Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (278)

Search Parameters:
Keywords = thermal and fire-resistance properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2633 KiB  
Article
Influence of Mullite and Halloysite Reinforcement on the Ablation Properties of an Epoxy Composite
by Robert Szczepaniak, Michał Piątkiewicz, Dominik Gryc, Paweł Przybyłek, Grzegorz Woroniak and Joanna Piotrowska-Woroniak
Materials 2025, 18(15), 3530; https://doi.org/10.3390/ma18153530 - 28 Jul 2025
Viewed by 273
Abstract
This paper explores the impact of applying a powder additive in the form of halloysite and mullite on the thermal protection properties of a composite. The authors used CES R70 epoxy resin with CES H72 hardener, modified by varying the amount of powder [...] Read more.
This paper explores the impact of applying a powder additive in the form of halloysite and mullite on the thermal protection properties of a composite. The authors used CES R70 epoxy resin with CES H72 hardener, modified by varying the amount of powder additive. The composite samples were exposed to a mixture of combustible gases at a temperature of approximately 1000 °C. The primary parameters analyzed during this study were the temperature on the rear surface of the sample and the ablative mass loss of the tested material. The temperature increase on the rear surface of the sample, which was exposed to the hot stream of flammable gases, was measured for 120 s. Another key parameter considered in the data analysis was the ablative mass loss. The charred layer of the sample played a crucial role in this process, as it helped block oxygen diffusion from the boundary layer of the original material. This charred layer absorbed thermal energy until it reached a temperature at which it either oxidized or was mechanically removed due to the erosive effects of the heating factor. The incorporation of mullite reduced the rear surface temperature from 58.9 °C to 49.2 °C, and for halloysite, it was reduced the rear surface temperature to 49.8 °C. The ablative weight loss dropped from 57% to 18.9% for mullite and to 39.9% for halloysite. The speed of mass ablation was reduced from 77.9 mg/s to 25.2 mg/s (mullite) and 52.4 mg/s (halloysite), while the layer thickness loss decreased from 7.4 mm to 2.8 mm (mullite) and 4.4 mm (halloysite). This research is innovative in its use of halloysite and mullite as functional additives to enhance the ablative resistance of polymer composites under extreme thermal conditions. This novel approach not only contributes to a deeper understanding of composite behavior at high temperatures but also opens up new avenues for the development of advanced thermal protection systems. Potential applications of these materials include aerospace structures, fire-resistant components, and protective coatings in environments exposed to intense heat and flame. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

16 pages, 2624 KiB  
Article
An Experimental Study on Fire Propagation and Survival in Informal Settlements
by Cristóbal Ignacio Galleguillos Ketterer, José Luis Valin Rivera, Javier Díaz Millar and Maximiliano Santander López
Fire 2025, 8(8), 290; https://doi.org/10.3390/fire8080290 - 24 Jul 2025
Viewed by 440
Abstract
In recent years, the region of Valparaíso has faced devastating fires, notably the Viña del Mar fire on 2 February 2024, which affected 9252 hectares. This study analyzes fire behavior in informal settlements and assesses the effectiveness of different construction materials through scaled [...] Read more.
In recent years, the region of Valparaíso has faced devastating fires, notably the Viña del Mar fire on 2 February 2024, which affected 9252 hectares. This study analyzes fire behavior in informal settlements and assesses the effectiveness of different construction materials through scaled prototypes of dwellings made from MDF, OSB, TetraPak, and flame-retardant resin composites. Controlled fire experiments were conducted, recording fire spread times and atmospheric conditions. Results confirm significant differences in fire spread rates and structural survival times between materials, highlighting the practical benefit of fire-resistant alternatives. The Kaplan–Meier survival analysis indicates critical time thresholds for rapid flame escalation and structural collapse under semi-open conditions, supporting the need for improved safety measures. Burn pattern observations further revealed the role of wind, thermal radiation, and material properties in fire dynamics. Overall, this study provides experimental evidence aligned with real fire scenarios, offering quantified insights to enhance fire prevention and response strategies in vulnerable settlements. These findings provide an exploratory basis for understanding fire dynamics in informal settlements but do not constitute definitive design prescriptions. Full article
Show Figures

