Adsorption of Methylene Blue on PVDF Membrane and PVDF/TiO2 Hybrid Membrane: Batch and Cross-Flow Filtration Studies
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Adsorption Studies
2.2.1. Batch Adsorption
- (1)
- Determination of the equilibrium time: the dosage of the adsorbent (membrane/hybrid membrane samples) was set at 1.6 g·L−1; the initial MB concentration (MB0) was 3.68 mg·L−1; the pH was maintained at 7.0 ± 0.1; the shaking time varied from 0 to 180 min at different intervals (with shorter intervals at the onset of adsorption); the temperature was kept at 25 ± 0.1 °C.
- (2)
- Isotherm adsorption studies were conducted with an adsorbent dosage of 2.0 ± 0.1 g·L−1, an initial concentration of MB (MB0) ranging from 0 to 80 mg·L−1, a pH of 7.0 ± 0.1, and a shaking time of 120 min at a temperature of 25 ± 0.1 °C.
- (3)
- Effect of Temperature: the study was conducted with an adsorbent dosage of 1.7 ± 0.1 g·L−1, an initial concentration of MB (MB0) at 3.20 mg·L−1, a pH level of 7.0 ± 0.1, a shaking time of 120 min, and a temperature range of 10–40 °C.
2.2.2. Dynamic Adsorption
3. Results and Discussion
3.1. Kinetics Study
3.2. Isotherm Adsorption
3.3. Effect of pH Values
3.4. Effect of Temperature
3.5. Dynamic MB Adsorption in a Cross-Flow Filtration
3.6. Proposed Adsorption Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations and Nomenclatures
| Abbreviation | |
| PVDF | polyvinylidene fluoride |
| MB | methylene blue |
| UV | ultraviolet |
| TIPS | thermally induced phase separation |
| DMP | dimethyl phthalate |
| MO | methyl orange |
| UV | ultraviolet |
| PFO | pseudo-first-order |
| PSO | pseudo-second-order |
| PT-0 | neat PVDF membrane |
| PT-1.5 | PVDF/TiO2 (28.5/1.5) membrane |
| PF | permeate flow |
| Nomenclatures | |
| b | Langmuir isotherm constant, L/mg |
| C | the effluent MB concentration, mg/L (g/L for DR equation) |
| C0 | the initial MB concentration or the influent MB concentration (column), mg/L |
| CB | the effluent MB concentration at the breakthrough point, mg/L |
| CE | the effluent MB concentration at the exhaustion point, mg/L |
| Ce | the MB concentration at equilibrium or the effluent MB concentration (column), mg/L |
| E | the mean free energy of adsorption, kJ/mol |
| f | a parameter measuring the symmetry of the breakthrough curve |
| F0 | flow rate of MB solution, mL/min |
| H | the bed depth, cm |
| hZ | the height of the mass transfer zone, cm |
| K | the constant of the DR equation related to the adsorption energy |
| kF, n | Freundlich isotherm constant |
| KR, aR, β | Redlich–Peterson isotherm constant |
| kT | the rate constant of the Thomas model, L·mg–1·h–1 |
| k1 | the adsorption rate constant of first–order adsorption, L/min |
| k2 | the rate constant of pseudo-second-order chemisorption, g/(mg·min). |
| m | the adsorbent dosage or the mass of the sorbent, g |
| Mw | molecular weight |
| qB | the capacity at the breakthrough point, mg/g |
| qE | the capacity at the exhaustion point, mg/g |
