Retrieving Boundary Layer Height Using Doppler Wind Lidar and Microwave Radiometer in Beijing Under Varying Weather Conditions
Highlights
- Three boundary layer height (BLH) retrieval methods—HWCT, Var, and Parcel—show overall consistency, with DWL_Var and DWL_HWCT being the most correlated (R = 0.62) and MWR_Parcel exhibiting a systematic positive bias of approximately 0.5 km.
- Case analyses under clear-sky, cloudy, and hazy conditions reveal that each method responds differently to aerosol, turbulence, and thermodynamic structures, highlighting their complementary strengths.
- The joint use of lidar and radiometer retrievals provides a more comprehensive depiction of the boundary layer from material, dynamic, and thermodynamic perspectives.
- The results offer guidance for developing adaptive, multi-sensor BLH retrieval frameworks and improving air quality and boundary-layer parameterization in complex meteorological conditions.
Abstract
1. Introduction
2. Instruments and Data
2.1. Doppler Wind Lidar
2.2. Microwave Radiometer
2.3. Radiosonde
2.4. ERA5
2.5. PM2.5 Data
3. Methods
3.1. Haar Wavelet Covariance Transform Method
3.2. Variance Method
3.3. Parcel Method
3.4. Surface-Based Inversion Method
3.5. Improved Potential Temperature Gradient Method
3.6. Richardson Number Method
4. Results
4.1. Correlation Analysis of BLH Retrieved from DWL and MWR Methods
4.2. Case Studies
4.2.1. Case 1: Clear-Sky Days
4.2.2. Case 2: Cloudy Days
4.2.3. Case 2: Hazy Days
5. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Springer: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Garratt, J.R. The atmospheric boundary layer. Earth Sci. Rev. 1994, 37, 89–134. [Google Scholar] [CrossRef]
- Palmén, E.H.; Newton, C.W. Atmospheric Circulation Systems: Their Structure and Physical Interpretation; Academic Press: Cambridge, MA, USA, 1969; Volume 13. [Google Scholar]
- Holtslag, A. Atmospheric boundary layers: Modeling and parameterization. In Encyclopedia of Atmospheric Sciences, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 265–273. [Google Scholar]
- Huo, Y.; Wang, Y.; Paasonen, P.; Liu, Q.; Tang, G.; Ma, Y.; Petaja, T.; Kerminen, V.-M.; Kulmala, M. Trends of planetary boundary layer height over urban cities of China from 1980–2018. Front. Environ. Sci. 2021, 9, 744255. [Google Scholar] [CrossRef]
- Cao, B.; Wang, X.; Ning, G.; Yuan, L.; Jiang, M.; Zhang, X.; Wang, S. Factors influencing the boundary layer height and their relationship with air quality in the Sichuan Basin, China. Sci. Total Environ. 2020, 727, 138584. [Google Scholar] [CrossRef] [PubMed]
- Peña, A.; Floors, R.; Sathe, A.; Gryning, S.-E.; Wagner, R.; Courtney, M.S.; Larsén, X.G.; Hahmann, A.N.; Hasager, C.B. Ten years of boundary-layer and wind-power meteorology at Høvsøre, Denmark. Bound.-Layer Meteorol. 2016, 158, 1–26. [Google Scholar] [CrossRef]
- Vajda, A.; Tuomenvirta, H.; Jokinen, P.; Luomaranta, A.; Makkonen, L.; Tikanmäki, M.; Groenemeijer, P.; Saarikivi, P.; Michaelides, S.; Papadakis, M. Probabilities of Adverse Weather Affecting Transport in Europe: Climatology and Scenarios up to the 2050s; Ilmatieteen Laitos: Helsinki, Finland, 2011. [Google Scholar]
- Halios, C.H.; Barlow, J.F. Observations of the morning development of the urban boundary layer over London, UK, taken during the ACTUAL project. Bound.-Layer Meteorol. 2018, 166, 395–422. [Google Scholar] [CrossRef]