Figure 1

36 pages, 5042 KiB  
Review
The Fungus Among Us: Innovations and Applications of Mycelium-Based Composites
by Zahra Parhizi, John Dearnaley, Kate Kauter, Deirdre Mikkelsen, Priya Pal, Tristan Shelley and Paulomi (Polly) Burey
J. Fungi 2025, 11(8), 549; https://doi.org/10.3390/jof11080549 - 23 Jul 2025
Viewed by 556
Abstract
Mycelium-based composites (MBCs) are an emerging category of cost-effective and environmentally sustainable materials that are attracting significant research and commercial interest across various industries, including construction, manufacturing, agriculture, and biomedicine. These materials harness the natural growth of fungi as a low-energy bio-fabrication method, [...] Read more.
Mycelium-based composites (MBCs) are an emerging category of cost-effective and environmentally sustainable materials that are attracting significant research and commercial interest across various industries, including construction, manufacturing, agriculture, and biomedicine. These materials harness the natural growth of fungi as a low-energy bio-fabrication method, converting abundant agricultural by-products and waste into sustainable alternatives to energy-intensive synthetic construction materials. Their affordability and eco-friendly characteristics make them attractive for both research and commercialisation. Currently, mycelium-based foams and sandwich composites are being actively developed for applications in construction. These materials offer exceptional thermal insulation, excellent acoustic absorption, and superior fire safety compared to conventional building materials like synthetic foams and engineered wood. As a result, MBCs show great potential for applications in thermal and acoustic insulation. However, their foam-like mechanical properties, high water absorption, and limited documentation of material properties restrict their use to non- or semi-structural roles, such as insulation, panelling, and furniture. This paper presents a comprehensive review of the fabrication process and the factors affecting the production and performance properties of MBCs. It addresses key elements such as fungal species selection, substrate choice, optimal growth conditions, dehydration methods, post-processing techniques, mechanical and physical properties, termite resistance, cost comparison, and life cycle assessment. Full article
Show Figures

Figure 1

29 pages, 13314 KiB  
Article
Development of Unfired Clay Bricks with Alumina Waste from Liquid Nitrogen Production: A Sustainable Alternative for Construction Materials
by Noppadol Sangiamsak, Nopanom Kaewhanam, Meesakthana Puapitthayathorn, Seksan Numsong, Kowit Suwannahong, Sukanya Hongthong, Torpong Kreetachat, Sompop Sanongraj and Surachai Wongcharee
Sustainability 2025, 17(14), 6424; https://doi.org/10.3390/su17146424 - 14 Jul 2025
Viewed by 407
Abstract
A major breakthrough in environmentally friendly building materials is the development of sustainable unfired clay bricks including alumina waste produced during liquid nitrogen generation. Though used extensively, conventional fired clay bricks require energy-intensive manufacturing techniques that produce significant amounts of CO2 and [...] Read more.
A major breakthrough in environmentally friendly building materials is the development of sustainable unfired clay bricks including alumina waste produced during liquid nitrogen generation. Though used extensively, conventional fired clay bricks require energy-intensive manufacturing techniques that produce significant amounts of CO2 and aggravate environmental damage. By removing the need for high-temperature firing and allowing for the valorization of industrial byproducts including alumina waste and lateritic soil, unfired clay bricks offer a reasonable low-carbon alternative. High silica and alumina contents define the alumina waste, which shows pozzolanic reactivity, thus improving the physicomechanical performance of the bricks. With alumina waste substituting 0–8.57% of the cement content, seven different formulations showed improvements in compressive strength, reduced water absorption, and optimal thermal conductivity. Especially, the mechanical performance was much enhanced with alumina waste inclusion up to 30%, without sacrificing thermal insulation capacity or moisture resistance. Further supporting the environmental and financial sustainability of the suggested brick compositions is the economic viability of using industrial waste and regionally derived soils. A comparative analysis of the conventional fired bricks shows that the unfired substitutes have a much lower environmental impact and show better mechanical properties, including greater compressive strength and modulus of rupture. These results support the more general goals of circular economy systems and low-carbon urban development by highlighting the feasibility of including alumina waste and lateritic soil into sustainable building materials. Using such waste-derived inputs in building fits world initiatives to lower resource consumption, lower greenhouse gas emissions, and build strong infrastructure systems. Full article
(This article belongs to the Special Issue Solid Waste Management and Sustainable Environmental Remediation)
Show Figures

