Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (134)

Search Parameters:
Keywords = thermal flow path

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 7605 KiB  
Article
Dynamic Heat Transfer Modelling and Thermal Performance Evaluation for Cadmium Telluride-Based Vacuum Photovoltaic Glazing
by Changyu Qiu, Hongxing Yang and Kaijun Dong
Buildings 2025, 15(15), 2612; https://doi.org/10.3390/buildings15152612 - 23 Jul 2025
Abstract
Building-integrated photovoltaic (BIPV) windows present a viable path towards carbon neutrality in the building sector. However, conventional BIPV windows, such as semi-transparent photovoltaic (STPV) glazings, still suffer from inadequate thermal insulation, which limits their effectiveness across different climate conditions. To address this issue, [...] Read more.
Building-integrated photovoltaic (BIPV) windows present a viable path towards carbon neutrality in the building sector. However, conventional BIPV windows, such as semi-transparent photovoltaic (STPV) glazings, still suffer from inadequate thermal insulation, which limits their effectiveness across different climate conditions. To address this issue, the cadmium telluride-based vacuum PV glazing has been developed to enhance the thermal performance of BIPV applications. To fully understand the complex thermal behaviour under real-world operational scenarios, this study introduces a one-dimensional transient heat transfer model that can efficiently capture the time-dependent thermal dynamics of this novel glazing system. Based on the numerical solutions using the explicit finite difference method (FDM), the temperature profile of the vacuum PV glazing can be obtained dynamically. Consequently, the heat gain of the semi-transparent vacuum PV glazing can be calculated under time-varying outdoor and indoor conditions. The validated heat transfer model was applied under four different scenarios, viz. summer daytime, summer nighttime, winter daytime, and winter nighttime, to provide a detailed analysis of the dynamic thermal behaviour, including the temperature variation and the energy flow. The dynamic thermal characteristics of the vacuum PV glazing calculated by the transient heat transfer model demonstrate its excellent thermal insulation and solar control capabilities. Moreover, the thermal performance of vacuum PV glazing was compared with a standard double-pane window under various weather conditions of a typical summer day and a typical winter day. The results indicate that the vacuum PV glazing can effectively minimise both heat gain and heat loss. The fluctuation of the inner surface temperature can be controlled within a limited range away from the set point of the indoor room temperature. Therefore, the vacuum PV glazing contributes to stabilising the temperature of the indoor environment despite the fluctuating solar radiation and periodic outdoor temperature. It is suggested that the vacuum PV glazing has the potential to enhance the climate adaptability of BIPV windows under different climate backgrounds. Full article
(This article belongs to the Collection Renewable Energy in Buildings)
Show Figures

Figure 1

16 pages, 3772 KiB  
Article
Correlation of the Thermal Conductivity and Mechanical Properties in Hybrid Filler Systems of Thermosets
by Uta Rösel and Dietmar Drummer
Polymers 2025, 17(14), 1924; https://doi.org/10.3390/polym17141924 - 12 Jul 2025
Viewed by 280
Abstract
Thermal management reveals an increasing importance due to the changing demands in terms of the compactness and the performance of electronic devise. Polymers in general and thermosets specifically depict a low thermal conductivity, where filler systems are needed to improve performance and make [...] Read more.
Thermal management reveals an increasing importance due to the changing demands in terms of the compactness and the performance of electronic devise. Polymers in general and thermosets specifically depict a low thermal conductivity, where filler systems are needed to improve performance and make polymers suitable for certain applications. So far, different influencing factors in terms of improving the thermal conductivity in thermosets, mainly through the use of single-filler systems, have been investigated in. To some extent, hybrid filler systems have been examined as well; however, the behavior itself in terms of the thermal conductivity as well as the mechanical properties is rather unknown. In terms of the applications, it is essential to understand the correlation between the thermal conductivity and the mechanical properties as this is the fundamental requirement to realize a proper dimensioning of samples in applications. Therefore, this paper investigates hybrid filler systems based on boron nitride (BN) and three different second fillers with varying ratios and in terms of both the improvement of the thermal conductivity and the mechanical properties. Copper (Cu) was shown to reach the best compromise within the hybrid materials. Furthermore, criteria of an improved thermal flow path and sufficient mechanical properties have been stated in general. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