- Seidel, D.J.; Ao, C.O.; Li, K. Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. J. Geophys. Res. Atmos. 2010, 115, D16113. [Google Scholar] [CrossRef]
- Collaud Coen, M.; Praz, C.; Haefele, A.; Ruffieux, D.; Kaufmann, P.; Calpini, B. Determination and climatology of the planetary boundary layer height above the Swiss plateau by in situ and remote sensing measurements as well as by the COSMO-2 model. Atmos. Chem. Phys. 2014, 14, 13205–13221. [Google Scholar] [CrossRef]
- Liu, S.; Liang, X.-Z. Observed diurnal cycle climatology of planetary boundary layer height. J. Clim. 2010, 23, 5790–5809. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, J.; Shao, J.; Chen, T.; Bai, K.; Sun, Y.; Li, N.; Wu, J.; Li, R.; Li, J.; et al. A merged continental planetary boundary layer height dataset based on high-resolution radiosonde measurements, ERA5 reanalysis, and GLDAS. Earth Syst. Sci. Data 2024, 16, 1–14. [Google Scholar] [CrossRef]
- de Arruda Moreira, G.; Pérez Herrera, M.J.; Garnés Morales, G.; Costa, M.J.; Cacheffo, A.; Carbone, S.; Lopes, F.J.d.S.; Abril-Gago, J.; Andújar-Maqueda, J.; de Souza Fernandes Duarte, E. Monthly Convective Boundary Layer Height Study over Brazil Using Radiosonde, ERA5, and COSMIC-2 Data. Remote Sens. 2025, 17, 3672. [Google Scholar] [CrossRef]
- Hou, J.; Li, M.; Ning, G.; Wei, T.; Yuan, J.; Xia, H. Estimating the full-day planetary boundary height from lidar, AMDAR, and radiosonde observations over Beijing, China. Atmos. Res. 2025, 332, 108701. [Google Scholar] [CrossRef]
- Tang, G.; Zhang, J.; Zhu, X.; Song, T.; Münkel, C.; Hu, B.; Schäfer, K.; Liu, Z.; Zhang, J.; Wang, L. Mixing layer height and its implications for air pollution over Beijing, China. Atmos. Chem. Phys. 2016, 16, 2459–2475. [Google Scholar] [CrossRef]
- Peng, J.; Grimmond, C.S.B.; Fu, X.; Chang, Y.; Zhang, G.; Guo, J.; Tang, C.; Gao, J.; Xu, X.; Tan, J. Ceilometer-based analysis of Shanghai’s boundary layer height (under rain-and fog-free conditions). J. Atmos. Ocean. Technol. 2017, 34, 749–764. [Google Scholar] [CrossRef]
- Cimini, D.; De Angelis, F.; Dupont, J.-C.; Pal, S.; Haeffelin, M. Mixing layer height retrievals by multichannel microwave radiometer observations. Atmos. Meas. Tech. 2013, 6, 2941–2951. [Google Scholar] [CrossRef]
- Liu, S.; He, W.; Liu, H.; Chen, H. Retrieval of atmospheric boundary layer height from ground-based microwave radiometer measurements. J. Appl. Meteor. Sci. 2015, 26, 626–635. [Google Scholar] [CrossRef]
- Du, C.; Liu, S.; Yu, X.; Li, X.; Chen, C.; Peng, Y.; Dong, Y.; Dong, Z.; Wang, F. Urban boundary layer height characteristics and relationship with particulate matter mass concentrations in Xi’an, central China. Aerosol Air Qual. Res. 2013, 13, 1598–1607. [Google Scholar] [CrossRef]
- Zhou, Y.; Han, Y.; Hu, Z.; Zhou, Q.; Liu, Y.; Dong, L.; Xiao, P. Characteristics of Planetary Boundary Layer Height (PBLH) over Shenzhen, China: Retrieval Methods and Air Pollution Conditions. Remote Sens. 2025, 17, 3937. [Google Scholar] [CrossRef]
- Bradley, R.S.; Keimig, F.T.; Diaz, H.F. Recent changes in the North American Arctic boundary layer in winter. J. Geophys. Res. Atmos. 1993, 98, 8851–8858. [Google Scholar] [CrossRef]