| qe | the amounts of MB adsorbed at equilibrium, mg/g |
| qt | the amounts of MB adsorbed at time t (min), mg/g |
| qT | the total sorption capacity, mg/g |
| Q | the MB adsorbed, mg/g |
| Q0 | Langmuir constant related to the capacity and energy of adsorption, mg/g |
| R | the gas constant, kJ/(K·mol) |
| T | the temperature, K |
| V | the solution volume or the effluent volume (column), L |
| VB | the volume of solution passed up to the breakthrough point, L |
| VE | the volume of solution passed up to the exhaustion point, L |
| X | the amount of MB adsorbed per unit weight of adsorbent, g/g |
| Xm | the adsorption capacity per unit weight of adsorbent, g/g |
| θ | the flow rate, L/h |
| ε | Polanyi potential = RTln(1 + (1/C)) |
References
- Forgacs, E.; Cserhati, T.; Oros, G. Removal of Synthetic Dyes from Wastewaters: A Review. Environ. Int. 2004, 30, 953–971. [Google Scholar] [CrossRef] [PubMed]
- Dutta, D.; Arya, S.; Kumar, S. Industrial Wastewater Treatment: Current Trends, Bottlenecks, and Best Practices. Chemosphere 2021, 28, 131245. [Google Scholar] [CrossRef] [PubMed]
- Pang, J.; Fu, F.; Ding, Z.; Lu, J.; Li, N.; Tang, B. Adsorption Behaviors of Methylene Blue from Aqueous Solution on Mesoporous Birnessite. J. Taiwan Inst. Chem. Eng. 2017, 77, 168–176. [Google Scholar] [CrossRef]
- Solayman, H.M.; Hossen, M.A.; Aziz, A.A.; Yahya, N.Y.; Leong, K.H.; Sim, L.C.; Monir, M.U.; Zoh, K.-D. Performance Evaluation of Dye Wastewater Treatment Technologies: A Review. J. Environ. Chem. Eng. 2023, 11, 109610. [Google Scholar] [CrossRef]
- Lu, K.; Wang, T.; Zhai, L.; Wu, W.; Dong, S.; Gao, S.; Mao, L. Adsorption Behavior and Mechanism of Fe-Mn Binary Oxide Nanoparticles: Adsorption of Methylene Blue. J. Colloid Interface Sci. 2019, 539, 553–562. [Google Scholar] [CrossRef]
- Zhao, C.; Zheng, H.; Sun, Y.; Zhang, S.; Liang, J.; Liu, Y.; An, Y. Evaluation of a Novel Dextran-Based Flocculant on Treatment of Dye Wastewater: Effect of Kaolin Particles. Sci. Total Environ. 2018, 640, 243–254. [Google Scholar] [CrossRef]
- Ertas, M.B.; Acemioğlu, B.; Alma, M.H.; Usta, M. Removal of Methylene Blue from Aqueous Solution Using Cotton Stalk, Cotton Waste, and Cotton Dust. J. Hazard. Mater. 2010, 183, 421–427. [Google Scholar] [CrossRef]
- Deng, H.; Lu, J.; Li, G.; Zhang, G.; Wang, X. Adsorption of Methylene Blue on Adsorbent Materials Produced from Cotton Stalk. Chem. Eng. J. 2011, 172, 326–334. [Google Scholar] [CrossRef]
- Vilar, V.J.P.; Botelho, C.M.S.; Boaventura, R.A.R. Methylene Blue Adsorption by Algal Biomass-Based Materials: Biosorbents Characterization and Process Behavior. J. Hazard. Mater. 2007, 147, 120–132. [Google Scholar] [CrossRef]
- Omwoyo, F.O.; Otieno, G. Optimization of Methylene Blue Dye Adsorption onto Coconut Husk Cellulose Using Response Surface Methodology: Adsorption Kinetics, Isotherms, and Reusability Studies. J. Mater. Sci. Chem. Eng. 2024, 12, 1–18. [Google Scholar] [CrossRef]