23 pages, 3913 KiB  
Article
Service-Chain-Driven Communication and Computing Integration Networking: A Case Study of Levee Piping Hazard Inspection via Remote Sensing
by Jing Chen, Lyuzhou Gao, Hongquan Sun, Siquan Yang, Zhonggen Wang, Yuting Wan and Kedi Wang
Sensors 2025, 25(13), 4187; https://doi.org/10.3390/s25134187 - 4 Jul 2025
Viewed by 272
Abstract
Computing power network (CPN) is designed to utilize multi-dimensional resources to complete computing tasks. However, in practical applications, the CPN architecture has difficulty in coordinating cross-domain heterogeneous resources, making it impossible to achieve the real-time and high scalability requirements of computationally intensive and [...] Read more.
Computing power network (CPN) is designed to utilize multi-dimensional resources to complete computing tasks. However, in practical applications, the CPN architecture has difficulty in coordinating cross-domain heterogeneous resources, making it impossible to achieve the real-time and high scalability requirements of computationally intensive and time-sensitive tasks such as levee piping hazard inspection via remote sensing in emergency scenarios. Based on this, we propose a communication and computation integrated network architecture, referred to as (Com)2INet, that integrates “sensing”, “transmission”, and “computation” phases. In the sensing phase, thermal infrared imagery is utilized to retrieve land surface temperature fields through radiative transfer mechanisms, providing a reliable foundation for visual segmentation of piping hazards. In the transmission phase, we adopt the designed multi-path transmission mechanism to promote the efficient data flow across heterogeneous networks. In the computation phase, the proposed SACM algorithm, which is functionally decomposed and implemented as service chains within the proposed network architecture, dynamically processes the retrieved temperature fields to achieve precise hazard identification. This integrated framework ensures seamless interaction between sensing, communication, and computation, addressing the challenges of real-time hazard detection in emergency scenarios. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

24 pages, 5848 KiB  
Article
Influence of Thermal Inertia on Dynamic Characteristics of Gas Turbine Impeller Components
by Yang Liu, Yuhao Jia and Yongbao Liu
Entropy 2025, 27(7), 711; https://doi.org/10.3390/e27070711 - 1 Jul 2025
Viewed by 294
Abstract
Gas turbines in land-based microgrids and shipboard-isolated power grids frequently face operational challenges, such as the startup and shutdown of high-power equipment and sudden load fluctuations, which significantly impact their performance. To examine the dynamic behavior of gas turbines under transitional operating conditions, [...] Read more.
Gas turbines in land-based microgrids and shipboard-isolated power grids frequently face operational challenges, such as the startup and shutdown of high-power equipment and sudden load fluctuations, which significantly impact their performance. To examine the dynamic behavior of gas turbines under transitional operating conditions, a three-dimensional computational fluid dynamic simulation is employed to create a model of the gas turbine rotor, incorporating thermal inertia, which is then analyzed in conjunction with three-dimensional finite element methods. The governing equations of the flow field are discretized, providing results for the flow and temperature fields throughout the entire flow path. A hybrid approach, combining temperature differences and heat flux density, is applied to set the thermal boundary conditions for the walls, with the turbine’s operational state determined based on the direction of heat transfer. Additionally, mesh division techniques and turbulence models are selected based on the geometric dimensions and operating conditions of the compressor and turbine. The simulation results reveal that thermal inertia induces a shift in the dynamic characteristics of the rotor components. Under the same heat transfer conditions, variations in rotational speed have a minimal impact on the shift in the characteristic curve. The working fluid temperature inside the compressor components is lower, with a smaller temperature difference from the wall, resulting in less intense heat transfer compared to the turbine components. Overall, heat transfer accounts for only about 0.1% of the total enthalpy at the inlet. When heat exchange occurs between the working fluid and the walls, around 6–15% of the exchanged heat is converted into changes in technical work, with this percentage increasing as the temperature difference rises. Full article
(This article belongs to the Section Thermodynamics)
Show Figures

