Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = thermal resistance of insulating plate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5529 KiB  
Article
Thermal Characterization Methods of Novel Substrate Materials Utilized in IGBT Modules
by János Hegedüs, Péter Gábor Szabó, László Pohl, Gusztáv Hantos, Gyula Lipák, Andrea Reolon and Ferenc Ender
Electron. Mater. 2025, 6(3), 9; https://doi.org/10.3390/electronicmat6030009 (registering DOI) - 31 Jul 2025
Viewed by 73
Abstract
In this article, thermal investigation methods for electrically insulating and thermally conductive substrate materials will be presented. The investigations were performed in their real-world application environment, i.e., in the form of IGBT (insulated gate bipolar transistor) module substrate plates. First, the overall thermal [...] Read more.
In this article, thermal investigation methods for electrically insulating and thermally conductive substrate materials will be presented. The investigations were performed in their real-world application environment, i.e., in the form of IGBT (insulated gate bipolar transistor) module substrate plates. First, the overall thermal resistance and thermal structure function of the system in a multivariable parameter space were revealed using CFD (computational fluid dynamics) simulations. Afterwards, thermal transient testing was performed on real samples, with the help of which the thermal resistance values of the modules were determined using the thermal dual interface test method. The presented tests are not intended to determine material parameters, but to rank different substrate materials based on their thermal performance. Full article
Show Figures

Figure 1

20 pages, 3689 KiB  
Article
Numerical Investigation and Optimization of Transpiration Cooling Plate Structures with Combined Particle Diameter
by Dan Wang, Yaxin Liu, Xiang Zhang, Mingliang Kong and Hanchao Liu
Energies 2025, 18(11), 2950; https://doi.org/10.3390/en18112950 - 4 Jun 2025
Viewed by 403
Abstract
Transpiration cooling is an efficient thermal protection technology used for scramjet combustors and other components. However, a conventional transpiration cooling plate structure with uniform porous media distribution suffers from a large temperature difference between the upstream and downstream surfaces and high coolant injection [...] Read more.
Transpiration cooling is an efficient thermal protection technology used for scramjet combustors and other components. However, a conventional transpiration cooling plate structure with uniform porous media distribution suffers from a large temperature difference between the upstream and downstream surfaces and high coolant injection pressure (p). To enhance the overall cooling effect and reduce the maximum surface temperature and coolant injection pressure, the combined particle diameter plate structure (CPD−PS) is proposed. Numerical simulations show that compared with the single-particle diameter plate structure (SPD−PS), the CPD−PS with a larger upstream particle diameter (dp) than that of the downstream (dpA > dpB) can effectively reduce the upstream temperature and improve average cooling efficiency (ηave). Meanwhile, gradually increasing dp will increase the permeability of porous media, reduce coolant flow resistance, and thus lower coolant injection pressure. An optimization analysis of CPD−PS is conducted using response surface methodology (RSM), and the influence of design variables on the objective function (ηave and p) is analyzed. Further optimization with the multi-objective genetic algorithm (MOGA) determines the optimal structural parameters. The results suggest that porosity (ε) and dp are the most crucial parameters affecting ηave and p of CPD−PS. After optimization, the maximum temperature of the porous plate is significantly reduced by 8.40%, and the average temperature of the hot end surface is also reduced. The overall cooling performance is effectively improved, ηave is increased by 6.02%, and p is significantly reduced. Additionally, the upstream surface velocity of the optimized structure changes and the boundary layer thickens, which enhances the thermal insulation effect. Full article
Show Figures

