Foamy Melamine Resin–Silica Aerogel Composite-Derived Thermal Insulation Coating
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of the Melamine Resin Aerogel
2.2.2. Measurements and Characterization
3. Results and Discussion
3.1. Surface Area and Porosity
3.2. Microstructure
3.3. Thermal Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, W.; Sun, Y.; Xu, L.; Zhang, Y.; Ma, X. Under the Background of Carbon Peaking and Carbon Neutralization, a New Way to Reduce Emissions of Biomass Waste. Environ. Resour. Ecol. J. 2023, 7, 1–7. [Google Scholar] [CrossRef]
- Nußholz, J.L.K.; Nygaard Rasmussen, F.; Milios, L. Circular Building Materials: Carbon Saving Potential and the Role of Business Model Innovation and Public Policy. Resour. Conserv. Recycl. 2019, 141, 308–316. [Google Scholar] [CrossRef]
- Liang, R.; Zheng, X.; Liang, J.; Hu, L. Energy Efficiency Model Construction of Building Carbon Neutrality Design. Sustainability 2023, 15, 9265. [Google Scholar] [CrossRef]
- Eyvaz, M. Energy-Efficient Approaches in Industrial Applications; IntechOpen: Rijeka, Croatia, 2019; ISBN 9781789855197. [Google Scholar]
- He, S.; Wu, X.; Zhang, X.; Sun, J.; Tian, F.; Guo, S.; Du, H.; Li, P.; Huang, Y. Preparation and Properties of Thermal Insulation Coating Based on Silica Aerogel. Energy Build. 2023, 298, 113556. [Google Scholar] [CrossRef]
- He, F.; Qi, Z.; Zhen, W.; Wu, J.; Huang, Y.; Xiong, X.; Zhang, R. Thermal Conductivity of Silica Aerogel Thermal Insulation Coatings. Int. J. Thermophys. 2019, 40, 1–12. [Google Scholar] [CrossRef]
- Merline, D.J.; Vukusic, S.; Abdala, A.A. Melamine Formaldehyde: Curing Studies and Reaction Mechanism. Polym. J. 2013, 45, 413–419. [Google Scholar] [CrossRef]
- Kavšek, M.; Figar, N.; Mihelič, I.; Krajnc, M. Melamine-Formaldehyde Rigid Foams—Manufacturing and Their Thermal Insulation Properties. J. Cell. Plast. 2022, 58, 175–193. [Google Scholar] [CrossRef]
- Nemanič, V.; Zajec, B.; Žumer, M.; Figar, N.; Kavšek, M.; Mihelič, I. Synthesis and Characterization of Melamine-Formaldehyde Rigid Foams for Vacuum Thermal Insulation. Appl. Energy 2014, 114, 320–326. [Google Scholar] [CrossRef]
- KISTLER, S.S. Coherent Expanded Aerogels and Jellies. Nature 1931, 127, 741. [Google Scholar] [CrossRef]
- Gurav, J.L.; Jung, I.K.; Park, H.H.; Kang, E.S.; Nadargi, D.Y. Silica Aerogel: Synthesis and Applications. J. Nanomater. 2010, 2010, 409310. [Google Scholar] [CrossRef]
- Soleimani Dorcheh, A.; Abbasi, M.H. Silica Aerogel; Synthesis, Properties and Characterization. J. Mater. Process. Technol. 2008, 199, 10–26. [Google Scholar] [CrossRef]
- Akhter, F.; Soomro, S.A.; Inglezakis, V.J. Silica Aerogels; a Review of Synthesis, Applications and Fabrication of Hybrid Composites. J. Porous Mater. 2021, 28, 1387–1400. [Google Scholar] [CrossRef]
- Schwan, M.; Nefzger, S.; Zoghi, B.; Oligschleger, C.; Milow, B. Improvement of Solvent Exchange for Supercritical Dried Aerogels. Front. Mater. 2021, 8, 1–13. [Google Scholar] [CrossRef]