Figure 1

14 pages, 4544 KiB  
Article
Intelligent DC-DC Controller for Glare-Free Front-Light LED Headlamp
by Paolo Lorenzi, Roberto Penzo, Enrico Tonazzo, Edoardo Bezzati, Maurizio Galvano and Fausto Borghetti
Chips 2025, 4(3), 29; https://doi.org/10.3390/chips4030029 - 27 Jun 2025
Viewed by 242
Abstract
A new control system implemented with a single-stage DC-DC controller to power an LED headlamp for automotive applications is presented in this work. Daytime running light (DRL), low beam (LB), high beam (HB) and adaptive driving beam (ADB) are typical functions requiring a [...] Read more.
A new control system implemented with a single-stage DC-DC controller to power an LED headlamp for automotive applications is presented in this work. Daytime running light (DRL), low beam (LB), high beam (HB) and adaptive driving beam (ADB) are typical functions requiring a dedicated LED driver solution to fulfill car maker requirements for front-light applications. Single-stage drivers often exhibit a significant overshoot in LED current during transitions from driving a higher number of LEDs to a lower number. To maintain LED reliability, this current overshoot must remain below the maximum current rating of the LEDs. If the overshoot overcomes this limit, it can cause permanent damage to the LEDs or reduce their lifespan. To preserve LED reliability, a comprehensive system has been proposed to minimize the peak of LED current overshoots, especially during transitions between different operating modes or LED string configurations. A key feature of the proposed system is the implementation of a parallel discharging path to be activated only when the current flowing in the LEDs is higher than a predefined threshold. A prototype incorporating an integrated test chip has been developed to validate this approach. Measurement results and comparison with state-of-the-art solutions available in the market are shown. Furthermore, a critical aspect to be considered is the proper dimensioning of the discharging path. It requires careful considerations about the gate driver capabilities, the discharging resistor values, and the thermal management of the dumping element. For this purpose, an extensive study on how to size the relative components is also presented. Full article
(This article belongs to the Special Issue New Research in Microelectronics and Electronics)
Show Figures

Figure 1

28 pages, 11218 KiB  
Article
Transient Temperature Evaluation and Thermal Management Optimization Strategy for Aero-Engine Across the Entire Flight Envelope
by Weilong Gou, Shiyu Yang, Kehan Liu, Yuanfang Lin, Xingang Liang and Bo Shi
Aerospace 2025, 12(6), 562; https://doi.org/10.3390/aerospace12060562 - 19 Jun 2025
Viewed by 510
Abstract
With the enhancement of thermodynamic cycle parameters and heat dissipation constraints in aero-engines, effective thermal management has become a critical challenge to ensure safe and stable engine operation. This study developed a transient temperature evaluation model applicable to the entire flight envelope, considering [...] Read more.
With the enhancement of thermodynamic cycle parameters and heat dissipation constraints in aero-engines, effective thermal management has become a critical challenge to ensure safe and stable engine operation. This study developed a transient temperature evaluation model applicable to the entire flight envelope, considering fluid–solid coupling heat transfer on both the main flow path and fuel systems. Firstly, the impact of heat transfer on the acceleration and deceleration performance of a low-bypass-ratio turbofan engine was analyzed. The results indicate that, compared to the conventional adiabatic model, the improved model predicts metal components absorb 4.5% of the total combustor energy during cold-state acceleration, leading to a maximum reduction of 1.42 kN in net thrust and an increase in specific fuel consumption by 1.18 g/(kN·s). Subsequently, a systematic evaluation of engine thermal management performance throughout the complete flight mission was conducted, revealing the limitations of the existing thermal management design and proposing targeted optimization strategies, including employing Cooled Cooling Air technology to improve high-pressure turbine blade cooling efficiency, dynamically adjusting low-pressure turbine bleed air to minimize unnecessary losses, optimizing fuel heat sink utilization for enhanced cooling performance, and replacing mechanical pumps with motor pumps for precise fuel supply control. Full article
(This article belongs to the Special Issue Aircraft Thermal Management Technologies)
Show Figures

