Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,913)

Search Parameters:
Keywords = therapeutic carriers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 928 KiB  
Review
Reprogramming Atherosclerosis: Precision Drug Delivery, Nanomedicine, and Immune-Targeted Therapies for Cardiovascular Risk Reduction
by Paschalis Karakasis, Panagiotis Theofilis, Panayotis K. Vlachakis, Konstantinos Grigoriou, Dimitrios Patoulias, Antonios P. Antoniadis and Nikolaos Fragakis
Pharmaceutics 2025, 17(8), 1028; https://doi.org/10.3390/pharmaceutics17081028 (registering DOI) - 7 Aug 2025
Abstract
Atherosclerosis is a progressive, multifactorial disease driven by the interplay of lipid dysregulation, chronic inflammation, oxidative stress, and maladaptive vascular remodeling. Despite advances in systemic lipid-lowering and anti-inflammatory therapies, residual cardiovascular risk persists, highlighting the need for more precise interventions. Targeted drug delivery [...] Read more.
Atherosclerosis is a progressive, multifactorial disease driven by the interplay of lipid dysregulation, chronic inflammation, oxidative stress, and maladaptive vascular remodeling. Despite advances in systemic lipid-lowering and anti-inflammatory therapies, residual cardiovascular risk persists, highlighting the need for more precise interventions. Targeted drug delivery represents a transformative strategy, offering the potential to modulate key pathogenic processes within atherosclerotic plaques while minimizing systemic exposure and off-target effects. Recent innovations span a diverse array of platforms, including nanoparticles, liposomes, exosomes, polymeric carriers, and metal–organic frameworks (MOFs), engineered to engage distinct pathological features such as inflamed endothelium, dysfunctional macrophages, oxidative microenvironments, and aberrant lipid metabolism. Ligand-based, biomimetic, and stimuli-responsive delivery systems further enhance spatial and temporal precision. In parallel, advances in in-silico modeling and imaging-guided approaches are accelerating the rational design of multifunctional nanotherapeutics with theranostic capabilities. Beyond targeting lipids and inflammation, emerging strategies seek to modulate immune checkpoints, restore endothelial homeostasis, and reprogram plaque-resident macrophages. This review provides an integrated overview of the mechanistic underpinnings of atherogenesis and highlights state-of-the-art targeted delivery systems under preclinical and clinical investigation. By synthesizing recent advances, we aim to elucidate how precision-guided drug delivery is reshaping the therapeutic landscape of atherosclerosis and to chart future directions toward clinical translation and personalized vascular medicine. Full article
Show Figures

Figure 1

12 pages, 1742 KiB  
Article
Therapeutic Effects of PSL-Loaded PLGA-PEG-PLGA NPs in Allergic Contact Dermatitis Model Mice
by Ryo Fujisawa, Ryuse Sakurai, Takeshi Oshizaka, Kenji Mori, Akiyoshi Saitoh, Issei Takeuchi and Kenji Sugibayashi
Molecules 2025, 30(15), 3292; https://doi.org/10.3390/molecules30153292 - 6 Aug 2025
Abstract
This study focused on the poly(DL-lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly(DL-lactide-co-glycolide) (PLGA-PEG-PLGA) triblock copolymer, which was recently reported as a novel material for polymeric nanoparticles to replace poly(DL-lactide-co-glycolide) (PLGA) as a drug carrier for prednisolone (PSL), and [...] Read more.
This study focused on the poly(DL-lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly(DL-lactide-co-glycolide) (PLGA-PEG-PLGA) triblock copolymer, which was recently reported as a novel material for polymeric nanoparticles to replace poly(DL-lactide-co-glycolide) (PLGA) as a drug carrier for prednisolone (PSL), and aimed to evaluate the efficacy of PSL-loaded PLGA-PEG-PLGA nanoparticles (NPs) against allergic contact dermatitis (ACD). PSL-loaded PLGA-PEG-PLGA NPs were prepared using the nanoprecipitation method, and their particle size distribution and mean particle size were measured using dynamic light scattering. 1-Fluoro-2,4-dinitrobenzene (DNFB) was used to create a mouse model of contact hypersensitivity (CHS). PSL-loaded PLGA-PEG-PLGA NPs were administered before sensitization with DNFB, and the therapeutic effect was evaluated by quantifying intracutaneous TNF-α and IL-4 levels suing ELISA. When PSL-loaded PLGA-PEG-PLGA NPs were administered before sensitization, TNF-α expression and IL-4 statements were significantly lower in the PSL-loaded PLGA-PEG-PLGA NP group than in the non-treated group. No significant difference was observed between the PSL-loaded PLGA-PEG-PLGA NP and PSL-loaded ointment groups, even though the steroid dose was 40 times lower than in the PSL-containing ointment. These results suggest that PSL-loaded PLGA-PEG-PLGA NPs may have a better effect in the treatment of ACD than PSL-loaded PLGA NPs. Full article
Show Figures