- Liu, L.; Shan, X.; Hu, X.; Lv, W.; Wang, J. Superhydrophobic Silica Aerogels and Their Layer-by-Layer Structure for Thermal Management in Harsh Cold and Hot Environments. ACS Nano 2021, 15, 19771–19782. [Google Scholar] [CrossRef]
- Liu, L.; Fu, J.; Hu, X.; Yuan, D.; Wang, J.; Li, Q. Ultrafine Silica Aerogels Microspheres for Adaptive Thermal Management in Large-Temperature-Fluctuation Environment. Chem. Eng. J. 2023, 470, 144258. [Google Scholar] [CrossRef]
- Goryunova, K.; Gahramanli, Y.; Gurbanova, R. Adsorption Properties of Silica Aerogel-Based Materials. RSC Adv. 2023, 13, 18207–18216. [Google Scholar] [CrossRef]
- Renjith, P.K.; Sarathchandran, C.; Sivanandan Achary, V.; Chandramohanakumar, N.; Sekkar, V. Micro-Cellular Polymer Foam Supported Silica Aerogel: Eco-Friendly Tool for Petroleum Oil Spill Cleanup. J. Hazard. Mater. 2021, 415, 125548. [Google Scholar] [CrossRef]
- Olalekan, A.P.; Dada, A.O.; Adesina, O.A. Review: Silica Aerogel as a Viable Absorbent for Oil Spill Remediation. J. Encapsulation Adsorpt. Sci. 2014, 04, 122–131. [Google Scholar] [CrossRef]
- Xie, H.; He, Z.; Liu, Y.; Zhao, C.; Guo, B.; Zhu, C.; Xu, J. Efficient Antibacterial Agent Delivery by Mesoporous Silica Aerogel. ACS Omega 2022, 7, 7638–7647. [Google Scholar] [CrossRef]
- García-González, C.A.; Sosnik, A.; Kalmár, J.; De Marco, I.; Erkey, C.; Concheiro, A.; Alvarez-Lorenzo, C. Aerogels in Drug Delivery: From Design to Application. J. Control. Release 2021, 332, 40–63. [Google Scholar] [CrossRef]
- Gupta, N.; Ricci, W. Processing and Compressive Properties of Aerogel/Epoxy Composites. J. Mater. Process. Technol. 2008, 198, 178–182. [Google Scholar] [CrossRef]
- Salimian, S.; Malfait, W.J.; Zadhoush, A.; Talebi, Z.; Naeimirad, M. Fabrication and Evaluation of Silica Aerogel-Epoxy Nanocomposites: Fracture and Toughening Mechanisms. Theor. Appl. Fract. Mech. 2018, 97, 156–164. [Google Scholar] [CrossRef]
- Zhang, Z.K.; Xiao, J.X.; Huang, G.Q. Pickering Emulsions Stabilized by Ovalbumin-Sodium Alginate Coacervates. Colloids Surf. A Physicochem. Eng. Asp. 2020, 595, 124712. [Google Scholar] [CrossRef]
- Sun, G.; Yang, L.; Liu, R. Thermal Insulation Coatings Based on Microporous Particles from Pickering Emulsion Polymerization. Prog. Org. Coat. 2021, 151, 106023. [Google Scholar] [CrossRef]
- Hu, M.; Du, X.; Liu, G.; Huang, Y.; Liu, Z.; Sun, S.; Li, Y. Oppositely Charged Pickering Emulsion Co-Stabilized by Chitin Nanoparticles and Fucoidan: Influence of Environmental Stresses on Stability and Antioxidant Activity. Foods 2022, 11, 1835. [Google Scholar] [CrossRef]
- Ramsden, W.; Gotch, F. Separation of Solids in the Surface-Layers of Solutions and ‘Suspensions’ (Observations on Surface-Membranes, Bubbles, Emulsions, and Mechanical Coagulation)—Preliminary Account. Proc. R. Soc. Lond. 1904, 72, 156–164. [Google Scholar] [CrossRef]
- Pickering, S.U. CXCVI—Emulsions. J. Chem. Soc. Trans. 1907, 91, 2001–2021. [Google Scholar] [CrossRef]
- Fujii, S.; Nakamura, Y. Stimuli-Responsive Bubbles and Foams Stabilized with Solid Particles. Langmuir 2017, 33, 7365–7379. [Google Scholar] [CrossRef]