- Li, P.; Su, Y.; Hu, Z.; Zheng, Y.; Zhou, Q.; Ouyang, X. Adsorption of Methylene Blue by Bismuth Impregnated Biochar of Different Biomass Materials: Pore Structure and Surface Chemistry Characteristics. J. Chem. Technol. Biotechnol. 2022, 97, 2871–2880. [Google Scholar] [CrossRef]
- Yao, Y.; Xu, F.; Chen, M.; Xu, Z.; Zhu, Z. Adsorption Behavior of Methylene Blue on Carbon Nanotubes. Bioresour. Technol. 2010, 101, 3040–3046. [Google Scholar] [CrossRef] [PubMed]
- Weng, C.-H.; Pan, Y.-F. Adsorption of a Cationic Dye (Methylene Blue) onto Spent Activated Clay. J. Hazard. Mater. 2007, 144, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhang, Y.; Ma, R.; Wang, X.; Li, J. A New Method to Prepare Mesoporous Silica from Coal Gasification Fine Slag and Its Application in Methylene Blue Adsorption. J. Clean. Prod. 2019, 212, 1062–1071. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, X.; Ai, W.; Wei, C. Preparation of Titanium Peroxide and Its Selective Adsorption Property on Cationic Dyes. Appl. Surf. Sci. 2014, 292, 576–582. [Google Scholar] [CrossRef]
- Hameed, B.H.; Ahmad, A.L.; Latiff, K.N.A. Adsorption of Basic Dye (Methylene Blue) onto Activated Carbon Prepared from Rattan Sawdust. Dyes Pigments 2007, 75, 143–149. [Google Scholar] [CrossRef]
- Vargas, A.M.M.; Cazetta, A.L.; Kunita, M.H.; Silva, T.L.; Almeida, V.C. Adsorption of Methylene Blue on Activated Carbon Produced from Flamboyant Pods (Delonix regia): Study of Adsorption Isotherms and Kinetic Models. Chem. Eng. J. 2011, 168, 722–730. [Google Scholar] [CrossRef]
- Theyda, S.K.; Ahmed, M.J. Adsorption of Methylene Blue onto Biomass-Based Activated Carbon by FeCl3 Activation: Equilibrium, Kinetics, and Thermodynamic Studies. J. Anal. Appl. Pyrolysis 2012, 97, 116–122. [Google Scholar] [CrossRef]
- Yener, J.; Kopac, T.; Dogu, G.; Dogu, T. Dynamic Analysis of Sorption of Methylene Blue Dye on Granular and Powdered Activated Carbon. Chem. Eng. J. 2008, 144, 400–406. [Google Scholar] [CrossRef]
- Yang, J.; Qiu, K. Preparation of Activated Carbons from Walnut Shells via Vacuum Chemical Activation and Their Application for Methylene Blue Removal. Chem. Eng. J. 2010, 165, 209–217. [Google Scholar] [CrossRef]
- Zangeneh, Z.; Mohammadi, T.; Zarghami, S.; Tofighy, M.A. Fabrication Optimization of Polyethersulfone Adsorptive Mixed Matrix Membrane for Enhanced Dynamic Methylene Blue Removal: Response Surface Methodology Approach. Polym. Eng. Sci. 2024, 64, 1858–1876. [Google Scholar] [CrossRef]
- Liu, F.; Teng, S.; Song, R.; Wang, S. Adsorption of Methylene Blue on Anaerobic Granular Sludge: Effect of Functional Groups. Desalination 2010, 263, 11–17. [Google Scholar] [CrossRef]
- Yuan, X.; Zhuo, S.P.; Xing, W.; Cui, H.Y.; Dai, X.D.; Liu, X.M.; Yan, Z.F. Aqueous Dye Adsorption on Ordered Mesoporous Carbons. J. Colloid Interface Sci. 2007, 310, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Duan, Y.; Zhou, L. Multi-Carboxylic Magnetic Gel from Hyperbranched Polyglycerol Formed by Thiol-ene Photopolymerization for Efficient and Selective Adsorption of Methylene Blue and Methyl Violet Dyes. J. Colloid Interface Sci. 2018, 529, 139–149. [Google Scholar] [PubMed]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A Review on the Occurrence of Micropollutants in the Aquatic Environment and Their Fate and Removal During Wastewater Treatment. Sci. Total Environ. 2014, 473–474, 619–641. [Google Scholar] [CrossRef]