Figure 1

11 pages, 3151 KiB  
Article
Measurement of Low-Concentration Hydrogen in Inert Gas Within a Small Closed Volume
by Georgiy A. Ivanov, Dmitry P. Shornikov, Nikolay N. Samotaev, Konstantin Y. Oblov, Maya O. Etrekova and Artur V. Litvinov
Sensors 2025, 25(12), 3771; https://doi.org/10.3390/s25123771 - 17 Jun 2025
Viewed by 279
Abstract
A technique has been proposed and experimentally tested for measuring the hydrogen concentration in an inert atmosphere within a closed system. This method utilizes a metal-oxide-semiconductor field-effect capacity-type (MOSFEC) sensor under harsh conditions such as exposure to inert gases, pressure fluctuations, and varying [...] Read more.
A technique has been proposed and experimentally tested for measuring the hydrogen concentration in an inert atmosphere within a closed system. This method utilizes a metal-oxide-semiconductor field-effect capacity-type (MOSFEC) sensor under harsh conditions such as exposure to inert gases, pressure fluctuations, and varying temperatures. The measurement is performed during the thermal decomposition of metal hydrides in a liquid sodium environment. The developed measurement technique for determining hydrogen concentration released from metal hydride samples in a system with a closed gas path is cost-effective compared to standardized, resource-intensive open-volume flow measurement methods. The use of the developed MOSFEC sensor technique allows for rapid and efficient investigation of the in situ real-time dynamics of gas release from various metal hydride materials differing in their hydrogen content within a small closed volume. Additionally, this approach enables precise determination of the specific gas release temperatures. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

18 pages, 4020 KiB  
Article
Research on Energy-Saving Optimization of Green Buildings Based on BIM and Ecotect
by Mengxue Zhao, Yuetao Yang and Shan Dong
Buildings 2025, 15(11), 1819; https://doi.org/10.3390/buildings15111819 - 26 May 2025
Viewed by 435
Abstract
Based on the resource conservation requirements of GB/T 50378-2019 “Green Building Evaluation Standard”, this study constructed a BIM–Ecotect collaborative analysis model and proposed a “four-dimensional integration” green performance optimization method. Taking a high-rise office building in Wuhan as an example, a LOD 300-level [...] Read more.
Based on the resource conservation requirements of GB/T 50378-2019 “Green Building Evaluation Standard”, this study constructed a BIM–Ecotect collaborative analysis model and proposed a “four-dimensional integration” green performance optimization method. Taking a high-rise office building in Wuhan as an example, a LOD 300-level Revit building information model was established, and a multidisciplinary collaborative analysis was achieved through gbXML data interaction. The lighting simulation results show that the average natural lighting coefficient of the office area facing south is 2.4 (the standard 85%), while in the meeting room area, due to the optimized design of the curtain wall, the average natural lighting coefficient has increased to 2.6 (the standard 92%). In terms of energy-saving renovation, a three-dimensional collaborative design strategy was adopted. Through the optimization of the envelope structure, the cooling load of the air conditioning system was reduced by 25.3%, and the heat load was reduced by 23.6% (the u value of the exterior wall was reduced by 56.3%, the SHGC of the exterior windows was reduced by 42.9%, and the thermal resistance of the roof was increased by 150%). The ventilation optimization adopts the CFD flow field reverse design, adjusting the window opening rate of the exterior windows from 15% to 20% to form a turbulent diffusion effect. Therefore, the air change rate in the office area reached 2.5 times per hour, and the CO2 concentration decreased by up to 27.1% at most. The innovative adoption of the “composite sound insulation curtain wall” technology in acoustic environment control has increased the indoor noise compliance rate by 27 percentage points (from 65% to 92%). The above research data indicate that digital collaborative design can achieve an overall energy-saving rate of over 20% for buildings, providing a replicable technical path for enhancing the performance of green buildings. Full article
Show Figures