Figure 1

15 pages, 4269 KiB  
Article
The Effect of Thermal Conductivity for Buildings’ Composite Panels Including Used Materials on Heat Variation and Energy Consumption
by Eliza Chircan, Vasile Gheorghe, Iuliana Costiuc and Liviu Costiuc
Buildings 2025, 15(10), 1599; https://doi.org/10.3390/buildings15101599 - 9 May 2025
Viewed by 521
Abstract
Alongside technological advancement, there is a growing need for materials that are easier to obtain and process and that offer multiple uses, thereby reducing environmental impact. Such materials are generally subject to mechanical, resistance and fatigue studies, often without considering their thermal properties, [...] Read more.
Alongside technological advancement, there is a growing need for materials that are easier to obtain and process and that offer multiple uses, thereby reducing environmental impact. Such materials are generally subject to mechanical, resistance and fatigue studies, often without considering their thermal properties, which could potentially expand the range of applications for the studied compound. The current study aims to analyze possible fluctuations and deviations from linearity in temperature flow curves, as well as their impact on the conductivity coefficient. These studies are conducted on a new type of panel made of fiberglass, a low-cost material with significant recycling potential, using foam elements recycled from packaging insulations and a cement biding mixture. This study considers the time variation of the different thermal coefficients and the temperature curves obtained from the experimental measurements. These data are analyzed and used to simulate heat variation in order to observe the heat flux fluctuations within the plate. The results suggest that the proposed composite plate can serve as an alternative to classical insulating panels. Full article
Show Figures

Figure 1

11 pages, 3283 KiB  
Article
Foamy Melamine Resin–Silica Aerogel Composite-Derived Thermal Insulation Coating
by Dongfang Wang, Yabin Ma, Yingjie Ma, Baolei Liu, Dewen Sun and Qianping Ran
Nanomaterials 2025, 15(2), 135; https://doi.org/10.3390/nano15020135 - 17 Jan 2025
Viewed by 1210
Abstract
A novel class of SiO2 aerogel-based resin composite with a self-formed foamy structure and an extremely low thermal conductivity, as well as excellent fire resistance, was fabricated via a room temperature and atmospheric pressure route. The self-formed foamy structure was achieved by [...] Read more.
A novel class of SiO2 aerogel-based resin composite with a self-formed foamy structure and an extremely low thermal conductivity, as well as excellent fire resistance, was fabricated via a room temperature and atmospheric pressure route. The self-formed foamy structure was achieved by utilizing SiO2 aerogel particles not only as a thermal insulative functional additive filler but also as nano-sized solid particles in a Picking emulsion system, adjusting the surface tension as a stabilizer at the interface between the two immiscible phases (liquid and air in this case). The results of foamy structure analyses via scanning electron microscopy, micro-CT, and N2 adsorption–desorption isotherms validate the successful generation of a micro-scale porous structure with the enhancement of the aerogel nano-scale solid particles at the wall as a stabilizer. A combination of multiscale pores imbues the aerogel-based foamy coating with a low thermal conductivity, as well as a high cohesive strength. For the foamy coating studied, with variable emulsion/foaming agent/aerogel ratios of 1/2/x, the thermal conductivity decreases from 0.141 to 0.031 W/m·K, and the cohesive strength increases from being non-detectable to 0.41 MPa. The temperature difference, which is a direct indicator of the thermal insulation behavior of the foamy coating, can increase from 12.1 °C to 48.6 °C under an 80 °C hot plate. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

17 pages, 4276 KiB  
Article
Revolutionizing Construction Safety with Geopolymer Composites: Unveiling Advanced Techniques in Manufacturing Sandwich Steel Structures Using Formwork-Free Spray Technology
by Van Su Le and Kinga Setlak
Coatings 2024, 14(1), 146; https://doi.org/10.3390/coatings14010146 - 21 Jan 2024
Cited by 1 | Viewed by 2161
Abstract
The article discusses the fabrication of sandwich steel and geopolymer structures using spray technology without the need for formwork. In the article, the effects of high temperatures on geopolymer materials are analyzed and their mechanical properties and durability are examined. The importance of [...] Read more.
The article discusses the fabrication of sandwich steel and geopolymer structures using spray technology without the need for formwork. In the article, the effects of high temperatures on geopolymer materials are analyzed and their mechanical properties and durability are examined. The importance of geopolymer coatings for steel protection is also highlighted, and specific features such as the setting time, application process, attachment strength, fire testing, and production costs are analyzed. The materials and methods used in the study are described, including the composition of geopolymer binders and the process of applying geopolymer coatings to steel plates. The research includes test methods such as strength tests, density tests, thermal conductivity tests, accelerated aging tests, microstructure analyses, pore size analyses, and fire resistance tests. The research section concludes with a summary of the chemical and phase composition of the materials and a discussion of the fire resistance of the geopolymer composites (GCs). The results show that GC foams offer excellent thermal insulation, providing up to 75 min of fire resistance with a 6 mm coating, reducing temperatures by 150 °C compared to uncoated steel. GC foams have a density of 670 kg/m3, a thermal conductivity of 0.153 W/m∙K, and a cost effectiveness of USD 250 per cubic meter. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