Figure 1

24 pages, 3139 KiB  
Article
Alternative Materials for Interior Partitions in Construction
by Bruna Resende Fagundes Pereira, Carolina Rezende Pinto Narciso, Gustavo Henrique Nalon, Juliana Farinassi Mendes, Lívia Elisabeth Vasconcellos de Siqueira Brandão Vaz, Raphael Nogueira Rezende and Rafael Farinassi Mendes
Sustainability 2025, 17(14), 6341; https://doi.org/10.3390/su17146341 - 10 Jul 2025
Viewed by 382
Abstract
The significant waste generated by construction has increased interest in sustainable solutions, including prefabricated interior partition panels. Although different types of alternative panels have been proposed, their performance as interior partitions remains underexplored in systematic comparative studies. To narrow this knowledge gap, this [...] Read more.
The significant waste generated by construction has increased interest in sustainable solutions, including prefabricated interior partition panels. Although different types of alternative panels have been proposed, their performance as interior partitions remains underexplored in systematic comparative studies. To narrow this knowledge gap, this paper presents a comprehensive evaluation and classification of drywall, OSB (Oriented Strand Board), cement–wood, and honeycomb panels, regarding physical, mechanical, microstructural, thermal, acoustic, and combustibility characteristics, in addition to conducting a cost evaluation. The results indicated that the OSB panels exhibited superior results for interior partition applications, showing notable advantages in physical strength, mechanical performance, and thermal insulation, while offering acoustic properties comparable to those of drywall panels. Nevertheless, OSB panels showed lower fire resistance and were associated with the highest cost among the materials analyzed in the present research. Drywall panels, on the other hand, provided the most favorable fire resistance but exhibited the least effective thermal insulation. The findings also indicated that both wood–cement and honeycomb panels require further improvements in their manufacturing processes to meet performance standards suitable for interior partition. Full article
Show Figures

Figure 1

22 pages, 6286 KiB  
Article
Thermal Degradation and Flame Resistance Mechanism of Phosphorous-Based Flame Retardant of ABS Composites Used in 3D Printing Technology
by Rafał Oliwa, Katarzyna Bulanda and Mariusz Oleksy
Materials 2025, 18(13), 3202; https://doi.org/10.3390/ma18133202 - 7 Jul 2025
Viewed by 322
Abstract
As part of the work, polymer composites dedicated to rapid prototyping were developed, especially for 3D printing using the material extrusion technique. For this purpose, a polymer matrix was selected, which was an acrylonitrile-butadiene-styrene (ABS) terpolymer and a flame retardant, which was tetrakis [...] Read more.
As part of the work, polymer composites dedicated to rapid prototyping were developed, especially for 3D printing using the material extrusion technique. For this purpose, a polymer matrix was selected, which was an acrylonitrile-butadiene-styrene (ABS) terpolymer and a flame retardant, which was tetrakis (2,6-dimethylphenyl)-m-phenylenebisphosphate, commercially known as PX200. The effect of the presence and amount (5, 10, 15 and 20 wt.%) of the introduced additive on the rheological properties, structural properties, flammability (limiting oxygen index, LOI; UL94) and flame retardant properties (microcone calorimeter, MLC) of ABS-based composites was investigated. In addition, the mechanism of thermal degradation and flame resistance was investigated using thermogravimetric analysis, TGA and Fourier transform infrared spectroscopy, FT-IR of the residue after the MLC test. In the first part of the work, using the author’s technological line, filaments were obtained from unfilled ABS and its composites. Samples for testing were obtained by 3D printing in Fused Deposition Modeling (FDM) technology. In order to determine the quantitative and qualitative spread of fire and the effectiveness of the phosphorus flame retardant PX200 in the produced composites, the Maximum Average Rate of Heat Emission (MARHE); Fire Growth Rate Index (FIGRA); Fire Potential Index (FPI) and Flame Retardancy Index (FRI) were determined. Based on the obtained results, it was found that the aryl biphosphate used in this work exhibits activity in the gas phase, which was confirmed by quantitative assessment using data from a microcone calorimeter and non-residues after combustion and thermolysis at 700 °C. As a result, the flammability class did not change (HB40), and the LOI slightly increased to 20% for the composite with 20% flame retardant content. Moreover, this composite was characterized by the following flammability indices: pHRR = 482.9 kW/m2 (−40.3%), MARHE = 234 kW/m2 (−40.7%), FIGRA = 3.1 kW/m2·s (−56.3%), FPI = 0.061 m2·s/kW (+64.9%), FRI = 2.068 (+106.8%). Full article
(This article belongs to the Special Issue 3D Printing of Polymeric Materials)
Show Figures