- Caicedo, V.; Delgado, R.; Sakai, R.; Knepp, T.; Williams, D.; Cavender, K.; Lefer, B.; Szykman, J. An automated common algorithm for planetary boundary layer retrievals using aerosol lidars in support of the US EPA Photochemical Assessment Monitoring Stations Program. J. Atmos. Ocean. Technol. 2020, 37, 1847–1864. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Ma, Y.; Zhang, W.; Ren, X.; Peng, K.; Ahmad, M.; Jia, D.; Zhao, D.; Kong, L.; Ma, Y. High-resolution remote sensing of the gradient Richardson number in a megacity boundary layer. Remote Sens. 2024, 16, 1075. [Google Scholar] [CrossRef]
- Cimini, D.; Campos, E.; Ware, R.; Albers, S.; Giuliani, G.; Oreamuno, J.; Joe, P.; Koch, S.E.; Cober, S.; Westwater, E. Thermodynamic atmospheric profiling during the 2010 Winter Olympics using ground-based microwave radiometry. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4959–4969. [Google Scholar] [CrossRef]
- Bianco, L.; Friedrich, K.; Wilczak, J.M.; Hazen, D.; Wolfe, D.; Delgado, R.; Oncley, S.P.; Lundquist, J.K. Assessing the accuracy of microwave radiometers and radio acoustic sounding systems for wind energy applications. Atmos. Meas. Tech. 2017, 10, 1707–1721. [Google Scholar] [CrossRef]
- Wei, J.; Shi, Y.; Ren, Y.; Li, Q.; Qiao, Z.; Cao, J.; Ayantobo, O.O.; Yin, J.; Wang, G. Application of ground-based microwave radiometer in retrieving meteorological characteristics of Tibet Plateau. Remote Sens. 2021, 13, 2527. [Google Scholar] [CrossRef]
- Flamant, C.; Pelon, J.; Flamant, P.H.; Durand, P. Lidar determination of the entrainment zone thickness at the top of the unstable marine atmospheric boundary layer. Bound.-Layer Meteorol. 1997, 83, 247–284. [Google Scholar] [CrossRef]
- Sicard, M.; Pérez, C.; Rocadenbosch, F.; Baldasano, J.; García-Vizcaino, D. Mixed-layer depth determination in the Barcelona coastal area from regular lidar measurements: Methods, results and limitations. Bound.-Layer Meteorol. 2006, 119, 135–157. [Google Scholar] [CrossRef]
- Emeis, S.; Schafer, K.; Munkel, C. Surface-based remote sensing of the mixing-layer height-a review. Meteorol. Z. 2008, 17, 621. [Google Scholar] [CrossRef]
- Fan, S.; Gao, Z.; Kalogiros, J.; Li, Y.; Yin, J.; Li, X. Estimate of boundary-layer depth in Nanjing city using aerosol lidar data during 2016–2017 winter. Atmos. Environ. 2019, 205, 67–77. [Google Scholar] [CrossRef]
- Dupont, E.; Pelon, J.; Flamant, C. Study of the moist convective boundary layer structure by backscattering lidar. Bound.-Layer Meteorol. 1994, 69, 1–25. [Google Scholar] [CrossRef]
- Strawbridge, K.; Snyder, B. Planetary boundary layer height determination during Pacific 2001 using the advantage of a scanning lidar instrument. Atmos. Environ. 2004, 38, 5861–5871. [Google Scholar] [CrossRef]
- Melfi, S.; Spinhirne, J.; Chou, S.-H.; Palm, S. Lidar observations of vertically organized convection in the planetary boundary layer over the ocean. J. Appl. Meteorol. Climatol. 1985, 24, 806–821. [Google Scholar] [CrossRef]
- Cohn, S.A.; Angevine, W.M. Boundary layer height and entrainment zone thickness measured by lidars and wind-profiling radars. J. Appl. Meteorol. 2000, 39, 1233–1247. [Google Scholar] [CrossRef]
- Brooks, I.M. Finding boundary layer top: Application of a wavelet covariance transform to lidar backscatter profiles. J. Atmos. Ocean. Technol. 2003, 20, 1092–1105. [Google Scholar] [CrossRef]
- Morille, Y.; Haeffelin, M.; Drobinski, P.; Pelon, J. STRAT: An automated algorithm to retrieve the vertical structure of the atmosphere from single-channel lidar data. J. Atmos. Ocean. Technol. 2007, 24, 761–775. [Google Scholar] [CrossRef]
