Abstract
The scarcity of fault samples significantly impedes the generalization of data-driven diagnosis models for local thermal imbalances in integrated energy systems. To overcome this limitation, this paper proposes a novel knowledge graph-guided conditional generative adversarial network (KG-GAN) framework. The approach begins by constructing a dynamically updatable fault knowledge graph for district heating systems, which explicitly encapsulates pipeline topology, thermodynamic principles, and fault propagation mechanisms. The derived knowledge embeddings are then fused with physics-based constraints into the adversarial learning process, effectively alleviating the issue of physically implausible sample generation that plagues conventional data-centric models. Experimental validation on a district heating platform, involving four common fault types, demonstrates the superiority of our method. With only 100 samples per fault category, a diagnostic model trained on KG-GAN-generated data achieves a classification accuracy of 91.7%, outperforming a GAN-based baseline by 8.3%. Furthermore, t-Distributed Stochastic Neighbor Embedding (t-SNE) visualization reveals a 92.3% feature distribution consistency between generated and real samples, confirming the method’s capability to enhance diagnostic robustness and physical interpretability under small-sample conditions.