Graphical abstract

19 pages, 4862 KiB  
Article
Fire Resistance of Steel Beams with Intumescent Coating Exposed to Fire Using ANSYS and Machine Learning
by Igor Džolev, Sofija Kekez-Baran and Andrija Rašeta
Buildings 2025, 15(13), 2334; https://doi.org/10.3390/buildings15132334 - 3 Jul 2025
Viewed by 414
Abstract
The thermal conductivity of steel is high compared to other materials such as concrete or timber. Therefore, fire protection measures are applied to prolong the duration between the onset of fire exposure and the final loss of load-bearing function of a steel structure. [...] Read more.
The thermal conductivity of steel is high compared to other materials such as concrete or timber. Therefore, fire protection measures are applied to prolong the duration between the onset of fire exposure and the final loss of load-bearing function of a steel structure. The most common passive fire protection measure is the application of intumescent coating (IC), a thin film that expands at elevated temperatures and forms an insulating char layer of lower thermal conductivity. This paper focuses on structural steel beams with IPE open-section profiles protected by a water-based IC and subjected to static and standard fire loading. ANSYS 16.0 is used to simulate heat transfer, with thermal conductivity function described by standard multivariate linear regression analysis, followed by mechanical analysis considering degradation of material mechanical properties at elevated temperatures. Simulations are conducted for all IPE profile sizes, with varying initial degrees of utilisation, beam lengths, and coating thicknesses. Results indicated fire resistance times ranging from 24 to 53.5 min, demonstrating a relatively good level of fire resistance even with the minimal IC thickness. Furthermore, artificial neural networks were developed to predict the fire resistance time of steel members with IC using varying numbers of hidden neurons and subset ratios. The model achieved a predictability level of 99.9% upon evaluation. Full article
(This article belongs to the Special Issue Advanced Analysis and Design for Steel Structure Stability)
Show Figures

Figure 1

30 pages, 10507 KiB  
Article
Thermal Properties of Geopolymer Concretes with Lightweight Aggregates
by Agnieszka Przybek, Paulina Romańska, Kinga Korniejenko, Krzysztof Krajniak, Maria Hebdowska-Krupa and Michał Łach
Materials 2025, 18(13), 3150; https://doi.org/10.3390/ma18133150 - 3 Jul 2025
Cited by 1 | Viewed by 536
Abstract
Despite the availability of various materials for chimney applications, ongoing research seeks alternatives with improved thermal and chemical resistance. Geopolymers are a promising solution, exhibiting exceptional resistance to high temperatures, fire, and aggressive chemicals. This study investigates fly ash-based lightweight geopolymer concretes that [...] Read more.
Despite the availability of various materials for chimney applications, ongoing research seeks alternatives with improved thermal and chemical resistance. Geopolymers are a promising solution, exhibiting exceptional resistance to high temperatures, fire, and aggressive chemicals. This study investigates fly ash-based lightweight geopolymer concretes that incorporate expanded clay aggregate (E.C.A.), perlite (P), and foamed geopolymer aggregate (F.G.A.). The composites were designed to ensure a density below 1200 kg/m3, reducing overall weight while maintaining necessary performance. Aggregate content ranged from 60 to 75 wt.%. Physical (density, thickness, water absorption), mechanical (flexural and compressive strength), and thermal (conductivity, resistance) properties were evaluated. F.G.A. 60 achieved a 76.8% reduction in thermal conductivity (0.1708 vs. 0.7366 W/(m·K)) and a 140.4% increase in thermal resistance (0.1642 vs. 0.0683). The F.G.A./E.C.A./P 60 mixture showed the highest compressive strength (18.069 MPa), reaching 52.7% of the reference concrete’s strength, with a 32.3% lower density (1173.3 vs. 1735.0 kg/m3). Water absorption ranged from 4.9% (REF.) to 7.3% (F.G.A. 60). All samples, except F.G.A. 70 and F.G.A. 75, endured heating up to 800 °C. The F.G.A./E.C.A./P 60 composite demonstrated well-balanced performance: low thermal conductivity (0.2052 W/(m·K)), thermal resistance up to 1000 °C, flexural strength of 4.386 MPa, and compressive strength of 18.069 MPa. The results confirm that well-designed geopolymer lightweight concretes are suitable for chimney and flue pipe linings operating between 500 and 1000 °C and exposed to acidic condensates and aggressive chemicals. This study marks the initial phase of a broader project on geopolymer-based prefabricated chimney systems. Full article
(This article belongs to the Special Issue Advances in Function Geopolymer Materials—Second Edition)
Show Figures

