
Sustainability 2026, 18(2), 719; https://doi.org/10.3390/su18020719 - 10 Jan 2026
Viewed by 139
Abstract
This study presents an experimental 3E (energy–exergy–environmental) assessment of a PLC-controlled solar air heater (SAH) equipped with adjustable internal baffles. Unlike conventional passive systems, the proposed design enables active airflow regulation to maintain stable outlet temperatures of 54 °C and 60 °C, achieving [...] Read more.
This study presents an experimental 3E (energy–exergy–environmental) assessment of a PLC-controlled solar air heater (SAH) equipped with adjustable internal baffles. Unlike conventional passive systems, the proposed design enables active airflow regulation to maintain stable outlet temperatures of 54 °C and 60 °C, achieving rapid stabilization within 3–10 s under outdoor conditions. Experimental results show that increasing the baffle inclination significantly enhances convective heat transfer and thermal efficiency, while the friction factor remains primarily governed by the Reynolds number and exhibits minimal sensitivity to baffle angle. Exergy efficiency values remain relatively low (1.24–2.69%), and the sustainability index stays close to unity, reflecting the inherent thermodynamic limitations of low-temperature solar air heaters rather than deficiencies in system design. A regression-based airflow velocity model is developed to support fan-speed optimization and to clarify the trade-off between thermal enhancement and auxiliary power demand. Long-term projections based on regional solar data indicate that the proposed SAH can deliver approximately 20–22 MWh of useful heat and mitigate nearly 9 tons of CO2 emissions over a 20-year operational lifetime. Overall, the results demonstrate that PLC-assisted dynamic baffle control provides a flexible and effective approach for improving the performance and operational stability of solar air heaters for low-temperature drying applications. Full article
Show Figures

Figure 1

27 pages, 2526 KB  
Article
Thermodynamic Modelling and Sensitivity Analysis of a 70 MPa Hydrogen Storage System for Heavy Duty Vehicles
by Roberta Tatti, Nejc Klopčič, Fabian Radner, Christian Zinner and Alexander Trattner
Hydrogen 2026, 7(1), 8; https://doi.org/10.3390/hydrogen7010008 - 8 Jan 2026
Viewed by 157
Abstract
Reducing CO2 emissions in transport requires sustainable alternatives such as fuel cell electric vehicles. A critical challenge is the efficient and safe storage and fast refueling of hydrogen at 70 MPa. This study proposes a practical design-support tool to optimize hydrogen storage [...] Read more.
Reducing CO2 emissions in transport requires sustainable alternatives such as fuel cell electric vehicles. A critical challenge is the efficient and safe storage and fast refueling of hydrogen at 70 MPa. This study proposes a practical design-support tool to optimize hydrogen storage systems for heavy-duty vehicles with capacities up to 100 kg. A customizable, dynamic Matlab-Simulink model was developed, including all components from dispenser to onboard tanks, enabling evaluation of multiple design options. The aim is to provide clear guidelines to ensure fast, safe, and complete refueling compliant with SAE J2601-5 limits. Simulations showed Type III tanks deliver the best performance. The fastest refueling (~10 min) was achieved with shorter pipes, larger diameters and low temperatures (20 °C ambient, −40 °C dispenser), while Average Pressure Ramp Rate was maximized up to 9 MPa/min (220 g/s of hydrogen from the dispenser) without exceeding SAE limits for pressure and temperature. Full article
Show Figures