Figure 1

41 pages, 3389 KiB  
Review
Fully Green Particles Loaded with Essential Oils as Phytobiotics: A Review on Preparation and Application in Animal Feed
by Maria Sokol, Ivan Gulayev, Margarita Chirkina, Maksim Klimenko, Olga Kamaeva, Nikita Yabbarov, Mariia Mollaeva and Elena Nikolskaya
Antibiotics 2025, 14(8), 803; https://doi.org/10.3390/antibiotics14080803 - 6 Aug 2025
Abstract
The modern livestock industry incorporates widely used antibiotic growth promoters into animal feed at sub-therapeutic levels to enhance growth performance and feed efficiency. However, this practice contributes to the emergence of antibiotic-resistant pathogens in livestock, which may be transmitted to humans through the [...] Read more.
The modern livestock industry incorporates widely used antibiotic growth promoters into animal feed at sub-therapeutic levels to enhance growth performance and feed efficiency. However, this practice contributes to the emergence of antibiotic-resistant pathogens in livestock, which may be transmitted to humans through the food chain, thereby diminishing the efficacy of antibiotics in treating bacterial infections. Current research explores the potential of essential oils from derived medicinal plants as alternative phytobiotics. This review examines modern encapsulation strategies that incorporate essential oils into natural-origin matrices to improve their stability and control their release both in vitro and in vivo. We discuss a range of encapsulation approaches utilizing polysaccharides, gums, proteins, and lipid-based carriers. This review highlights the increasing demand for antibiotic alternatives in animal nutrition driven by regulatory restrictions, and the potential benefits of essential oils in enhancing feed palatability and stabilizing the intestinal microbiome in monogastric animals and ruminants. Additionally, we address the economic viability and encapsulation efficiency of different matrix formulations. Full article
Show Figures

Graphical abstract

20 pages, 1677 KiB  
Review
Applications of Nanoparticles in the Diagnosis and Treatment of Ovarian Cancer
by Ahmed El-Mallul, Ryszard Tomasiuk, Tadeusz Pieńkowski, Małgorzata Kowalska, Dilawar Hasan, Marcin Kostrzewa, Dominik Czerwonka, Aleksandra Sado, Wiktoria Rogowska, Igor Z. Zubrzycki and Magdalena Wiacek
Nanomaterials 2025, 15(15), 1200; https://doi.org/10.3390/nano15151200 - 6 Aug 2025
Abstract
Nanotechnology offers innovative methodologies for enhancing the diagnosis and treatment of ovarian cancer by utilizing specialized nanoparticles. The utilization of nanoparticles offers distinct advantages, specifically that these entities enhance the bioavailability of therapeutic agents and facilitate the targeted delivery of pharmacological agents to [...] Read more.
Nanotechnology offers innovative methodologies for enhancing the diagnosis and treatment of ovarian cancer by utilizing specialized nanoparticles. The utilization of nanoparticles offers distinct advantages, specifically that these entities enhance the bioavailability of therapeutic agents and facilitate the targeted delivery of pharmacological agents to neoplastic cells. A diverse array of nanoparticles, including but not limited to liposomes, dendrimers, and gold nanoparticles, function as proficient carriers for drug delivery. Nevertheless, notwithstanding the auspicious potential of these applications, challenges pertaining to toxicity, biocompatibility, and the necessity for comprehensive clinical evaluations pose considerable barriers to the widespread implementation of these technologies. The incorporation of nanotechnology into clinical practice holds the promise of significantly transforming the management of ovarian cancer, offering novel diagnostic tools and therapeutic strategies that enhance patient outcomes and prognoses. In summary, the deployment of nanotechnology in the context of ovarian cancer epitomizes a revolutionary paradigm in medical science, amalgamating sophisticated materials and methodologies to enhance both diagnostic and therapeutic outcomes. Continued research and development endeavors are essential to fully realize the extensive potential of these innovative solutions and address the existing challenges associated with their application in clinical settings. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

