The Effect of Thermal Conductivity for Buildings’ Composite Panels Including Used Materials on Heat Variation and Energy Consumption
Abstract
1. Introduction
2. Materials and Methods
2.1. Thermal Conductivity Coefficient Method
2.2. Cement Plate with Foam Insertions
3. Heat Transfer Measurements
4. Experimental Results
5. Thermal Conductivity Coefficient Resulted by Simulation
6. Discussions and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paramasivam, C.; Venugopal, R. Design and development of glass/basalt fiber reinforced composite material for automobile applications. J. Ind. Text. 2022, 51 (Suppl. S1), 1668S–1681S. [Google Scholar] [CrossRef]
- Yea, K.; Dasari, A.; Hooper, T.J.N. Structural characterization and fire performance of geopolymer-glass fiber composite panels. Constr. Build. Mater. 2023, 400, 132633. [Google Scholar] [CrossRef]
- Hosseini-Toudeshky, H.; Sadighi, M.; Vojdani, A. Effects of curing thermal residual stresses on fatigue crack propagation of aluminum plates repaired by FML patches. Compos. Struct. 2013, 100, 154–162. [Google Scholar] [CrossRef]
- Pavlović, A.; Sintoni, D.; Minak, G.; Fragassa, C. On the modal behaviour of ultralight composite sandwich automotive panels. Compos. Struct. 2020, 248, 112523. [Google Scholar] [CrossRef]
- Olhan, S.; Antil, B.; Khatkar, V.; Behera, B.K. Mechanical, thermal, and viscoelastic behavior of sisal fibre-based structural composites for automotive applications: Experimental and FEM analysis. Compos. Struct. 2023, 322, 117427. [Google Scholar] [CrossRef]
- Rajabi, M.; Aboutalebi, M.R.; Seyedein, S.H.; Ataie, S.A. Simulation of residual stress in thick thermal barrier coating (TTBC) during thermal shock: A response surface-finite element modeling. Ceram. Int. 2022, 48, 5299–5311. [Google Scholar] [CrossRef]
- Olhan, S.; Behera, B.K. Mechanical, thermogravimetric, and dynamic mechanical behavior of high-performance textile structural composite panels for automotive applications. J. Manuf. Process. 2023, 102, 608–621. [Google Scholar] [CrossRef]
- Mountasir, A.; Hoffmann, G.; Cherif, C.; Löser, M.; Großmann, K. Competitive manufacturing of 3D thermoplastic composite panels based on multi-layered woven structures for lightweight engineering. Compos. Struct. 2015, 133, 415–424. [Google Scholar] [CrossRef]
- Min, J.G.; Lim, W.B.; Lee, J.H.; Bae, J.H.; Huh, P.H. The Effect of NCO Content in Polyurethane Foam for Automotive Instrument Panel. Int. J. Precis. Eng. Manuf. 2023, 24, 1435–1441. [Google Scholar] [CrossRef]
- Ayrilmis, N.; Jarusombuti, S.; Fueangvivat, V.; Bauchongkol, P.; White, R.H. Coir Fiber Reinforced Polypropylene Composite Panel for Automotive Interior Applications. Fibers Polym. 2011, 12, 919–926. [Google Scholar] [CrossRef]
- Mali, M.; Hussain, A.K.; Hassan, M.B.; Mahmud, J. Analysis of Hard Point Mechanical Behaviour Due to Variations of Potting Agent Volume on a Composite Sandwich Panel. Mater. Sci. 2022, 28, 467–473. [Google Scholar] [CrossRef]
- Peng, C.; Kim, Y.J.; Zhang, J. Thermal and energy characteristics of composite structural insulated panels consisting of glass fiber reinforced polymer and cementitious materials. J. Build. Eng. 2021, 43, 102483. [Google Scholar] [CrossRef]
- Modarresifar, F.; Bingham, P.A.; Jubb, G.A. Thermal conductivity of refractory glass fibres. A study of materials, standards and test methods. J. Therm. Anal. Calorim. 2016, 125, 35–44. [Google Scholar] [CrossRef]
- Wazeer, A.; Das, A.; Abeykoon, C.; Sinha, A.; Karmakar, A. Composites for electric vehicles and automotive sector: A review. Green Energy Intell. Transp. 2023, 2, 100043. [Google Scholar] [CrossRef]
- Venkata Ramana, M.; Rao, G.V.; Shankar Rao, B.; Shiva Prasad, B. Design & development of durable low cost housing from glass fiber composites. Mater. Today Proc. 2021, 38, 3205–3212. [Google Scholar]
- Samyal, R.; Singh, S.; Bagha, A.K. Modal Analysis of Composite Panel at different Fiber Orientations. Mater. Today Proc. 2019, 16, 477–480. [Google Scholar] [CrossRef]