25 pages, 9757 KiB  
Article
Redesign of a Disc-on-Disc Computer Numerical Control Tribometer for a Wide-Range and Shudder-Resistant Operation
by Matija Hoić, Mario Hrgetić, Nenad Kranjčević, Joško Deur and Andreas Tissot
Machines 2024, 12(1), 14; https://doi.org/10.3390/machines12010014 - 26 Dec 2023
Cited by 1 | Viewed by 1809
Abstract
The paper presents a redesign of the custom disc-on-disc-type tribometer intended for the experimental characterization of the friction and wear of automotive dry clutch friction lining. The redesign is aimed at expanding the operating range at which the machine is not sensitive to [...] Read more.
The paper presents a redesign of the custom disc-on-disc-type tribometer intended for the experimental characterization of the friction and wear of automotive dry clutch friction lining. The redesign is aimed at expanding the operating range at which the machine is not sensitive to shudder vibrations. This is achieved through a set of hardware and software upgrade measures. First, the natural frequency of the normal load-generation linear axis of the machine is increased by enlarging its bending stiffness and reducing the suspended mass. The former is realized by replacing the single, two-axial force/torque piezoelectric sensor with a set of three three-axial piezoelectric force sensors, adding a set of stiff linear guides, and reducing the lengths of the cantilevers of lateral forces acting on the linear axis guide system. The latter is accomplished by reducing the overall dimensions of the cooling disc and redesigning the thermal insulation components. The shudder sensitivity resistance is further reduced through individual normal force-readings-based adjustment of parallelism between friction contact surfaces and the increase in the stiffness of eccentrically positioned water-cooling pipes. Finally, the stability of the coefficient of friction and, consequently, the wear process are boosted by adjusting the control routines to minimize the circumferential and/or radial temperature gradients. These adjustments include the introduction of a clutch lock-up interval at the end of the clutch closing cycle, a minimum cooling delay inserted between two closing cycles, and maximum normal force demand of the clutch torque controller. The performance gain of the upgraded tribometer is demonstrated through a study of the dry clutch friction plate static wear experimental characterization for a wide range of operating conditions. Full article
(This article belongs to the Special Issue Advances in Vehicle Brake and Clutch Systems)
Show Figures