- Wang, D.; He, L.; Wu, Y.; Li, Y.; Hu, W.; Ma, T.; Luo, S.; Song, J.; Sun, W.; Zhang, G. Alkali-Activated Organogeopolymers with Volumetric Superhydrophobicity. Cem. Concr. Compos. 2024, 145, 105336. [Google Scholar] [CrossRef]
- Fujii, S.; Murakami, R. Smart Particles as Foams and Liquid Marble Stabilizers. KONA Powder Part. J. 2008, 26, 153–166. [Google Scholar] [CrossRef]
- Brun, M.; Delample, M.; Harte, E.; Lecomte, S.; Leal-Calderon, F. Stabilization of Air Bubbles in Oil by Surfactant Crystals: A Route to Produce Air-in-Oil Foams and Air-in-Oil-in-Water Emulsions. Food Res. Int. 2015, 67, 366–375. [Google Scholar] [CrossRef]
- He, L.; Wang, D.; Ma, T.; Song, J.; Wu, Y.; Li, Y.; Deng, Y.; Zhang, G. Processing and Properties of a Graphene-Reinforced Superhydrophobic Siloxane. Mater. Des. 2023, 229, 111856. [Google Scholar] [CrossRef]
- Binks, B.P.; Muijlwijk, K.; Koman, H.; Poortinga, A.T. Food-Grade Pickering Stabilisation of Foams by in Situ Hydrophobisation of Calcium Carbonate Particles. Food Hydrocoll. 2017, 63, 585–592. [Google Scholar] [CrossRef]
- Babiarczuk, B.; Lewandowski, D.; Szczurek, A.; Kierzek, K.; Meffert, M.; Gerthsen, D.; Kaleta, J.; Krzak, J. Novel Approach of Silica-PVA Hybrid Aerogel Synthesis by Simultaneous Sol-Gel Process and Phase Separation. J. Supercrit. Fluids 2020, 166, 104997. [Google Scholar] [CrossRef]
- Nawaz, M.; Miran, W.; Jang, J.; Lee, D.S. Stabilization of Pickering Emulsion with Surface-Modified Titanium Dioxide for Enhanced Photocatalytic Degradation of Direct Red 80. Catal. Today 2017, 282, 38–47. [Google Scholar] [CrossRef]
- Huang, F.; Liang, Y.; He, Y. On the Pickering Emulsions Stabilized by Calcium Carbonate Particles with Various Morphologies. Colloids Surf. A Physicochem. Eng. Asp. 2019, 580, 123722. [Google Scholar] [CrossRef]
- Amani, P.; Miller, R.; Javadi, A.; Firouzi, M. Pickering Foams and Parameters Influencing Their Characteristics. Adv. Colloid. Interface Sci. 2022, 301, 102606. [Google Scholar] [CrossRef]
- Li, S.; Li, S.; Du, K.; Zhu, J.; Shang, L.; Zhang, K. Synthesis and Stability of Switchable CO2-Responsive Foaming Coupled with Nanoparticles. iScience 2022, 25, 105091. [Google Scholar] [CrossRef]
- ISO 8302:1991; Thermal Insulation—Determination of Steady-State Areal Thermal Resistance and Related Properties-Guarded Hot Plate Apparatus. ISO: Geneve, Switzerland, 1991.
- Liu, G.; Zhou, B.; Du, A.; Shen, J.; Yu, Q. Effect of the Thermal Treatment on Microstructure and Physical Properties of Low-Density and High Transparency Silica Aerogels via Acetonitrile Supercritical Drying. J. Porous Mater. 2013, 20, 1163–1170. [Google Scholar] [CrossRef]
- Stevenson, P. Inter-Bubble Gas Diffusion in Liquid Foam. Curr. Opin. Colloid. Interface Sci. 2010, 15, 374–381. [Google Scholar] [CrossRef]