- Han, Z.; Wang, Y.; Xu, J.; Shang, Y.; Li, Z.; Lu, C.; Zhan, P.; Song, X.; Lv, M.; Yang, Y. Assessment of Multiple Planetary Boundary Layer Height Retrieval Methods and Their Impact on PM2.5 and Its Chemical Compositions throughout a Year in Nanjing. Remote Sens. 2024, 16, 3464. [Google Scholar] [CrossRef]
- Christopoulos, J.; Saide, P.; Ferrare, R.; Collister, B.; Barton-Grimley, R.; Scarino, A.; Collins, J.; Hair, J.; Nehrir, A. Improving planetary boundary layer height estimation from airborne lidar instruments. J. Geophys. Res. Atmos. 2025, 130, e2024JD042538. [Google Scholar] [CrossRef]
- Ryan, R.G.; Eckert, C.; Kelaher, B.P.; Harrison, D.P.; Schofield, R. Boundary layer height above the Great Barrier Reef studied using drone and Mini-Micropulse LiDAR measurements. J. South. Hemisph. Earth Syst. Sci. 2024, 74, ES24008. [Google Scholar] [CrossRef]
- Pal, S.; Haeffelin, M.; Batchvarova, E. Exploring a geophysical process-based attribution technique for the determination of the atmospheric boundary layer depth using aerosol lidar and near-surface meteorological measurements. J. Geophys. Res. Atmos. 2013, 118, 9277–9295. [Google Scholar] [CrossRef]
- Haeffelin, M.; Angelini, F.; Morille, Y.; Martucci, G.; Frey, S.; Gobbi, G.; Lolli, S.; O’dowd, C.; Sauvage, L.; Xueref-Remy, I. Evaluation of mixing-height retrievals from automatic profiling lidars and ceilometers in view of future integrated networks in Europe. Bound.-Layer Meteorol. 2012, 143, 49–75. [Google Scholar] [CrossRef]
- Angevine, W.M.; White, A.B.; Avery, S.K. Boundary-layer depth and entrainment zone characterization with a boundary-layer profiler. Bound.-Layer Meteorol. 1994, 68, 375–385. [Google Scholar] [CrossRef]
- White, A.; Senff, C.; Banta, R. A comparison of mixing depths observed by ground-based wind profilers and an airborne lidar. J. Atmos. Ocean. Technol. 1999, 16, 584–590. [Google Scholar] [CrossRef]
- Compton, J.C.; Delgado, R.; Berkoff, T.A.; Hoff, R.M. Determination of planetary boundary layer height on short spatial and temporal scales: A demonstration of the covariance wavelet transform in ground-based wind profiler and lidar measurements. J. Atmos. Ocean. Technol. 2013, 30, 1566–1575. [Google Scholar] [CrossRef]
- Lehmann, V.; Teschke, G. Advanced intermittent clutter filtering for radar wind profiler: Signal separation through a Gabor frame expansion and its statistics. Ann. Geophys. 2008, 26, 759–783. [Google Scholar] [CrossRef][Green Version]
- Wang, L.; Qiang, W.; Xia, H.; Wei, T.; Yuan, J.; Jiang, P. Robust Solution for Boundary Layer Height Detections with Coherent Doppler Wind Lidar. Adv. Atmos. Sci. 2021, 38, 1920–1928. [Google Scholar] [CrossRef]
- Peña, A.; Gryning, S.E.; Hahmann, A.N. Observations of the atmospheric boundary layer height under marine upstream flow conditions at a coastal site. J. Geophys. Res. Atmos. 2013, 118, 1924–1940. [Google Scholar] [CrossRef]
- Tucker, S.C.; Senff, C.J.; Weickmann, A.M.; Brewer, W.A.; Banta, R.M.; Sandberg, S.P.; Law, D.C.; Hardesty, R.M. Doppler lidar estimation of mixing height using turbulence, shear, and aerosol profiles. J. Atmos. Ocean. Technol. 2009, 26, 673–688. [Google Scholar] [CrossRef]
- Barlow, J.F.; Dunbar, T.; Nemitz, E.; Wood, C.R.; Gallagher, M.; Davies, F.; O’Connor, E.; Harrison, R. Boundary layer dynamics over London, UK, as observed using Doppler lidar during REPARTEE-II. Atmos. Chem. Phys. 2011, 11, 2111–2125. [Google Scholar] [CrossRef]