Figure 1

13 pages, 2089 KiB  
Article
Experimental Investigation of Temperature Distribution in a Laminar Boundary Layer over a Heated Flat Plate with Localized Transverse Cold Air Injections
by Muhammad Ehtisham Siddiqui, Ammar A. Melaibari and Fahad Sarfraz Butt
Energies 2023, 16(17), 6171; https://doi.org/10.3390/en16176171 - 25 Aug 2023
Viewed by 1996
Abstract
This study presents an experimental investigation focused on the interaction between a transverse injection of cold air (blowing) and the boundary layer over a heated flat plate. The flat plate was equipped with a cylindrical coil heater positioned at its center along the [...] Read more.
This study presents an experimental investigation focused on the interaction between a transverse injection of cold air (blowing) and the boundary layer over a heated flat plate. The flat plate was equipped with a cylindrical coil heater positioned at its center along the flow direction. The constant heat flux was maintained using a variable resistance potentiometer. The flat plate with the heater was mounted inside a subsonic wind tunnel to sustain a constant laminar air flow. The primary objective of this research was to examine the effects of cold air injections through localized holes in the flat plate near the trailing edge on the thermal boundary layer thickness δt(x,Rex,Pr). The thermal boundary layer thickness was measured using K-type thermocouples and PT-100 RTD sensors, which are made to move precise, small distances using a specially constructed traversing mechanism. Cold air was injected using purposefully fabricated metal capillary tubes force-fitted into holes through the hot flat plate. The metal tubes were thermally insulated using class-F insulation, which is used in electric motor windings. The presented work focused on a fixed free-stream velocity and a fixed cold-injection velocity less than the free-stream velocity but for two-variable heat fluxes. The results show that the thermal boundary layer thickness generally increased due to the secondary cold flow. Full article
(This article belongs to the Collection Advances in Heat Transfer Enhancement)
Show Figures

Figure 1

14 pages, 4302 KiB  
Article
Thermal Performance Optimization of Integrated Microchannel Cooling Plate for IGBT Power Module
by Hanyang Xu, Jiabo Huang, Wenchao Tian and Zhao Li
Micromachines 2023, 14(8), 1498; https://doi.org/10.3390/mi14081498 - 26 Jul 2023
Cited by 10 | Viewed by 3045
Abstract
In high-integration electronic components, the insulated-gate bipolar transistor (IGBT) power module has a high working temperature, which requires reasonable thermal analysis and a cooling process to improve the reliability of the IGBT module. This paper presents an investigation into the heat dissipation of [...] Read more.
In high-integration electronic components, the insulated-gate bipolar transistor (IGBT) power module has a high working temperature, which requires reasonable thermal analysis and a cooling process to improve the reliability of the IGBT module. This paper presents an investigation into the heat dissipation of the integrated microchannel cooling plate in the silicon carbide IGBT power module and reports the impact of the BL series micropump on the efficiency of the cooling plate. The IGBT power module was first simplified as an equivalent-mass block with a mass of 62.64 g, a volume of 15.27 cm3, a density of 4.10 g/cm3, and a specific heat capacity of 512.53 J/(kg·K), through an equivalent method. Then, the thermal performance of the microchannel cooling plate with a main channel and a secondary channel was analyzed and the design of experiment (DOE) method was used to provide three factors and three levels of orthogonal simulation experiments. The three factors included microchannel width, number of secondary inlets, and inlet diameter. The results show that the microchannel cooling plate significantly reduces the temperature of IGBT chips and, as the microchannel width, number of secondary inlets, and inlet diameter increase, the junction temperature of chips gradually decreases. The optimal structure of the cooling plate is a microchannel width of 0.58 mm, 13 secondary inlets, and an inlet diameter of 3.8 mm, and the chip-junction temperature of this structure is decreased from 677 °C to 77.7 °C. In addition, the BL series micropump was connected to the inlet of the cooling plate and the thermal performance of the microchannel cooling plate with a micropump was analyzed. The micropump increases the frictional resistance of fluid flow, resulting in an increase in chip-junction temperature to 110 °C. This work demonstrates the impact of micropumps on the heat dissipation of cooling plates and provides a foundation for the design of cooling plates for IGBT power modules. Full article
Show Figures