Figure 1

27 pages, 21889 KiB  
Article
Modulus of Elasticity and Mechanical Properties Assessment of Historical Masonry Elements After Elevated Temperature: Experimental Study and Numerical Analysis
by Ahmet Fazıl Kara, Ferit Cakir and Metehan Calis
Buildings 2025, 15(13), 2324; https://doi.org/10.3390/buildings15132324 - 2 Jul 2025
Viewed by 426
Abstract
Historical masonry structures deteriorate over time, requiring restoration and strengthening. Hydraulic lime-based mortars (HLMs), due to their compatibility with historical materials, are commonly used for this purpose. This study examines the fire resistance of masonry walls constructed with HLMs. Masonry prisms with clay [...] Read more.
Historical masonry structures deteriorate over time, requiring restoration and strengthening. Hydraulic lime-based mortars (HLMs), due to their compatibility with historical materials, are commonly used for this purpose. This study examines the fire resistance of masonry walls constructed with HLMs. Masonry prisms with clay bricks were prepared using HLMs in accordance with material testing standards. Specimens were subjected to high temperatures ranging from 200 °C to 800 °C, followed by flexural–compression tests for mortar and compression tests for masonry prisms. A total of 20 masonry prism specimens, 15 brick specimens, and 15 mortar specimens were tested, including reference specimens at room temperature. Experimental results indicate that masonry prisms, clay bricks, and HLMs progressively lose their mechanical properties as temperature increases. The elastic modulus of masonry prisms was evaluated according to relevant standards, and Finite Element Analysis (FEA) was conducted to validate temperature-dependent material properties. The stress–strain response of M15 HLM masonry prisms was determined, addressing the absence of such data in EN 1996-1-2. Additionally, compression test results were compared with digital image correlation (DIC) analyses to enhance measurement accuracy. This study provides critical insights into the thermal performance of masonry walls with HLMs, contributing to the development of fire-resistant restoration materials. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