- Zhao, W.; Yan, W.; Zhang, Z.; Gao, H.; Zeng, Q.; Du, G.; Fan, M. Development and performance evaluation of wood-pulp/glass fibre hybrid composites as core materials for vacuum insulation panels. J. Clean. Prod. 2022, 357, 131957. [Google Scholar] [CrossRef]
- Virgillito, E.; Sisca, L.; Carello, M. Influence of Freeze-Thaw Aging on the Impact Performance of Damped Carbon Fiber Reinforced Plastics for Automotive Applications. Appl. Sci. 2022, 12, 4020. [Google Scholar] [CrossRef]
- Di, X.; Gaoa, Y.; Baoa, C.; Maa, S. Thermal insulation property and service life of vacuum insulation panels with glass fiber chopped strand as core materials. Energy Build. 2014, 73, 176–183. [Google Scholar] [CrossRef]
- Iranian, D.; Sudarmozhi, K.; Karthik, S.; Manigandan, J.; Chamkha, A.J. Finite difference analysis on radiative flow on a perpendicular plate using the influence of thermal conductivity. Forces Mech. 2023, 12, 100217. [Google Scholar] [CrossRef]
- Wu, D.; Sugio, K.; Sasaki, G. Estimation of Effective Thermal Conductivity of Copper-Plated Carbon Fibers Reinforced Iron-Based Composites by 2D Image Analysis. Mater. Trans. 2023, 64, 974–982. [Google Scholar] [CrossRef]
- Janumala, E.; Govindarajan, M.; Bomma Reddi, V.R.; Chinnasamy, S. Investigations on phase change materials for enhancement of thermal conductivity. Therm. Sci. 2022, 26, 955–961. [Google Scholar] [CrossRef]
- Mirkovic Marjanovic, M.R.; Kijanovic, A.I.; Ilic, S.B.; Jankovic, K.S.; Zakic, D.M. Verification and validation of an advanced guarded hot plate for determination of thermal conductivity. Therm. Sci. 2022, 26, 4735–4747. [Google Scholar] [CrossRef]
- Dia, M.; Faye, M.; Diallo, M.S.; Sambou, V. Measurement of the thermal properties of materials by the hot plate method considering the convection coefficient around the device. Mater. Res. Express 2023, 10, 065502. [Google Scholar] [CrossRef]
- Indra, M.; Sri, A.; Muhammad, F.; Ikramullah; Samsul, R. An investigation of thermal conductivity and sound absorption from binderless panels made of oil palm wood as bio-insulation materials. Results Eng. 2022, 13, 100319. [Google Scholar]
- Čekon, M.; Šikula, O. Experimental and numerical study on the thermal performance of polycarbonate panels. J. Build. Eng. 2020, 32, 101715. [Google Scholar] [CrossRef]
- Liu, P.; Luo, X.; Chen, Y.; Yu, Z.; Yu, D. Thermodynamic and acoustic behaviors of prefabricated composite wall panel. Struct. 2020, 28, 1301–1313. [Google Scholar]
- Antypas, I.R.; Savostina, T.P. Use of Panels Made from Plastic Waste in Thermal Insulation. Mater. Plast. 2023, 60, 112–120. [Google Scholar] [CrossRef]
- Berardi, U.; Tronchin, L.; Manfren, M.; Nastasi, B. On the Effects of Variation of Thermal Conductivity in Buildings in the Italian Construction Sector. Energies 2018, 11, 872. [Google Scholar] [CrossRef]
- Ali, K.; Saingam, P.; Qureshi, M.I.; Saleem, S.; Nawaz, A.; Mehmood, T.; Maqsoom, A.; Malik, M.W.; Suparp, S. Influence of Recycled Plastic Incorporation as Coarse Aggregates on Concrete Properties. Sustainability 2023, 15, 5937. [Google Scholar] [CrossRef]
- Hassan, A.; Farhan, A.; Muhammad, I.Q. Enhanced mechanical and durability resilience of plastic aggregate concrete modified with nano-iron oxide and sisal fiber reinforcement. Constr. Build. Mater. 2023, 401, 132911. [Google Scholar] [CrossRef]
- Lakreb, N.; Şen, U.; Toussaint, E.; Amziane, S.; Djakab, E.; Pereira, H. Physical properties and thermal conductivity of cork-based sandwich panels for building insulation. Constr. Build. Mater. 2023, 368, 130420. [Google Scholar] [CrossRef]
- ISO 8301; Thermal Insulation–Determination of Steady-State Thermal Resistance and Related Properties–Heat Flow Meter Apparatus. International Organization for Standardization: Geneva, Switzerland, 1991.
- DIN EN 12667; Thermal Performance of Building Materials and Products–Determination of Thermal Resistance by Means of Guarded Hot Plate and Heat Flow Meter Methods–Products of High and Medium Thermal Resistance. German Institute for Standardization: Berlin, Germany, 2001.