Figure 1

20 pages, 3660 KiB  
Article
Composite Materials of Rice Husk and Reed Fibers for Thermal Insulation Plates Using Sodium Silicate as a Binder
by Alana Silva, Florindo Gaspar and Aliaksandr Bakatovich
Sustainability 2023, 15(14), 11273; https://doi.org/10.3390/su151411273 - 19 Jul 2023
Cited by 12 | Viewed by 10081
Abstract
The civil construction industry is responsible for a large part of the world’s energy consumption; therefore, in recent years, sustainable practices in this sector have become increasingly common to minimize the environmental impacts of civil construction during the life cycle of buildings. As [...] Read more.
The civil construction industry is responsible for a large part of the world’s energy consumption; therefore, in recent years, sustainable practices in this sector have become increasingly common to minimize the environmental impacts of civil construction during the life cycle of buildings. As a result, new materials and more sustainable building techniques are being sought. In Portugal, rice husk is an abundant agricultural waste with great potential to be used as a raw material in thermal insulation materials, as well as giant reed, which is considered an invasive plant. In this study, thermal insulation plates composed of rice husks and/or reed fiber were developed, using sodium silicate as a binder in various proportions and with dimensions of 30 × 30 × 3 cm and density ranging between 0.219 and 0.352 g/cm3. The main objective of the study is to evaluate the thermal characteristics of the plates, such as thermal conductivity, as well as the mechanical resistance to bending and water absorption. The results of the thermal conductivity tests were promising for all compositions, with values in the range between 0.0602 and 0.0745 W/m·K, meeting the requirements to be considered as thermal insulation materials. The results for bending strength and water absorption presented values within the expected range for materials of vegetal origin. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

16 pages, 3688 KiB  
Article
Performance Evaluation and Optimization of Series Flow Channel Water-Cooled Plate for IGBT Modules
by Liyi He, Xue Hu, Lixin Zhang, Tongtong Xing and Zemin Jin
Energies 2023, 16(13), 5205; https://doi.org/10.3390/en16135205 - 6 Jul 2023
Cited by 10 | Viewed by 2265
Abstract
The stability in the operation of insulated gate bipolar transistor (IGBT) modules plays a crucial role in wind power generation. It is essential to improve the thermal performance of the heat sink of IGBT modules in wind power converters and reduce the power [...] Read more.
The stability in the operation of insulated gate bipolar transistor (IGBT) modules plays a crucial role in wind power generation. It is essential to improve the thermal performance of the heat sink of IGBT modules in wind power converters and reduce the power consumption of liquid cooling systems, in order to optimize the heat dissipation of IGBT modules in wind power converters. In this paper, a simulation model of the liquid-cooled heat sink of the IGBT module is established and the performance of three different series flow channel structures is compared by computational fluid dynamics (CFD). Moreover, based on the orthogonal test design, the three factors (channel width, channel height, and cold plate wall thickness) affecting the performance of the water-cooled plate were ranked and optimized. The results show that the water-cooled plate with double-helical-type flow channel structure has the best comprehensive performance. In addition, for the double-helical-type structure, the optimal combination of channel structure parameters about channel width, channel height, and cold plate wall thickness is obtained. After optimization, the maximum IGBT temperature, thermal resistance, and pressure drop of the cold plate are reduced by 3.13%, 5.78%, and 18.87%, respectively, compared with the double-S structure in parameter case one. The proposed methods and results are expected to provide theoretical guidance for the thermal management of IGBT modules in wind power converters. Full article
Show Figures