50 pages, 8944 KiB  
Review
Fire-Resistant Coatings: Advances in Flame-Retardant Technologies, Sustainable Approaches, and Industrial Implementation
by Rutu Patel, Mayankkumar L. Chaudhary, Yashkumar N. Patel, Kinal Chaudhari and Ram K. Gupta
Polymers 2025, 17(13), 1814; https://doi.org/10.3390/polym17131814 - 29 Jun 2025
Viewed by 1502
Abstract
Fire-resistant coatings have emerged as crucial materials for reducing fire hazards in various industries, including construction, textiles, electronics, and aerospace. This review provides a comprehensive account of recent advances in fire-resistant coatings, emphasizing environmentally friendly and high-performance systems. Beginning with a classification of [...] Read more.
Fire-resistant coatings have emerged as crucial materials for reducing fire hazards in various industries, including construction, textiles, electronics, and aerospace. This review provides a comprehensive account of recent advances in fire-resistant coatings, emphasizing environmentally friendly and high-performance systems. Beginning with a classification of traditional halogenated and non-halogenated flame retardants (FRs), this article progresses to cover nitrogen-, phosphorus-, and hybrid-based systems. The synthesis methods, structure–property relationships, and fire suppression mechanisms are critically discussed. A particular focus is placed on bio-based and waterborne formulations that align with green chemistry principles, such as tannic acid (TA), phytic acid (PA), lignin, and deep eutectic solvents (DESs). Furthermore, the integration of nanomaterials and smart functionalities into fire-resistant coatings has demonstrated promising improvements in thermal stability, char formation, and smoke suppression. Applications in real-world contexts, ranging from wood and textiles to electronics and automotive interiors, highlight the commercial relevance of these developments. This review also addresses current challenges such as long-term durability, environmental impacts, and the standardization of performance testing. Ultimately, this article offers a roadmap for developing safer, sustainable, and multifunctional fire-resistant coatings for future materials engineering. Full article
(This article belongs to the Special Issue Flame-Retardant Polymer Composites II)
Show Figures

Figure 1

15 pages, 2040 KiB  
Article
Research on the Flame-Retardant Performance of Antioxidant Gel Foam in Preventing Spontaneous Coal Combustion
by Hu Wen, Ziqi Wang and Maoxia Liu
Fire 2025, 8(7), 247; https://doi.org/10.3390/fire8070247 - 26 Jun 2025
Viewed by 323
Abstract
Antioxidant gel foams are promising materials for coal mine fire prevention due to their unique physicochemical properties. To address the limitations of conventional suppression methods under high-temperature conditions, this study investigates a newly developed antioxidant gel foam and its mechanism in inhibiting coal [...] Read more.
Antioxidant gel foams are promising materials for coal mine fire prevention due to their unique physicochemical properties. To address the limitations of conventional suppression methods under high-temperature conditions, this study investigates a newly developed antioxidant gel foam and its mechanism in inhibiting coal spontaneous combustion. A novel antioxidant gel foam was formulated by incorporating TBHQ and modified montmorillonite into a sodium alginate-based gel system. This formulation enhances the thermal stability, water retention, and free radical scavenging capacity of the gel. This study uniquely combines multi-scale experimental methods to evaluate the performance of this material in coal fire suppression. Multi-scale experiments, including FTIR, leakage air testing, programmed temperature rise, and small-scale fire extinction, were conducted to evaluate its performance. Experimental results indicate that the antioxidant gel foam exhibits excellent thermal stability in the temperature range of 200–500 °C. Its relatively high decomposition temperature enables it to effectively resist structural damage in high-temperature environments. During thermal decomposition, the gel releases only a small amount of gas, while maintaining the integrity of its internal micro-porous structure. This characteristic significantly delays the kinetics of coal oxidation reactions. Further research revealed that the spontaneous combustion ignition temperature of coal samples treated with the gel was significantly higher, and the oxygen consumption rate during spontaneous combustion was significantly reduced, indicating that the gel not only effectively suppressed the acceleration of the combustion reaction but also significantly reduced the release of harmful gases such as HCl. Scanning electron microscope analysis confirmed that the gel maintained a good physical structure under high temperatures, forming an effective oxygen barrier, which further enhanced the suppression of coal spontaneous combustion. These findings provide important theoretical and practical guidance for the application of antioxidant gel foams in coal mine fire prevention and control, confirming that this material has great potential in coal mine fire safety, offering a new technological approach to improve coal mine safety. Full article
(This article belongs to the Special Issue Fire Prevention and Flame Retardant Materials)
Show Figures