- Choi, J.; Lee, H.; Choi, Y.; Kim, S.; Lee, S.; Lee, S.; Choi, W.; Lee, J. Heterogeneous Photocatalytic Treatment of Pharmaceutical Micropollutants: Effects of Wastewater Effluent Matrix and Catalyst Modifications. Appl. Catal. B 2014, 147, 8–16. [Google Scholar] [CrossRef]
- Lakshmi, S.; Renganathan, R.; Fujita, S. Study on TiO2-Mediated Photocatalytic Degradation of Methylene Blue. J. Photochem. Photobiol. A 1995, 88, 163–167. [Google Scholar] [CrossRef]
- Tayade, R.J.; Surolia, P.K.; Kulkarni, R.G.; Jasra, R.V. Photocatalytic Degradation of Dyes and Organic Contaminants in Water Using Nanocrystalline Anatase and Rutile TiO2. Sci. Technol. Adv. Mater. 2007, 8, 455–462. [Google Scholar] [CrossRef]
- Yu, Z.; Chuang, S.S.C. The Effect of Pt on the Photocatalytic Degradation Pathway of Methylene Blue over TiO2under Ambient Conditions. Appl. Catal. B 2008, 83, 277–285. [Google Scholar]
- Ngang, H.P.; Ooi, B.S.; Ahmad, A.L.; Lai, S.O. Preparation of PVDF-TiO2Mixed-Matrix Membrane and Its Evaluation on Dye Adsorption and UV-Cleaning Properties. Chem. Eng. J. 2012, 197, 359–367. [Google Scholar] [CrossRef]
- Chin, S.S.; Chiang, K.; Fane, A.G. The Stability of Polymeric Membranes in a TiO2 Photocatalysis Process. J. Membr. Sci. 2006, 275, 202–211. [Google Scholar] [CrossRef]
- Dzinun, H.; Othman, M.H.D.; Ismail, A.F.; Puteh, M.H.; Rahman, M.A.; Jaafar, J. Morphological Study of Co-Extruded Dual-Layer Hollow Fiber Membranes Incorporated with Different TiO2 Loadings. J. Membr. Sci. 2015, 479, 123–131. [Google Scholar] [CrossRef]
- Paredes, L.; Murgolo, S.; Dzinun, H.; Othman, M.H.D.; Ismail, A.F.; Carballa, M.; Mascolo, G. Application of Immobilized TiO2 on PVDF Dual Layer Hollow Fibre Membrane to Improve the Photocatalytic Removal of Pharmaceuticals in Different Water Matrices. Appl. Catal. B 2019, 240, 9–18. [Google Scholar] [CrossRef]
- Shi, F.; Ma, Y.; Ma, J.; Wang, P.; Sun, W. Preparation and Characterization of PVDF/TiO2 Hybrid Membranes with Different Content of Nano-TiO2. J. Membr. Sci. 2012, 389, 522–531. [Google Scholar] [CrossRef]
- Ma, Y.; Shi, F.; Ma, J.; Wu, M.; Zhang, J.; Gao, C. Effect of PEG Additive on the Morphology and Performance of Polysulfone Ultrafiltration Membranes. Desalination 2011, 272, 51–58. [Google Scholar] [CrossRef]
- Wang, J.; Pi, H.; Zhao, P.; Zhou, N. Efficient Removal of Methyl Orange and Ciprofloxacin by Reusable Eu–TiO2/PVDF Membranes with Adsorption and Photocatalysis Methods. RSC Adv. 2024, 14, 18432. [Google Scholar] [CrossRef]
- Patel, R.V.; Chaubey, S.; Yadav, A.; Vyas, B.G.; Shahi, V.K. Carbon Chain Grafted Polyvinylidene Fluoride Membranes for Textile Water Remediation: Experimental and Computational Studies. Chem. Eng. J. 2025, 509, 160965. [Google Scholar] [CrossRef]