Figure 1

16 pages, 13309 KiB  
Article
A Novel Inorganic Aluminum Phosphate-Based Flame Retardant and Thermal Insulation Coating and Performance Analysis
by Guoshuai Cai, Jiaxuan Wu, Jiayi Guo, Yange Wan, Qingjun Zhou, Pengyu Zhang, Xiaolei Yu and Mingchao Wang
Materials 2023, 16(13), 4498; https://doi.org/10.3390/ma16134498 - 21 Jun 2023
Cited by 21 | Viewed by 3287
Abstract
Currently, most thin-layer expandable coatings are polymer-based, with very few inorganic expandable coatings. Due to the high environmental friendliness of inorganic coatings, studying new types of inorganic coatings is of great significance. A novel amorphous aluminum phosphate-based flame-retardant coating was prepared by modifying [...] Read more.
Currently, most thin-layer expandable coatings are polymer-based, with very few inorganic expandable coatings. Due to the high environmental friendliness of inorganic coatings, studying new types of inorganic coatings is of great significance. A novel amorphous aluminum phosphate-based flame-retardant coating was prepared by modifying it with nano-silica, hollow silica beads, hollow glass microspheres, and boron carbide. A comprehensive study was conducted on the flame retardancy and thermal insulation performance, composition and structural evolution under flame and physical and chemical properties, and the mechanisms of flame retardancy and thermal insulation were elucidated. Large-plate combustion testing, bonding strength testing, XRD, IR, TG-DSC, and SEM testing were all applied in this work. The synergistic effect of the four fillers was very obvious, and a series of AP22XY (nano-silica/silica beads/hollow glass microspheres/boron carbide = 2:2:0:4, 2:2:1:3, 2:2:2:2, 2:2:3:1, 2:2:4:0) coatings were prepared. The change in the ratio of glass microspheres to boron carbide had a significant impact on the composition and structural evolution of the coating, thus reflecting its effectiveness as a flame retardant and thermal insulation. Although decreasing the ratio would promote the formation of borosilicate glass and Al18B4O33 and improve the thermal stability of coatings, the structure inside of the coating, especially the skeleton, would be dense, which is not conducive to thermal insulation. When the ratio of glass microspheres to boron carbide is 3:1, AP2231 shows the best fire resistance. Under the combustion of butane flame at about 1200–1300 °C, the backside temperature reaches a maximum of 226 °C at 10 min, and then the temperature gradually decreases to 175 °C at 60 min. This excellent performance is mainly attributed to three aspects: (1) the foaming and expandability of coatings when exposed to fire, (2) the multiple endothermic reactions the coating undergoes, and (3) the improvement effect of boron carbide. Additionally, AP2231 shows the best bonding performance with a strength of close to 4.5 MPa after combustion, because of the appropriate content matching between borosilicate glass, Al18B4O33, and hollow glass microspheres. The coating has potential application prospects in the construction and transportation fields, such as the protection of structural steel, fire prevention in subways and tunnels, and the prevention of lithium battery fires. Full article
Show Figures

Figure 1

18 pages, 5260 KiB  
Article
Structure and Operation Optimization of a Form-Stable Carbonate/Ceramic-Based Electric Thermal Storage Device for Space Heating
by Xinyu Pan, Mengdi Yuan, Guizhi Xu, Xiao Hu, Zhirong Liao and Chao Xu
Energies 2023, 16(11), 4506; https://doi.org/10.3390/en16114506 - 3 Jun 2023
Viewed by 1319
Abstract
The escalating demand for heating and the widespread use of CO2-emitting fossil fuels during cold seasons have imposed significant pressure on our natural resources. As a promising alternative to coal-fired boilers, electrical thermal storage devices (ETSDs) for space heating are gaining [...] Read more.
The escalating demand for heating and the widespread use of CO2-emitting fossil fuels during cold seasons have imposed significant pressure on our natural resources. As a promising alternative to coal-fired boilers, electrical thermal storage devices (ETSDs) for space heating are gaining popularity. However, designing ETSDs for space heating involves significant challenges, which involve their storage rate and operational stability. In contrast to the research of directly developing mid-temperature ETSDs to manage heat release during long heating hours, this study proposed a new ETSD that uses K2CO3–Na2CO3 for high-temperature storage to match the off-peak hours and thereby gain potential economic benefits. This study used experimental and simulation methods to investigate the ETSD’s temperature distribution. An operational strategy was also proposed to achieve more efficient temperature distribution and higher economic benefits. The ETSD with two steel plates and two insulation layers with a power rating of 1.6 kW was found to be the optimum structure, due to its improved heat storage rate (2.1 °C/min), uniform temperature, and material heat resistance (<750 °C). An energy analysis, economic analysis, and a 7-day cycling operation performance of the device were then conducted by comparing the proposed ETSD with a traditional electric heater. The results revealed that the proposed ETSD released 53.4% of the stored energy in the room, and stored 48.6% of it during valley electric time. The total cost of the proposed ETSD was consistently lower than the traditional electric heater in the second heating season (by the 213th day). The efficiency of its valley heat storage for users was 37.2%. Overall, this study provides valuable insights into the development and practical applications of ETSD systems for space heating. Full article
Show Figures