Figure 1

13 pages, 3918 KiB  
Article
Fayalite-Based Geopolymer Foam
by Aleksandar Nikolov, Mihail Tarassov, Ivan Rostovsky, Miryana Raykovska, Ivan Georgiev and Kinga Korniejenko
Ceramics 2025, 8(2), 77; https://doi.org/10.3390/ceramics8020077 - 19 Jun 2025
Viewed by 400
Abstract
The present work is the first study exploring the potential of geopolymer foams based on fayalite slag, an industrial by-product, as the primary precursor, for lightweight and fireproof construction applications. The research involved the synthesis and characterization of geopolymer foams with varying water [...] Read more.
The present work is the first study exploring the potential of geopolymer foams based on fayalite slag, an industrial by-product, as the primary precursor, for lightweight and fireproof construction applications. The research involved the synthesis and characterization of geopolymer foams with varying water to solid ratio, followed by testing their physical and mechanical properties. The phase composition and microstructure of the obtained geopolymer foams were examined using powder XRD, Micro-CT and SEM. The geopolymer foams at optimal water to solid ratio (0.15) demonstrated 73.2% relative porosity, 0.92 g/cm3 apparent density and 1.3 MPa compressive strength. The use of an air-entraining admixture improved compressive strength to 2.8 MPa but lowered the relative porosity to 64.5%. Real-size lightweight panel (300 × 300 × 30 mm) specimens were prepared to measure thermal conductivity coefficient (0.243 W/mK) and evaluate size effect and the reaction to direct fire. This study demonstrates the successful preparation of geopolymer foam products containing 81% fayalite slag, highlighting its potential as a lightweight, insulating and fire-resistant material for sustainable construction applications. Full article
(This article belongs to the Special Issue The Production Processes and Applications of Geopolymers, 2nd Edition)
Show Figures

Graphical abstract

61 pages, 3950 KiB  
Review
Comprehensive Overview on the Computational, Experimental, Numerical, and Theoretical Assessments of Silica Aerogel Composites
by Aditya Abhijit Kunte, Sarthak Khandelwal and Sandeep P. Patil
J. Compos. Sci. 2025, 9(6), 306; https://doi.org/10.3390/jcs9060306 - 17 Jun 2025
Viewed by 1018
Abstract
Silica aerogel (SiA) composites have gained importance due to their ability to overcome the challenges of pure SiA while retaining its superior properties. Their growing significance calls for a closer examination of its assessment methods and performance optimization strategies. Deeper understanding of various [...] Read more.
Silica aerogel (SiA) composites have gained importance due to their ability to overcome the challenges of pure SiA while retaining its superior properties. Their growing significance calls for a closer examination of its assessment methods and performance optimization strategies. Deeper understanding of various assessment methods is essential as it assists in the accurate prediction of the operational stability and environmental resilience of these composites. Addressing performance optimization also remains crucial for the mitigation of structural limitations in SiA composites. This review highlights the advancements and explores the strategies for evaluating the mechanical, thermal, flammability, and radiative properties of SiA composites. It offers an in-depth discussion, revealing not only their thermomechanical behavior, but also their remarkable resistance to fire and radiation. Additionally, this review also examines the development and refinement of theoretical and numerical models. Further, a systematic comparison of continuum mechanics-based simulations with nanoscale (molecular dynamics) simulations reveals critical insights into their accuracies, limitations, and applicability in modeling SiA composites. Exciting insights on the assessments and properties of SiA composites are explored across several experimental, theoretical, numerical, and computational studies. This review also provides an in-depth discussion of performance optimization strategies, limitations, and future prospects while briefly highlighting applications relevant to each assessment. Finally, it presents a distinctive comparative analysis of decade-long studies for each assessment, offering key insights to guide future studies. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