- Su, L.; Xia, H.; Yuan, J.; Wang, Y.; Maituerdi, A.; He, Q. Study on daytime atmospheric mixing layer height based on 2-Year coherent doppler wind lidar observations at the southern edge of the Taklimakan Desert. Remote Sens. 2024, 16, 3005. [Google Scholar] [CrossRef]
- Xian, J.; Luo, H.; Lu, C.; Lin, X.; Yang, H.; Zhang, N. Characteristics of the atmospheric boundary layer height: A perspective on turbulent motion. Sci. Total Environ. 2024, 919, 170895. [Google Scholar] [CrossRef] [PubMed]
- Hirsikko, A.; O’Connor, E.; Komppula, M.; Korhonen, K.; Pfüller, A.; Giannakaki, E.; Wood, C.; Bauer-Pfundstein, M.; Poikonen, A.; Karppinen, T. Observing wind, aerosol particles, cloud and precipitation: Finland’s new ground-based remote-sensing network. Atmos. Meas. Tech. 2014, 7, 1351–1375. [Google Scholar] [CrossRef]
- Schween, J.; Hirsikko, A.; Löhnert, U.; Crewell, S. Mixing-layer height retrieval with ceilometer and Doppler lidar: From case studies to long-term assessment. Atmos. Meas. Tech. 2014, 7, 3685–3704. [Google Scholar] [CrossRef]
- Seidel, D.J.; Zhang, Y.; Beljaars, A.; Golaz, J.C.; Jacobson, A.R.; Medeiros, B. Climatology of the planetary boundary layer over the continental United States and Europe. J. Geophys. Res. Atmos. 2012, 117, D17106. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, J.; Yang, K.; Liao, H.; Zhang, S.; Huang, K.; Lv, Y.; Shao, J.; Yu, T.; Tong, B. Investigation of near-global daytime boundary layer height using high-resolution radiosondes: First results and comparison with ERA-5, MERRA-2, JRA-55, and NCEP-2 reanalyses. Atmos. Chem. Phys. Discuss. 2021, 21, 17079–17097. [Google Scholar] [CrossRef]
- Pearson, G.; Davies, F.; Collier, C. Remote sensing of the tropical rain forest boundary layer using pulsed Doppler lidar. Atmos. Chem. Phys. 2010, 10, 5891–5901. [Google Scholar] [CrossRef]
- Träumner, K.; Kottmeier, C.; Corsmeier, U.; Wieser, A. Convective boundary-layer entrainment: Short review and progress using Doppler lidar. Bound.-Layer Meteorol. 2011, 141, 369–391. [Google Scholar] [CrossRef]
- Wang, C.; Jia, M.; Xia, H.; Wu, Y.; Wei, T.; Shang, X.; Yang, C.; Xue, X.; Dou, X. Relationship analysis of PM 2.5 and boundary layer height using an aerosol and turbulence detection lidar. Atmos. Meas. Tech. 2019, 12, 3303–3315. [Google Scholar] [CrossRef]
- Holzworth, G.C. Estimates of mean maximum mixing depths in the contiguous United States. Mon. Weather Rev. 1964, 92, 235–242. [Google Scholar] [CrossRef]
- Seibert, P.; Beyrich, F.; Gryning, S.-E.; Joffre, S.; Rasmussen, A.; Tercier, P. Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ. 2000, 34, 1001–1027. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, H.; Guo, J.; Zhang, W. Contrasting effect of soil moisture on the daytime boundary layer under different thermodynamic conditions in summer over China. Geophys. Res. Lett. 2021, 48, e2020GL090989. [Google Scholar] [CrossRef]
- Sørensen, J.; Rasmussen, A.; Svensmark, H. Forecast of atmospheric boundary-layer height utilised for ETEX real-time dispersion modelling. Phys. Chem. Earth 1996, 21, 435–439. [Google Scholar] [CrossRef]
- De Haij, M.; Wauben, W.; Baltink, H.K. Continuous Mixing Layer Height Determination Using the LD-40 Ceilometer: A Feasibility Study; Royal Netherlands Meteorological Institute (KNMI): De Bilt, The Netherlands, 2007. [Google Scholar]