Figure 1

27 pages, 8771 KiB  
Article
Thermal Analysis of a Double-Break Contact Based on FEM Simulations and Experimental Studies
by Sebastian Łapczyński, Michał Szulborski, Paweł Szulborski, Łukasz Kolimas and Andrzej Lange
Energies 2025, 18(11), 2748; https://doi.org/10.3390/en18112748 - 26 May 2025
Viewed by 337
Abstract
This paper concerns the thermal analysis of a double-break contact of a compact circuit breaker based on FEM simulation and experimental studies. Aspects of thermal analysis are mandatory to fully understand and improve the design of compact electrical apparatuses. This is due to [...] Read more.
This paper concerns the thermal analysis of a double-break contact of a compact circuit breaker based on FEM simulation and experimental studies. Aspects of thermal analysis are mandatory to fully understand and improve the design of compact electrical apparatuses. This is due to the flow of the expected rated currents but even more to the limitations associated with the flow of short-circuit currents. The paper presented introduced some novelties to the thermal analysis of compact circuit breaker current paths by deriving a detailed and functional three-dimensional finite element model (FEM). For the purposes of experimental study, a real object in the form of a mold case circuit breaker (MCCB) with a rated current of 250 A was used for research. For the purposes of numerical simulation analyses, a detailed 3D model of the compact circuit breaker was developed based on the real object and the available technical documentation from the manufacturer. In order to perform the thermal analysis, ANSYS software (2024 R1) was used, which allowed for modeling the 3D geometry and simulating electromagnetic and thermal phenomena. During the numerical analyses, the distribution of the current flow density through the analyzed double-break contact and Ohm’s losses were determined. Moreover, the temperature distribution in terms of its impact on the sole elements of the contact was evaluated. The results obtained from the experimental tests were compared with the results from the numerical transient analyses. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

18 pages, 8362 KiB  
Article
Thermal Performance of Trombe Walls with Inclined Glazing and Guided Vanes
by Albert Jorddy Valenzuela Inga, Patrick Cuyubamba, Boris Senin Carhuallanqui Parian and Joel Contreras Núñez
Sustainability 2025, 17(11), 4775; https://doi.org/10.3390/su17114775 - 22 May 2025
Viewed by 448
Abstract
The Trombe Wall (TW) has gained recognition for its simplicity, efficiency, and zero operational costs, making it a key contributor to Sustainable Development Goals (SDGs) 7 and 11 by enhancing energy access and providing sustainable heating solutions. This passive solar technology is particularly [...] Read more.
The Trombe Wall (TW) has gained recognition for its simplicity, efficiency, and zero operational costs, making it a key contributor to Sustainable Development Goals (SDGs) 7 and 11 by enhancing energy access and providing sustainable heating solutions. This passive solar technology is particularly beneficial in rural areas, offering cost-effective thermal comfort while minimizing environmental impact. This study evaluates the performance of three TW configurations attached to a room, designed with inclined glazing relative to the vertical air layer and stone layers at the bottom acting as thermal mass, commonly used in rural installations in Peru. Using 2D Computational Fluid Dynamics, the analysis compares an inclined heated wall with guided vanes featuring three or five blades to a configuration without vanes. Results show that the three-blade guided flow configuration achieves the highest temperature rise of 4 °C, with a reference temperature of 20 °C, under an absorber heat flux of 200–400 W/m2, albeit with a slightly lower flow rate of 0.17–0.23 kg/s compared to the configuration without guided flow. The maximum thermal efficiency of 57.90% was observed for the three-blade configuration, which is 2.26% higher than the efficiency of the configuration without guided flow, under an absorber heat flux of 400 W/m2. The obtained path-lines reveals that the three-blade configuration minimizes flow detachment, nearly eliminates recirculation near the bottom corner of the glazing, and reduces the separation bubble at the top corner of the massive wall near the outlet. These findings highlight the potential of guided vanes to enhance the performance of Trombe Walls in rural settings. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