25 pages, 8645 KiB  
Article
Epoxy Composites Modified with Functionalized Aluminosilicate Microspheres from Thermal Power Plant Ash: Complex Improvements in the Mechanical and Thermal Properties
by Anton Mostovoy, Andrey Shcherbakov, Gulbanu Serikbayeva, Marina Lopukhova, Victoria Svitkina, Zamzagul Shanina and Amirbek Bekeshev
Polymers 2025, 17(12), 1666; https://doi.org/10.3390/polym17121666 - 16 Jun 2025
Viewed by 415
Abstract
In this paper, the effect of aluminosilicate microspheres (ASMs) from thermal power plant (TPP) ash on the properties of epoxy composites was studied. A method for modifying the ASMs’ surface using aminoacetic acid was developed to improve the adhesion at the polymer–filler interface. [...] Read more.
In this paper, the effect of aluminosilicate microspheres (ASMs) from thermal power plant (TPP) ash on the properties of epoxy composites was studied. A method for modifying the ASMs’ surface using aminoacetic acid was developed to improve the adhesion at the polymer–filler interface. Complex analysis methods, including scanning electron microscopy, infrared spectroscopy, a thermogravimetric analysis, DSC, and DMA, showed that adding the optimal amount of ASMs significantly improved the physical and mechanical properties of the composites: the flexural strength increased by 112%, the elastic modulus by 198%, and the impact strength by 50%. Functionalization of the ASMs enhances their interaction with the matrix, providing the composites with the best strength and thermal stability indicators among the studied materials. The study of the curing kinetics showed the initiating effect of functionalized ASMs on the curing process of epoxy compositions, associated with the presence of active amino groups on the surface of the particles. The resulting composites demonstrate potential for application in structural and fire-resistant materials; have high-deformation and -strength characteristics; and facilitate the disposal of industrial waste. Full article
(This article belongs to the Special Issue Advanced Epoxy-Based Materials, 5th Edition)
Show Figures

Figure 1

18 pages, 1390 KiB  
Article
Durability and Mechanical Analysis of Basalt Fiber Reinforced Metakaolin–Red Mud-Based Geopolymer Composites
by Ouiame Chakkor
Buildings 2025, 15(12), 2010; https://doi.org/10.3390/buildings15122010 - 11 Jun 2025
Cited by 1 | Viewed by 536
Abstract
Cement is widely used as the primary binder in concrete; however, growing environmental concerns and the rapid expansion of the construction industry have highlighted the need for more sustainable alternatives. Geopolymers have emerged as promising eco-friendly binders due to their lower carbon footprint [...] Read more.
Cement is widely used as the primary binder in concrete; however, growing environmental concerns and the rapid expansion of the construction industry have highlighted the need for more sustainable alternatives. Geopolymers have emerged as promising eco-friendly binders due to their lower carbon footprint and potential to utilize industrial byproducts. Geopolymer mortar, like other cementitious substances, exhibits brittleness and tensile weakness. Basalt fibers serve as fracture-bridging reinforcements, enhancing flexural and tensile strength by redistributing loads and postponing crack growth. Basalt fibers enhance the energy absorption capacity of the mortar, rendering it less susceptible to abrupt collapse. Basalt fibers have thermal stability up to about 800–1000 °C, rendering them appropriate for geopolymer mortars designed for fire-resistant or high-temperature applications. They assist in preserving structural integrity during heat exposure. Fibers mitigate early-age microcracks resulting from shrinkage, drying, or heat gradients. This results in a more compact and resilient microstructure. Using basalt fibers improves surface abrasion and impact resistance, which is advantageous for industrial flooring or infrastructure applications. Basalt fibers originate from natural volcanic rock, are non-toxic, and possess a minimal ecological imprint, consistent with the sustainability objectives of geopolymer applications. This study investigates the mechanical and thermal performance of a geopolymer mortar composed of metakaolin and red mud as binders, with basalt powder and limestone powder replacing traditional sand. The primary objective was to evaluate the effect of basalt fiber incorporation at varying contents (0.4%, 0.8%, and 1.2% by weight) on the durability and strength of the mortar. Eight different mortar mixes were activated using sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) solutions. Mechanical properties, including compressive strength, flexural strength, and ultrasonic pulse velocity (UPV), were tested 7 and 28 days before and after exposure to elevated temperatures (200, 400, 600, and 800 °C). The results indicated that basalt fiber significantly enhanced the performance of the geopolymer mortar, particularly at a content of 1.2%. Specimens with 1.2% fiber showed up to 20% improvement in compressive strength and 40% in flexural strength after thermal exposure, attributed to the fiber’s role in microcrack bridging and structural densification. Subsequent research should concentrate on refining fiber type, dose, and dispersion techniques to improve mechanical performance and durability. Examinations of microstructural behavior, long-term durability under environmental settings, and performance following high-temperature exposure are crucial. Furthermore, investigations into hybrid fiber systems, extensive structural applications, and life-cycle evaluations will inform the practical and sustainable implementation in the buildings. Full article
Show Figures

Figure 1

Back to TopTop