Figure 1

22 pages, 5091 KiB  
Article
Evaluation of Efficiency for Miniscale Thermoelectric Converter under the Influence of Electrical and Thermal Resistance of Contacts
by Lyudmyla Vikhor and Maxim Kotsur
Energies 2023, 16(10), 4082; https://doi.org/10.3390/en16104082 - 13 May 2023
Cited by 11 | Viewed by 2154
Abstract
Mass-produced thermoelectric modules are mainly fabricated with Bi2Te3-based materials. Due to the limited world reserves and the high price of tellurium, it must be saved. The miniaturization of thermoelectric converters is one of the modern trends to diminish the [...] Read more.
Mass-produced thermoelectric modules are mainly fabricated with Bi2Te3-based materials. Due to the limited world reserves and the high price of tellurium, it must be saved. The miniaturization of thermoelectric converters is one of the modern trends to diminish the use of tellurium, reduce the cost of modules and expand the range of their applications. The main disadvantage of miniature thermoelectric converters operating in cooling or generating modes is their low energy efficiency, caused by the effect of electrical and thermal resistances of contacts, interconnectors and insulating plates. We propose an improved method for evaluating the maximum efficiency that takes into consideration the impact of these unwanted resistances. This method can also be used to design the modules with the optimal structure for cooling and energy generation, and not only to study their performance. The effect of undesirable electrical and thermal resistances on the maximum efficiency of cooling and generating converters made of Bi2Te3-based materials is analyzed. It is shown that the efficiency of miniature modules can be significantly improved if these resistances are reduced to their rational values. The decrease in electrical contact resistance is the predominant factor. The rational values to which it is advisable to decrease the electrical contact resistance have been determined. In the development of miniscale module technology, it is necessary to focus on such rational contact resistance values. Full article
(This article belongs to the Special Issue Theory and Applications of Thermoelectric Materials and Devices)
Show Figures

Figure 1

22 pages, 7790 KiB  
Article
Multicriteria Analysis of a Solar-Assisted Space Heating Unit with a High-Temperature Heat Pump for the Greek Climate Conditions
by Evangelos Bellos, Panagiotis Lykas, Dimitrios Tsimpoukis, Dimitrios N. Korres, Angeliki Kitsopoulou, Michail Gr. Vrachopoulos and Christos Tzivanidis
Appl. Sci. 2023, 13(6), 4066; https://doi.org/10.3390/app13064066 - 22 Mar 2023
Cited by 2 | Viewed by 2314
Abstract
The goal of this investigation is the thorough analysis and optimization of a solar-assisted heat pump heating unit for covering the space heating demand for a building in Athens, Greece. The novelty of the studied system is the use of a high-temperature heat [...] Read more.
The goal of this investigation is the thorough analysis and optimization of a solar-assisted heat pump heating unit for covering the space heating demand for a building in Athens, Greece. The novelty of the studied system is the use of a high-temperature heat pump that can operate with radiative terminal units, leading to high thermal comfort standards. The examined system includes flat-plate solar thermal collectors, an insulated thermal storage tank, auxiliary electrical thermal resistance in the tank and a high-temperature heat pump. The economic optimization indicates that the optimal design includes 35 m2 of solar thermal collectors connected with a storage tank of 2 m3 for facing the total heating demand of 6785 kWh. In this case, the life cycle cost was calculated at 22,694 EUR, the seasonal system coefficient of performance at 2.95 and the mean solar thermal efficiency at 31.60%. On the other hand, the multi-objective optimization indicates the optimum design is the selection of 50 m2 of solar field connected to a thermal tank of 3 m3. In this scenario, the life cycle cost was calculated at 24,084 EUR, the seasonal system coefficient of performance at 4.07 and the mean solar thermal efficiency at 25.33%. Full article
(This article belongs to the Special Issue Advances in Solar Collector: Techniques and Applications)
Show Figures