- Wang, L.; Liu, J.; Gao, Z.; Li, Y.; Huang, M.; Fan, S.; Zhang, X.; Yang, Y.; Miao, S.; Zou, H. Vertical observations of the atmospheric boundary layer structure over Beijing urban area during air pollution episodes. Atmos. Chem. Phys. 2019, 19, 6949–6967. [Google Scholar] [CrossRef]
- Wang, Z.; Cao, X.; Zhang, L.; Notholt, J.; Zhou, B.; Liu, R.; Zhang, B. Lidar measurement of planetary boundary layer height and comparison with microwave profiling radiometer observation. Atmos. Meas. Tech. 2012, 5, 1965–1972. [Google Scholar] [CrossRef]
- Kotthaus, S.; Bravo-Aranda, J.A.; Collaud Coen, M.; Guerrero-Rascado, J.L.; Costa, M.J.; Cimini, D.; O’Connor, E.J.; Hervo, M.; Alados-Arboledas, L.; Jiménez-Portaz, M. Atmospheric boundary layer height from ground-based remote sensing: A review of capabilities and limitations. Atmos. Meas. Tech. Discuss. 2022, 16, 433–479. [Google Scholar] [CrossRef]













| Parameter | Doppler Wind Lidar | Microwave Radiometer | Radiosonde |
|---|---|---|---|
| Manufacturer | Shenzhen Dashun Laser Technology Co., Ltd., Shenzhen, China | Hangzhou Qianhai Technology Co., Ltd., Hangzhou, Chnia | Nanjing Daqiao Machine Co., Ltd., Nanjing, China |
| Instrument model | DSL-W1K | SMR-100 | GFE(L)1/GTS1 |
| Maximum vertical detection altitudes | 4 km | 10 km | >10 km |
| Spatial resolution | 30 m | 25 m (0–500 m), 50 m (500 m–2 km), 250 m (2–10 km) | - |
| Temporal resolution | 7 s or 8 s | 2 min | 1 s |
| Date | Time | |||||||
|---|---|---|---|---|---|---|---|---|
| 20 October | 07:15 | 570 | - | - | 70 | 80 | 160 | 120 |
| 19:15 | 420 | 180 | - | 70 | 330 | 280 | 260 | |
| 21 October | 07:15 | 300 | 30 | - | 260 | 120 | 80 | 40 |
| 19:15 | 870 | 30 | - | 110 | 120 | 80 | 100 |
| Date | Time | |||||||
|---|---|---|---|---|---|---|---|---|
| 3 November | 07:15 | 240 | - | - | 70 | 160 | 200 | 140 |
| 19:15 | 360 | 270 | - | - | 720 | 760 | 410 | |
| 3 November | 07:15 | 660 | 60 | 190 | - | 290 | 110 | 100 |
| 19:15 | 1230 | 60 | - | 60 | 150 | 70 | 30 |
| Date | Time | |||||||
|---|---|---|---|---|---|---|---|---|
| 1 November | 07:15 | 450 | 210 | - | 12 | 120 | 70 | 60 |
| 19:15 | 450 | 240 | - | - | 290 | 240 | 180 | |
| 2 November | 07:15 | 390 | 390 | 160 | - | 470 | 300 | 130 |
| 19:15 | 690 | 570 | - | - | 160 | 100 | 420 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Liu, C.; Shu, Z.; Yang, L.; Wang, H.; Cao, C.; Hou, Y.; Wen, S. Retrieving Boundary Layer Height Using Doppler Wind Lidar and Microwave Radiometer in Beijing Under Varying Weather Conditions. Remote Sens. 2026, 18, 296. https://doi.org/10.3390/rs18020296
Liu C, Shu Z, Yang L, Wang H, Cao C, Hou Y, Wen S. Retrieving Boundary Layer Height Using Doppler Wind Lidar and Microwave Radiometer in Beijing Under Varying Weather Conditions. Remote Sensing. 2026; 18(2):296. https://doi.org/10.3390/rs18020296
Chicago/Turabian StyleLiu, Chen, Zhifeng Shu, Lu Yang, Hui Wang, Chang Cao, Yuxing Hou, and Shenghuan Wen. 2026. "Retrieving Boundary Layer Height Using Doppler Wind Lidar and Microwave Radiometer in Beijing Under Varying Weather Conditions" Remote Sensing 18, no. 2: 296. https://doi.org/10.3390/rs18020296
APA StyleLiu, C., Shu, Z., Yang, L., Wang, H., Cao, C., Hou, Y., & Wen, S. (2026). Retrieving Boundary Layer Height Using Doppler Wind Lidar and Microwave Radiometer in Beijing Under Varying Weather Conditions. Remote Sensing, 18(2), 296. https://doi.org/10.3390/rs18020296