- Pelekani, C.; Snoeyink, V.L. Competitive Adsorption Between Atrazine and Methylene Blue on Activated Carbon: The Importance of Pore Size Distribution. Carbon 2000, 38, 1423–1436. [Google Scholar] [CrossRef]
- Langmuir, I. The Constitution and Fundamental Properties of Solids and Liquids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef]
- Freundlich, H.M.F. Über die Adsorption in Lösungen. Z. Phys. Chem. 1906, 57, 385–470. [Google Scholar] [CrossRef]
- Ogino, C.; Dadjour, M.F.; Iida, Y.; Shimizu, N. Decolorization of Methylene Blue in Aqueous Suspensions of Titanium Peroxide. J. Hazard. Mater. 2008, 153, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.S.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Lima, E.C.; Sher, F.; Guleria, A.; Saeb, M.R.; Anastopoulos, I.; Tran, H.N.; Hosseini-Bandegharaei, A. Is One Performing the Treatment Data of Adsorption Kinetics Correctly? J. Environ. Chem. Eng. 2021, 9, 104813. [Google Scholar] [CrossRef]
- Zhu, W.; Jiang, X.; Jiang, K.; Liu, F.; You, F.; Yao, C. Fabrication of Reusable Carboxymethyl Cellulose/Graphene Oxide Composite Aerogel with Large Surface Area for Adsorption of Methylene Blue. Nanomaterials 2021, 11, 1609. [Google Scholar] [CrossRef]
- Kavitha, D.; Namasivayam, C. Experimental and Kinetic Studies on Methylene Blue Adsorption by Coir Pith Carbon. Bioresour. Technol. 2007, 98, 14–21. [Google Scholar] [CrossRef]
- Doğan, M.; Alkan, M.; Türkyilmaz, A.; Özdemir, Y. Kinetics and Mechanism of Removal of Methylene Blue by Adsorption onto Perlite. J. Hazard. Mater. 2004, 109, 141–148. [Google Scholar] [CrossRef]
- Bulut, Y.; Aydın, H. A Kinetics and Thermodynamics Study of Methylene Blue Adsorption on Wheat Shells. Desalination 2006, 194, 259–267. [Google Scholar] [CrossRef]
- Malik, P.K. Dye Removal from Wastewater Using Activated Carbon Developed from Sawdust: Adsorption Equilibrium and Kinetics. J. Hazard. Mater. 2004, 113, 81–88. [Google Scholar] [CrossRef]
- Namasivayam, C.; Kavitha, D. Removal of Congo Red from Water by Adsorption onto Activated Carbon Prepared from Coir Pith, an Agricultural Solid Waste. Dyes Pigments 2002, 54, 47–58. [Google Scholar] [CrossRef]
- Ma, T.; Chang, P.R.; Zheng, P.; Zhao, F.; Ma, X. Fabrication of Ultra-Light Graphene-Based Gels and Their Adsorption of Methylene Blue. Chem. Eng. J. 2014, 240, 595–600. [Google Scholar] [CrossRef]
- Simonetti, E.A.N.; Cividanes, L.S.; Campos, T.M.B.; Menezes, B.R.C.; Brito, F.S.; Thim, G.P. Carbon and TiO2 Synergistic Effect on Methylene Blue Adsorption. Mater. Chem. Phys. 2016, 177, 330–338. [Google Scholar] [CrossRef]
- Sueraya, A.Z.; Rahman, M.R.; Said, K.A.B.; Namakka, M.; Kanakaraju, D.; Al-Humaidi, J.Y.; Al-Baqami, S.M.; Rahman, M.M.; Khandaker, M.U. Impact of Titanium Dioxide/Graphene in Polyvinylidene Fluoride Nanocomposite Membrane to Intensify Methylene Blue Dye Removal, Antifouling Performance, and Reusability. J. Appl. Polym. Sci. 2024, 141, e56257. [Google Scholar] [CrossRef]