36 pages, 10035 KiB  
Article
Effects of Porous Filling and Nanofluids on Heat Transfer in Intel i9 CPU Minichannel Heat Sinks
by Lie Li and Jik Chang Leong
Electronics 2025, 14(10), 1922; https://doi.org/10.3390/electronics14101922 - 9 May 2025
Viewed by 619
Abstract
The miniaturization and high integration of modern electronic devices have intensified thermal management challenges. Therefore, developing efficient heat sinks has become crucial to ensuring the stability and performance of high-performance CPUs. Previous studies have not considered the thermally demanding Intel i9 CPU; the [...] Read more.
The miniaturization and high integration of modern electronic devices have intensified thermal management challenges. Therefore, developing efficient heat sinks has become crucial to ensuring the stability and performance of high-performance CPUs. Previous studies have not considered the thermally demanding Intel i9 CPU; the current study targets this processor and explores the advantages of more complex minichannel path designs. In addition, this work investigates the enhanced heat transfer performance by integrating metal foams into microchannels. Using a computational approach, this study evaluates the thermal performance of uni-path, dual-path, and staggered-path (SP) minichannel heat sinks with water, Al2O3, and CuO nanofluids at varying Reynolds numbers. The impact of aluminum foam filling has also been examined. Results confirm that higher Reynolds numbers enhance fluid flow, reduce heat sink temperature, and improve temperature uniformity. Among the configurations, the SP heat sink combined with Al2O3 nanofluid achieves the best trade-off between cooling efficiency and energy consumption. While lower porosity foam and higher nanofluid volume fractions enhance heat transfer, they also increase flow resistance, leading to higher energy consumption. Due to its high specific heat capacity, Al2O3 nanofluid outperforms CuO, with optimal cooling observed at a 3–4% volume fraction. The performance evaluation criterion (PEC) captures the trade-off between heat dissipation and energy efficiency. It shows that the SP model with high-porosity aluminum foam and Al2O3 nanofluid turns out to be the most effective design. This combination maximizes cooling efficiency while minimizing excessive energy costs, demonstrating superior thermal management for high-performance microelectronic devices. Full article
(This article belongs to the Section Microelectronics)
Show Figures

Figure 1

35 pages, 13922 KiB  
Review
Advances on Deflagration to Detonation Transition Methods in Pulse Detonation Engines
by Zhiwu Wang, Weifeng Qin, Lisi Wei, Zixu Zhang and Yuxiang Hui
Energies 2025, 18(8), 2109; https://doi.org/10.3390/en18082109 - 19 Apr 2025
Cited by 4 | Viewed by 1016
Abstract
Pulse detonation engines (PDEs) have become a transformative technology in the field of aerospace propulsion due to the high thermal efficiency of detonation combustion. However, initiating detonation waves within a limited space and time is key to their engineering application. Direct initiation, though [...] Read more.
Pulse detonation engines (PDEs) have become a transformative technology in the field of aerospace propulsion due to the high thermal efficiency of detonation combustion. However, initiating detonation waves within a limited space and time is key to their engineering application. Direct initiation, though theoretically feasible, requires very high critical energy, making it almost impossible to achieve in engineering applications. Therefore, indirect initiation methods are more practical for triggering detonation waves that produce a deflagration wave through a low-energy ignition source and realizing deflagration to detonation transition (DDT) through flame acceleration and the interaction between flames and shock waves. This review systematically summarizes recent advancements in DDT methods in pulse detonation engines, focusing on the basic principles, influencing factors, technical bottlenecks, and optimization paths of the following: hot jet ignition initiation, obstacle-induced detonation, shock wave focusing initiation, and plasma ignition initiation. The results indicate that hot jet ignition enhances turbulent mixing and energy deposition by injecting energy through high-energy jets using high temperature and high pressure; this can reduce the DDT distance of hydrocarbon fuels by 30–50%. However, this approach faces challenges such as significant jet energy dissipation, flow field instability, and the complexity of the energy supply system. Solid obstacle-induced detonation passively generates turbulence and shock wave reflection through geometric structures to accelerate flame propagation, which has the advantages of having a simple structure and high reliability. However, the problem of large pressure loss and thermal fatigue restricts its long-term application. Fluidic obstacle-induced detonation enhances mixing uniformity through dynamic disturbance to reduce pressure loss. However, its engineering application is constrained by high energy consumption requirements and jet–mainstream coupling instability. Shock wave focusing utilizes concave cavities or annular structures to concentrate shock wave energy, which directly triggers detonation under high ignition efficiency and controllability. However, it is extremely sensitive to geometric parameters and incident shock wave conditions, and the structural thermal load issue is prominent. Plasma ignition generates active particles and instantaneous high temperatures through high-energy discharge, which chemically activates fuel and precisely controls the initiation sequence, especially for low-reactivity fuels. However, critical challenges, such as high energy consumption, electrode ablation, and decreased discharge efficiency under high-pressure environments, need to be addressed urgently. In order to overcome the bottlenecks in energy efficiency, thermal management, and dynamic stability, future research should focus on multi-modal synergistic initiation strategies, the development of high-temperature-resistant materials, and intelligent dynamic control technologies. Additionally, establishing a standardized testing system to quantify DDT distance, energy thresholds, and dynamic stability indicators is essential to promote its transition to engineering applications. Furthermore, exploring the DDT mechanisms of low-carbon fuels is imperative to advance carbon neutrality goals. By summarizing the existing DDT methods and technical bottlenecks, this paper provides theoretical support for the engineering design and application of PDEs, contributing to breakthroughs in the fields of hypersonic propulsion, airspace shuttle systems, and other fields. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