- Sova, V.; Sova, M.; Sova, D. Termotechnic—Machines and Thermal Installations—Theory and Applications; Transilvania University Press: Braşov, Romania, 1998; pp. 424–428. [Google Scholar]
Value | Unit | |
---|---|---|
Average thickness | 0.021494 | m |
Total Energy consumption | 0.1255 | kWh |
Time frame | 0.83 | hour |
Heat flow | 0.1506 | kW |
Heat flow rate | 55.62712 | W/m2 |
Average temperature (heating plate) | 30.90667 | °C |
Average temperature (cooling plate) | 19.9475 | °C |
Temperature drop | 10.95917 | °C |
Average temperature | 25.42708 | °C |
Thermal conductivity coefficient measured | 0.109722 | W/mK |
Room temperature | 24.5 | °C |
Thermal conductivity coefficient—reference plate [32] | 0.112 | W/mK |
Error | 2.034 | % |
Reading Number | |||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 |
Electricity consumption ΔE (kW) | |||||
0.01 | 0.008 | 0.009 | 0.008 | 0.009 | 0.009 |
Duration of electricity consumption Δζ (h) | |||||
0.16667 | 0.33333 | 0.5 | 0.66667 | 0.83333 | 1 |
Heating plate inlet temperature tci (°C) | |||||
30.6 | 30.45 | 30.6 | 30.65 | 30.55 | 30.55 |
Heating plate output temperature tce (°C) | |||||
30.6 | 30.55 | 30.6 | 30.65 | 30.55 | 30.55 |
Cooling plate inlet temperature tri (°C) | |||||
23.25 | 23.2 | 23.41 | 23.2 | 23.45 | 23.55 |
Cooling plate outlet temperature tre (°C) | |||||
22.65 | 23.1 | 23.1 | 23.15 | 23.2 | 23.3 |
Value | Unit | |
---|---|---|
Total Energy consumption | 0.053 | kWh |
Time frame | 1 | hour |
Average temperature (heating plate) | 30.58583 | °C |
Average temperature (cooling plate) | 23.2275 | °C |
Temperature drop | 7.35833 | °C |
Average temperature | 26.9006 | °C |
Room temperature | 22 | °C |
Thickness | Measured Value | Error | Corrected Value |
---|---|---|---|
(mm) | (mm) | (mm) | |
δ1 | 50.1 | 0.04 | 50.14 |
δ2 | 50 | 0.24 | 50.24 |
δ3 | 51.6 | 0.04 | 51.64 |
δ4 | 49.9 | 0.05 | 49.95 |
Average thickness δm | 50.4925 |
Value | Unit | |
---|---|---|
Heat flow | 53 | W |
Heat flow rate | 19.57661 | W/m2 |
Thermal conductivity coefficient measured | 0.133567 | W/mK |
Simulation | |||||
---|---|---|---|---|---|
Cold Plate Temperature t1 (°C) | Hot Plate Temperature t2 (°C) | Temperature Difference t2 (°C) | Average Heat Flow Rate (W/m2) | Average Temperature Gradient (W/m) | Effective Thermal Conductivity (W/mK) |
−20 | 20 | 40 | 320.21 | 2463.2 | 0.1299 |
−10 | 20 | 30 | 240.16 | 1847.4 | 0.1299 |
0 | 20 | 20 | 160.11 | 1231.6 | 0.1298 |
10 | 20 | 10 | 80.05 | 615.79 | 0.1299 |
30 | 20 | −10 | 80.26 | −617.36 | 0.1296 |
* 30.59 | 23.23 | 7.36 | 19.58 | −150.51 | 0.130 |
35 | 20 | −15 | 120.49 | −926.87 | 0.130 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chircan, E.; Gheorghe, V.; Costiuc, I.; Costiuc, L. The Effect of Thermal Conductivity for Buildings’ Composite Panels Including Used Materials on Heat Variation and Energy Consumption. Buildings 2025, 15, 1599. https://doi.org/10.3390/buildings15101599
Chircan E, Gheorghe V, Costiuc I, Costiuc L. The Effect of Thermal Conductivity for Buildings’ Composite Panels Including Used Materials on Heat Variation and Energy Consumption. Buildings. 2025; 15(10):1599. https://doi.org/10.3390/buildings15101599
Chicago/Turabian StyleChircan, Eliza, Vasile Gheorghe, Iuliana Costiuc, and Liviu Costiuc. 2025. "The Effect of Thermal Conductivity for Buildings’ Composite Panels Including Used Materials on Heat Variation and Energy Consumption" Buildings 15, no. 10: 1599. https://doi.org/10.3390/buildings15101599
APA StyleChircan, E., Gheorghe, V., Costiuc, I., & Costiuc, L. (2025). The Effect of Thermal Conductivity for Buildings’ Composite Panels Including Used Materials on Heat Variation and Energy Consumption. Buildings, 15(10), 1599. https://doi.org/10.3390/buildings15101599