- Chen, J.Y.; Peng, Q.; Jodl, H.-J. Infrared Spectral Comparison of 5-Aminolevulinic Acid and Its Hexyl Ester. Spectrochim. Acta Part A 2003, 59, 2571–2576. [Google Scholar] [CrossRef] [PubMed]
- Bangari, R.S.; Yadav, A.; Bharadwaj, J.; Sinha, N. Boron Nitride Nanosheets Incorporated Polyvinylidene Fluoride Mixed Matrix Membranes for Removal of Methylene Blue from Aqueous Stream. J. Environ. Chem. Eng. 2022, 10, 107052. [Google Scholar] [CrossRef]
- Qadeer, R.; Hanif, J.; Khan, M.; Salem, M. Uptake of Uranium Ions by Molecular-Sieve. Radiochim. Acta 1995, 68, 197–201. [Google Scholar] [CrossRef]
- Chen, A.-H.; Chen, S.-M. Biosorption of azo dyes from aqueous solution by glutaraldehyde-crosslinked chitosans. J. Hazard. Mater. 2009, 172, 1111–1121. [Google Scholar] [CrossRef]
- Rouquerol, F.; Rouquerol, J.; Sing, K.; Llewellyn, P.; Maurin, G. Adsorption by Powders and Porous Solids; Academic Press: San Diego, CA, USA, 2012. [Google Scholar]
- Varol, H.S.; Kaya, D.; Contini, E.; Gualandi, C.; Genovese, D. Fluorescence methods to probe mass transport and sensing in solid-state nanoporous membranes. Mater. Adv. 2024, 5, 8351–8383. [Google Scholar] [CrossRef]
- Dissanayake, N.S.L.; Pathirana, M.A.; Wanasekara, N.D.; Mahltig, B.; Nandasiri, G.K. Removal of Methylene Blue and Congo Red Using a Chitosan–Graphene Oxide-Electrosprayed Functionalized Polymeric Nanofiber Membrane. Nanomaterials 2023, 13, 1350. [Google Scholar] [CrossRef]
- Yan, H.; Tao, X.; Yang, Z.; Li, K.; Yang, H.; Li, A.M.; Cheng, R.S. Effects of the oxidation degree of graphene oxide on the adsorption of methylene blue. J. Hazard. Mater. 2014, 268, 191–198. [Google Scholar] [CrossRef]
- Varol, H.S.; Cingolani, M.; Casnati, F.; Genovese, D. Modulating Electrostatic Interactions to Control the Analyte Transport in Nanochannels. ACS Appl. Mater. Interfaces 2025, 17, 57667–57677. [Google Scholar] [CrossRef]
- Yan, T.; Wang, P.; Wang, L. Utilization of Oxalic Acid-Modified Spent Mushroom Substrate for Removal of Methylene Blue from Aqueous Solution. Desal. Water Treat. 2015, 55, 1007–1017. [Google Scholar] [CrossRef]
- Tan, K.A.; Morad, N.; Teng, T.T.; Norli, I. Synthesis of Magnetic Nanocomposites (AMMC-Fe3O4) for Cationic Dye Removal: Optimization, Kinetic, Isotherm, and Thermodynamics Analysis. J. Taiwan Inst. Chem. Eng. 2015, 54, 96–108. [Google Scholar] [CrossRef]
- Natarajan, T.S.; Bajaj, H.C.; Tayade, R.J. Preferential Adsorption Behavior of Methylene Blue Dye onto Surface Hydroxyl Group Enriched TiO2 Nanotube and Its Photocatalytic Regeneration. J. Colloid Interface Sci. 2014, 433, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.F.; Elhadidy, H. Production of Activated Carbons from Waste Carpets and Its Application in Methylene Blue Adsorption: Kinetic and Thermodynamic Studies. J. Environ. Chem. Eng. 2017, 5, 955–963. [Google Scholar] [CrossRef]