22 pages, 2630 KiB  
Review
Transfection Technologies for Next-Generation Therapies
by Dinesh Simkhada, Su Hui Catherine Teo, Nandu Deorkar and Mohan C. Vemuri
J. Clin. Med. 2025, 14(15), 5515; https://doi.org/10.3390/jcm14155515 - 5 Aug 2025
Abstract
Background: Transfection is vital for gene therapy, mRNA treatments, CAR-T cell therapy, and regenerative medicine. While viral vectors are effective, non-viral systems like lipid nanoparticles (LNPs) offer safer, more flexible alternatives. This work explores emerging non-viral transfection technologies to improve delivery efficiency [...] Read more.
Background: Transfection is vital for gene therapy, mRNA treatments, CAR-T cell therapy, and regenerative medicine. While viral vectors are effective, non-viral systems like lipid nanoparticles (LNPs) offer safer, more flexible alternatives. This work explores emerging non-viral transfection technologies to improve delivery efficiency and therapeutic outcomes. Methods: This review synthesizes the current literature and recent advancements in non-viral transfection technologies. It focuses on the mechanisms, advantages, and limitations of various delivery systems, including lipid nanoparticles, biodegradable polymers, electroporation, peptide-based carriers, and microfluidic platforms. Comparative analysis was conducted to evaluate their performance in terms of transfection efficiency, cellular uptake, biocompatibility, and potential for clinical translation. Several academic search engines and online resources were utilized for data collection, including Science Direct, PubMed, Google Scholar Scopus, the National Cancer Institute’s online portal, and other reputable online databases. Results: Non-viral systems demonstrated superior performance in delivering mRNA, siRNA, and antisense oligonucleotides, particularly in clinical applications. Biodegradable polymers and peptide-based systems showed promise in enhancing biocompatibility and targeted delivery. Electroporation and microfluidic systems offered precise control over transfection parameters, improving reproducibility and scalability. Collectively, these innovations address key challenges in gene delivery, such as stability, immune response, and cell-type specificity. Conclusions: The continuous evolution of transfection technologies is pivotal for advancing gene and cell-based therapies. Non-viral delivery systems, particularly LNPs and emerging platforms like microfluidics and biodegradable polymers, offer safer and more adaptable alternatives to viral vectors. These innovations are critical for optimizing therapeutic efficacy and enabling personalized medicine, immunotherapy, and regenerative treatments. Future research should focus on integrating these technologies to develop next-generation transfection platforms with enhanced precision and clinical applicability. Full article
Show Figures