23 pages, 8035 KiB  
Article
Reverse Oil Flow Characterization in Transformer Windings: A Fluid-Thermal Network Approach
by Lujia Wang, Jianghao Qi, Yifan Chen, Lebin Zhang and Jianwen Zhang
Energies 2025, 18(7), 1593; https://doi.org/10.3390/en18071593 - 22 Mar 2025
Viewed by 434
Abstract
When the inlet flow velocity in the disc-type winding region of an oil-immersed transformer operates within a high Reynolds number range, it leads to an uneven distribution of oil flow. This phenomenon results in the abnormal occurrence of reverse oil flow in the [...] Read more.
When the inlet flow velocity in the disc-type winding region of an oil-immersed transformer operates within a high Reynolds number range, it leads to an uneven distribution of oil flow. This phenomenon results in the abnormal occurrence of reverse oil flow in the bottom oil ducts, causing the hotspot temperature to rise instead of decrease. To address this issue, a three-node flow resistance module was introduced at the intersection of T-shaped oil ducts based on the flow paths of oil in the main and branch ducts within the disc-type winding region. A flow network model for the transformer winding region was subsequently constructed. The accuracy of the model was validated through CFD simulations and experiments conducted on a transformer winding region test platform, with a maximum relative error of 4.02%. The model successfully predicted the flow distribution of the cooling oil within the winding region. Furthermore, by considering the structural characteristics of the winding region and the principles of heat transfer, particular attention was given to variations in local Nusselt number correlations. This led to the development of a thermal network model tailored to the winding region experiencing reverse oil flow. Comparative analysis of the model’s calculation results yielded a maximum relative error of only 1.12%, demonstrating its ability to rapidly and accurately elucidate the reverse oil flow effect. This study provides a theoretical foundation for the identification and mitigation of reverse oil flow in future applications. Full article
Show Figures