- Baseri, J.R.; Palanisamy, P.N.; Kumar, P.S. Adsorption of Basic Dyes from Synthetic Textile Effluent by Activated Carbon Prepared from Thevetia peruviana. Indian J. Chem. Technol. 2012, 19, 311–321. [Google Scholar]
- Medvidovic, N.V.; Peric, J.; Trgo, M.; Muzek, M.N. Removal of Lead Ions by Fixed Bed of Clinoptilolite—The Effect of Flowrate. Sep. Purif. Technol. 2006, 49, 298–304. [Google Scholar]
- Lagergren, S. About the theory of so called adsorption of soluble substances. K. Sven. Vetenskapsakademiens Handl. 1898, 24, 147–156. [Google Scholar]







| Kinetic Model | Parameters | Membrane Samples | |
|---|---|---|---|
| PT-0 | PT-1.5 | ||
| PFO | qe(exp) (mg·g−1) | 1.518 | 0.189 |
| k1 (min−1) | 0.954 ± 0.130 | 0.248 ± 0.011 | |
| qe(cal) (mg·g−1) | 1.459 ± 0.025 | 0.185 ± 0.002 | |
| Adj. R2 | 0.9779 | 0.9957 | |
| PSO | k2 (g/(mg·min)) | 0.943 ± 0.061 | 2.024 ± 0.199 |
| qe(cal) (mg·g−1) | 1.516 ± 0.009 | 0.197 ± 0.003 | |
| Adj. R2 | 0.9979 | 0.9931 | |
| Samples | Temperature (K) | Langmuir Parameters | Freundlich Parameters | ||||
|---|---|---|---|---|---|---|---|
| Q0 (mg·g−1) | KL (L·mg−1) | R2 | Kf (mg·g−1) (L·mg−1)1/n | n | R2 | ||
| PT-0 | 298 | 8.997 ± 0.284 | 0.1575 ± 0.013 | 0.9960 | 1.660 ± 0.125 | 2.071 ± 0.125 | 0.9875 |
| 288 | 14.481 ± 3.994 | 0.0113 ± 0.0018 | 0.9949 | 0.254 ± 0.095 | 1.313 ± 0.166 | 0.9486 | |
| PT-1.5 | 298 | 2.265 ± 0.118 | 0.2257 ± 0.0324 | 0.9805 | 0.563 ± 0.032 | 2.480 ± 0.138 | 0.9871 |
| 283 | 6.726 ± 2.335 | 0.0111 ± 0.0060 | 0.9463 | 0.116 ± 0.058 | 1.316 ± 0.217 | 0.9225 | |
| Parameters | Membrane Samples | |
|---|---|---|
| PT-0 | PT-1.5 | |
| Xm (g·g−1) | 0.01585 | 0.00371 |
| K | 0.0007 | 0.0006 |
| R2 | 0.995 | 0.988 |
| E (kJ·mol−1) | 26.73 | 28.87 |
| Samples | ∆G⊖ (kJ·mol−1) | ∆H⊖ (kJ·mol−1) | ∆S⊖ (J·mol−1·K−1) | |||
|---|---|---|---|---|---|---|
| 283 K | 288 K | 293 K | 298 K | |||
| PT-0 | −16.00 | −19.60 | −23.21 | −26.81 | 188 | 720.84 |
| PT-1.5 | −19.24 | −22.07 | −24.89 | −27.72 | 140.8 | 565.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Shi, F.; Fan, B.; Ma, S.; Lv, H.; Lin, C.; Ma, J.; Jiang, W.; Ma, Y. Adsorption of Methylene Blue on PVDF Membrane and PVDF/TiO2 Hybrid Membrane: Batch and Cross-Flow Filtration Studies. Polymers 2026, 18, 233. https://doi.org/10.3390/polym18020233
Shi F, Fan B, Ma S, Lv H, Lin C, Ma J, Jiang W, Ma Y. Adsorption of Methylene Blue on PVDF Membrane and PVDF/TiO2 Hybrid Membrane: Batch and Cross-Flow Filtration Studies. Polymers. 2026; 18(2):233. https://doi.org/10.3390/polym18020233
Chicago/Turabian StyleShi, Fengmei, Boming Fan, Shuqi Ma, Hao Lv, Chao Lin, Jin Ma, Wei Jiang, and Yuxin Ma. 2026. "Adsorption of Methylene Blue on PVDF Membrane and PVDF/TiO2 Hybrid Membrane: Batch and Cross-Flow Filtration Studies" Polymers 18, no. 2: 233. https://doi.org/10.3390/polym18020233
APA StyleShi, F., Fan, B., Ma, S., Lv, H., Lin, C., Ma, J., Jiang, W., & Ma, Y. (2026). Adsorption of Methylene Blue on PVDF Membrane and PVDF/TiO2 Hybrid Membrane: Batch and Cross-Flow Filtration Studies. Polymers, 18(2), 233. https://doi.org/10.3390/polym18020233