Figure 1

16 pages, 6479 KiB  
Article
Influence of Short Carbon Fibers on the Properties of Autoclaved Fiber Cement in Standard Fire Environment
by Tomas Veliseicik, Ramune Zurauskiene, Modestas Kligys and Mark Dauksevic
Materials 2023, 16(6), 2513; https://doi.org/10.3390/ma16062513 - 22 Mar 2023
Cited by 5 | Viewed by 1806
Abstract
In case of a fire, the flame can spread from the building through the outer openings to the outside. In such cases, the fire temperature thermal effect determines the façade fibrocement tile thermal destruction, while the flammable thermo-insulating systems used for building energy [...] Read more.
In case of a fire, the flame can spread from the building through the outer openings to the outside. In such cases, the fire temperature thermal effect determines the façade fibrocement tile thermal destruction, while the flammable thermo-insulating systems used for building energy effectiveness ensures it sets on fire. The spread of such a fire becomes uncontrollable and raises an immediate danger to the people inside the building, while such event dynamics delay and make it harder to put out the fire. Extra additive usage in façade fibrocement tiles can raise its resistance to fire temperature effect. Carbon fiber is widely known as a material resistant to the high temperature destructive effect. An investigation was conducted on the influence that carbon fiber has on the properties of autoclaved fiber cement samples. The autoclaved fiber cement samples were made from the raw materials, typical for façade fiber cement plates, produced in an industrial way (using the same proportions). In the samples, carbon fiber was used instead of mix cellulose fiber in 0.5%, 0.75%, 1% proportions. After completing the density research, it was determined that the carbon fiber effect had no general effect on the sample density. Ultrasound speed spreading research showed that the carbon fiber insignificantly makes sample structure denser; however, after the fire temperature effect, sample structure is less dense when using carbon fiber. The results of both these investigations could be within the margin of error. Insignificant sample structure density rise was confirmed with water absorption research, which during the 1% carbon fiber usage case was lower by 4.3%. It was found that up to 1% carbon fiber usage instead of mix cellulose fiber creates a dense structure of autoclaved fiber cement samples, and the carbon fiber in the microstructure influences the mechanical properties of the autoclaved fiber cement samples. After using carbon fiber in ambient temperature, the sample compressive strength and bending strength increased. However, the results of mechanical properties were completely different after experiencing fire temperature effect. Scanning electron microscopy research showed that the bond between the carbon fiber and the cement matrix was not resistant to high temperature effect, due to which the structure of the samples with carbon fiber weakened. Research showed that carbon fiber lowers the mechanical properties of the autoclaved fiber cement samples after high temperature effect. After analyzing the density, ultrasound speed spreading, water absorption, microstructure and macrostructure, compressive strength, and bending strength, the authors determined the main CF usage for AFK dependencies: 1. CF usage up to 1% replacing MCF makes the AFK structure more dense up to 1.5%, and lowers the water absorption up to 4.3%; 2. CF incorporates itself densely into the AFC microstructure; 3. CF usage up to replacing MCF improves the AFK strength properties up to until the fire temperature effect. Compression strength increases up 7.3% while bending strength increases up to 14.9%. 4. AFK hydrate amount on CF surface is lower than on MCF; 5. Fire temperature effect on AFK with CF causes dehydration by removing water vapor from the microstructure, resulting in a lot of microcracks due to stress; 6. The CF and cement matrix contact zone is not resistant to fire temperature effect. SEM experiments were used to determine the CF “self-removing” effect; 7. Due to complex changes happening in the AFK during fire temperature effect, CF usage does not improve strength properties in the microstructure. Compression strength decreases to 66.7% while bending strength decreases to 20% when compared with E samples. Full article
Show Figures

Figure 1

Back to TopTop