Figure 1

19 pages, 5267 KiB  
Article
Remote-Sensed Spatio-Temporal Study of the Tropical Cyclone Freddy Exceptional Case
by Giuseppe Ciardullo, Leonardo Primavera, Fabrizio Ferrucci, Fabio Lepreti and Vincenzo Carbone
Remote Sens. 2025, 17(6), 981; https://doi.org/10.3390/rs17060981 - 11 Mar 2025
Viewed by 1029
Abstract
Dynamical processes during the different stages of evolution of tropical cyclones play crucial roles in their development and intensification, making them one of the most powerful natural forces on Earth. Given their classification as extreme atmospheric events resulting from multiple interacting factors, it [...] Read more.
Dynamical processes during the different stages of evolution of tropical cyclones play crucial roles in their development and intensification, making them one of the most powerful natural forces on Earth. Given their classification as extreme atmospheric events resulting from multiple interacting factors, it is significant to study their dynamical behavior and the nonlinear effects generated by emerging structures during scales and intensity transitions, correlating them with the surrounding environment. This study investigates the extraordinary and record-breaking case of Tropical Cyclone Freddy (2023 Indian Ocean tropical season) from a purely dynamical perspective, examining the superposition of energetic structures at different spatio-temporal scales, by mainly considering thermal fluctuations over 12 days of its evolution. The tool used for this investigation is the Proper Orthogonal Decomposition (POD), in which a set of empirical basis functions is built up, retaining the maximum energetic content of the turbulent flow. The method is applied on a satellite imagery dataset acquired from the SEVIRI radiometer onboard the Meteosat Second Generation-8 (MSG-8) geostationary platform, from which the cloud-top temperature scalar field is remote sensed looking at the cloud’s associated system. For this application, considering Freddy’s very long life period and exceptionally wide path of evolution, reanalysis and tracking data archives are taken into account in order to create an appropriately dynamic spatial grid. Freddy’s eye is followed after its first shape formation with very high temporal resolution snapshots of the temperature field. The energy content in three different characteristic scale ranges is analyzed through the associated spatial and temporal component spectra, focusing both on the total period and on the transitions between different categories. The results of the analysis outline several interesting aspects of the dynamics of Freddy related to both its transitions stages and total period. The reconstructions of the temperature field point out that the most consistent vortexes are found in the outermost cyclonic regions and in proximity of the eyewall. Additionally, we find a significant consistency of the results of the investigation of the maximum intensity phase of Freddy’s life cycle, in the spatio-temporal characteristics of its dynamics, and in comparison with one analogous case study of the Faraji tropical cyclone. Full article
Show Figures

Figure 1

25 pages, 4096 KiB  
Article
Performance Analysis of Solar Collector Integrated with Porous Metallic Foam
by Vismay Kulkarni, Abhishek Singh Kashyap, Mayur Pal and Himanshu Tyagi
Appl. Sci. 2025, 15(5), 2432; https://doi.org/10.3390/app15052432 - 24 Feb 2025
Viewed by 585
Abstract
The use of solar energy is a promising solution to reduce dependence on fossil fuels. Flat-plate collectors (FPCs) are commonly employed to harness solar energy, but their performance is often limited by thermal resistance, surface deterioration, and inefficient heat dissipation. This study investigates [...] Read more.
The use of solar energy is a promising solution to reduce dependence on fossil fuels. Flat-plate collectors (FPCs) are commonly employed to harness solar energy, but their performance is often limited by thermal resistance, surface deterioration, and inefficient heat dissipation. This study investigates the performance enhancement of an FPC integrated with porous copper foam through numerical simulations. The porous foam increases surface area and improves heat transfer by creating a complex flow path for the working fluid. Key parameters such as the porous foam height ratio (S), Darcy number (Da), and volumetric flow rate (V˙) are analysed to determine their impact on thermal performance. The results indicate that a maximum Nusselt number (Nu) of 28.85 and an outlet temperature of 306.81 K is obtained for S = 1. A decrease in Da from 10−2 to 10−6 and an increase in V˙ from 0.25 L/min to 1 L/min enhance the Nu by 5.7% and 8.8%, respectively. The friction factor (f) increases with increases in S, a decrease in Da and an increase in V˙. The performance evaluation criteria (PEC) are obtained to be maximum at S = 0.4, Da = 10−2 and V˙ = 0.25 L/min. These findings demonstrate the potential of porous copper foam in improving FPC efficiency. Full article
Show Figures

Figure 1

Back to TopTop