Figure 1

23 pages, 1585 KB  
Article
Analysis of Thermodynamic Processes in Thermal Energy Storage Vessels
by Laszlo Garbai, Robert Santa and Mladen Bošnjaković
Thermo 2026, 6(1), 5; https://doi.org/10.3390/thermo6010005 - 6 Jan 2026
Viewed by 186
Abstract
To balance the quantity of heat generated and consumed, thermal energy storage systems are crucial for power plants and district heating systems. Particularly when phase transitions and pressure variations are not adequately covered in the existing literature, their work frequently takes place under [...] Read more.
To balance the quantity of heat generated and consumed, thermal energy storage systems are crucial for power plants and district heating systems. Particularly when phase transitions and pressure variations are not adequately covered in the existing literature, their work frequently takes place under complicated, changing temperature and fluid dynamic settings. The goal of this research is to create a thermodynamic model that incorporates the effects of steam condensation, steam injection, and heating failures to describe the transient behaviour of temperature and pressure in pressure vessels containing single-phase and two-phase fluids. To account for nonlinear, temperature-dependent steam properties, as well as initial and boundary constraints, the study proposes energy balance models for hot water and saturated steam cases. Numerical simulations evaluating sensitivity to parameter changes are presented alongside analytical solutions for isochoric and isobaric systems. The model also includes direct steam injection heating and the use of a heat exchanger. It explains the changes in temperature and pressure that occur in thermal energy storage systems over time, including significant events such as steam cushion collapse and condensate drainage. According to the sensitivity analysis, the main factors influencing the system’s safety limitations and transient dynamic phenomena are thermal power, heat exchanger capacity, and thermal insulation efficiency. The proposed thermodynamic model closes a major gap in the literature by providing reliable predictions of the transient behavior needed for the safe design and reliable operation of pressure vessels utilized for heat storage in district heating networks. This model can be used by engineers and researchers to optimize system design and steer clear of risky operational situations. Full article
Show Figures

Figure 1

31 pages, 3764 KB  
Article
Design and Fabrication of a Compact Evaporator–Absorber Unit with Mechanical Enhancement for LiBr–H2O Vertical Falling Film Absorption, Part II: Control-Volume Modeling and Thermodynamic Performance Analysis
by Genis Díaz-Flórez, Teodoro Ibarra-Pérez, Carlos Alberto Olvera-Olvera, Santiago Villagrana-Barraza, Ma. Auxiliadora Araiza-Esquivel, Hector A. Guerrero-Osuna, Ramón Jaramillo-Martínez, Mayra A. Torres-Hernández and Germán Díaz-Flórez
Technologies 2026, 14(1), 33; https://doi.org/10.3390/technologies14010033 - 4 Jan 2026
Viewed by 274
Abstract
This study reports the thermodynamic performance of a patented compact vertical evaporator–absorber unit for LiBr–H2O absorption cooling, extending Part I by translating validated prototype data into a rigorous control-volume assessment of coupled transport. Coolant-side calorimetry was used to determine the absorption [...] Read more.
This study reports the thermodynamic performance of a patented compact vertical evaporator–absorber unit for LiBr–H2O absorption cooling, extending Part I by translating validated prototype data into a rigorous control-volume assessment of coupled transport. Coolant-side calorimetry was used to determine the absorption heat-transfer rate (Qabs), while a mass–energy balance provided an estimate of the absorption mass-transfer rate (m˙abs) across twelve manually imposed thermal-load phases with tagged fan-OFF/ON sub-intervals. Linear trend (slope) analysis was applied to quantify phase-resolved dynamic behavior. Fan assistance produced three load-dependent regimes: (i) stabilization of downward trends under low and zero loads, yielding slope-based relative improvements above 100% in the most critical weak-gradient phases; (ii) acceleration of recovery at intermediate loads; and (iii) moderation of strongly positive drifts at high loads. The global thermal resistance (Rth) decreased by more than 30% in passive and low-load phases, and Wilcoxon signed-rank tests confirmed statistically significant reductions in most intervals (p < 0.05). Uncertainty contributions and robustness were quantified through an uncertainty budget decomposition and sensitivity analyses, and a subsystem-level normalization (ηEA = Qabs/Qin) is reported to support comparisons across loads without invoking cycle COP. Overall, active vapor-flow management using a low-power internal fan widens the useful operating envelope of compact absorbers and provides a validated thermodynamic baseline with practical, regime-aware control guidelines for decentralized low-carbon cooling technologies. Full article
Show Figures

Figure 1

Back to TopTop