- Yang, H.; Jin, X.; Sun, G.; Li, Z.; Gao, J.; Lu, B.; Shao, C.; Zhang, X.; Dai, C.; Zhang, Z.; et al. Retarding Ostwald Ripening to Directly Cast 3D Porous Graphene Oxide Bulks at Open Ambient Conditions. ACS Nano 2020, 14, 6249–6257. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Li, Z.; Sun, G.; Jin, X.; Lu, B.; Zhang, P.; Lin, T.; Qu, L. Superplastic Air-Dryable Graphene Hydrogels for Wet-Press Assembly of Ultrastrong Superelastic Aerogels with Infinite Macroscale. Adv. Funct. Mater. 2019, 29, 1901917. [Google Scholar] [CrossRef]
- Yang, X.; Fan, S.; Li, Y.; Guo, Y.; Li, Y.; Ruan, K.; Zhang, S.; Zhang, J.; Kong, J.; Gu, J. Synchronously Improved Electromagnetic Interference Shielding and Thermal Conductivity for Epoxy Nanocomposites by Constructing 3D Copper Nanowires/Thermally Annealed Graphene Aerogel Framework. Compos. Part. A Appl. Sci. Manuf. 2020, 128, 105670. [Google Scholar] [CrossRef]
- Song, P.; Qiu, H.; Wang, L.; Liu, X.; Zhang, Y.; Zhang, J.; Kong, J.; Gu, J. Honeycomb Structural RGO-MXene/Epoxy Nanocomposites for Superior Electromagnetic Interference Shielding Performance. Sustain. Mater. Technol. 2020, 24, e00153. [Google Scholar] [CrossRef]
Foaming Agent | Melamine Resin Content | 4% Foaming Agent Content | SiO2 Aerogel Powder Content | |
---|---|---|---|---|
MGA-10/20/2.5 | GA | 10 | 20 | 2.5 |
MGA-10/20/5 | 5 | |||
MGA-10/20/7.5 | 7.5 | |||
MGA-10/20/10 | 10 | |||
MSA-10/20/2.5 | SA | 2.5 | ||
MSA-10/20/5 | 5 | |||
MSA-10/20/7.5 | 7.5 | |||
MSA-10/20/10 | 10 |
BET Surface Area (m2/g) | BJH Pore Volume (cm3/g) | Average Pore Diameter (Å) | |
---|---|---|---|
MGA-10/20/2.5 1 | / | / | / |
MGA-10/20/5 | 297.01 ± 1.31 | 0.69 | 57.81 |
MGA-10/20/7.5 | 408.95 ± 5.01 | 0.97 | 57.07 |
MGA-10/20/10 | 417.48 ± 4.47 | 1.06 | 58.76 |
MSA-10/20/2.5 | 235.93 ± 2.56 | 0.74 | 58.56 |
MSA-10/20/5 | 239.64 ± 2.53 | 0.89 | 66.06 |
MSA-10/20/7.5 | 387.42 ± 4.39 | 1.04 | 60.25 |
MSA-10/20/10 | 442.88 ± 5.13 | 0.67 | 59.26 |
Temperature | 35 | 40 | 60 | 80 | 100 | 200 |
---|---|---|---|---|---|---|
MGA-10/20/5 | 0.0537 ± 0.002 | 0.0540 ± 0.002 | 0.0569 ± 0.003 | 0.0595 ± 0.003 | 0.0644 ± 0.003 | 0.0649 ± 0.003 |
MGA-10/20/7.5 | 0.0305 ± 0.001 | 0.0317 ± 0.002 | 0.0351 ± 0.002 | 0.0379 ± 0.002 | 0.0385 ± 0.002 | 0.0410 ± 0.002 |
MGA-10/20/10 | 0.0277 ± 0.001 | 0.0280 ± 0.001 | 0.0324 ± 0.002 | 0.0367 ± 0.002 | 0.0378 ± 0.002 | 0.0391 ± 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Ma, Y.; Ma, Y.; Liu, B.; Sun, D.; Ran, Q. Foamy Melamine Resin–Silica Aerogel Composite-Derived Thermal Insulation Coating. Nanomaterials 2025, 15, 135. https://doi.org/10.3390/nano15020135
Wang D, Ma Y, Ma Y, Liu B, Sun D, Ran Q. Foamy Melamine Resin–Silica Aerogel Composite-Derived Thermal Insulation Coating. Nanomaterials. 2025; 15(2):135. https://doi.org/10.3390/nano15020135
Chicago/Turabian StyleWang, Dongfang, Yabin Ma, Yingjie Ma, Baolei Liu, Dewen Sun, and Qianping Ran. 2025. "Foamy Melamine Resin–Silica Aerogel Composite-Derived Thermal Insulation Coating" Nanomaterials 15, no. 2: 135. https://doi.org/10.3390/nano15020135
APA StyleWang, D., Ma, Y., Ma, Y., Liu, B., Sun, D., & Ran, Q. (2025). Foamy Melamine Resin–Silica Aerogel Composite-Derived Thermal Insulation Coating. Nanomaterials, 15(2), 135. https://doi.org/10.3390/nano15020135