Figure 1

20 pages, 744 KiB  
Review
Chrysin: A Comprehensive Review of Its Pharmacological Properties and Therapeutic Potential
by Magdalena Kurkiewicz, Aleksandra Moździerz, Anna Rzepecka-Stojko and Jerzy Stojko
Pharmaceuticals 2025, 18(8), 1162; https://doi.org/10.3390/ph18081162 - 5 Aug 2025
Abstract
Flavonoids constitute a broad class of naturally occurring chemical compounds classified as polyphenols, widely present in various plants, fruits, and vegetables. They share a common flavone backbone, composed of two aromatic rings (A and B) connected by a three-carbon bridge forming a heterocyclic [...] Read more.
Flavonoids constitute a broad class of naturally occurring chemical compounds classified as polyphenols, widely present in various plants, fruits, and vegetables. They share a common flavone backbone, composed of two aromatic rings (A and B) connected by a three-carbon bridge forming a heterocyclic ring (C). One representative flavonoid is chrysin, a compound found in honey, propolis, and passionflower (Passiflora spp.). Chrysin exhibits a range of biological activities, including antioxidant, anti-inflammatory, anticancer, neuroprotective, and anxiolytic effects. Its biological activity is primarily attributed to the presence of hydroxyl groups, which facilitate the neutralization of free radicals and the modulation of intracellular signaling pathways. Cellular uptake of chrysin and other flavonoids occurs mainly through passive diffusion; however, certain forms may be transported via specific membrane-associated carrier proteins. Despite its therapeutic potential, chrysin’s bioavailability is significantly limited due to poor aqueous solubility and rapid metabolism in the gastrointestinal tract and liver, which reduces its systemic efficacy. Ongoing research aims to enhance chrysin’s bioavailability through the development of delivery systems such as lipid-based carriers and nanoparticles. Full article
(This article belongs to the Special Issue Exploring Natural Products with Antioxidant and Anticancer Properties)
Show Figures

Figure 1

36 pages, 7197 KiB  
Review
Microfluidic Platforms for Ex Vivo and In Vivo Gene Therapy
by Sungjun Kwak, Hyojeong Lee, Dongjun Yu, Tae-Joon Jeon, Sun Min Kim and Hyunil Ryu
Biosensors 2025, 15(8), 504; https://doi.org/10.3390/bios15080504 - 4 Aug 2025
Viewed by 220
Abstract
Recent studies have demonstrated the clinical potential of nucleic acid therapeutics (NATs). However, their efficient and scalable delivery remains a major challenge for both ex vivo and in vivo gene therapy. Microfluidic platforms have emerged as a powerful tool for overcoming these limitations [...] Read more.
Recent studies have demonstrated the clinical potential of nucleic acid therapeutics (NATs). However, their efficient and scalable delivery remains a major challenge for both ex vivo and in vivo gene therapy. Microfluidic platforms have emerged as a powerful tool for overcoming these limitations by enabling precise intracellular delivery and consistent therapeutic carrier fabrication. This review examines microfluidic strategies for gene delivery at the cellular level. These strategies include mechanoporation, electroporation, and sonoporation. We also discuss the synthesis of lipid nanoparticles, polymeric particles, and extracellular vesicles for systemic administration. Unlike conventional approaches, which treat ex vivo and in vivo delivery as separate processes, this review focuses on integrated microfluidic systems that unify these functions. For example, genetic materials can be delivered to cells that secrete therapeutic extracellular vesicles (EVs), or engineered cells can be encapsulated within hydrogels for implantation. These strategies exemplify the convergence of gene delivery and carrier engineering. They create a single workflow that bridges cell-level manipulation and tissue-level targeting. By synthesizing recent technological advances, this review establishes integrated microfluidic platforms as being fundamental to the development of next-generation NAT systems that are scalable, programmable, and clinically translatable. Full article
(This article belongs to the Special Issue Microfluidics for Biomedical Applications (3rd Edition))
Show Figures

Figure 1

35 pages, 1115 KiB  
Review
Resveratrol as a Novel Therapeutic Approach for Diabetic Retinopathy: Molecular Mechanisms, Clinical Potential, and Future Challenges
by Snježana Kaštelan, Suzana Konjevoda, Ana Sarić, Iris Urlić, Ivana Lovrić, Samir Čanović, Tomislav Matejić and Ana Šešelja Perišin
Molecules 2025, 30(15), 3262; https://doi.org/10.3390/molecules30153262 - 4 Aug 2025
Viewed by 133
Abstract
Diabetic retinopathy (DR) is a progressive, multifactorial complication of diabetes and one of the major global causes of visual impairment. Its pathogenesis involves chronic hyperglycaemia-induced oxidative stress, inflammation, mitochondrial dysfunction, neurodegeneration, and pathological angiogenesis, as well as emerging systemic contributors such as gut [...] Read more.
Diabetic retinopathy (DR) is a progressive, multifactorial complication of diabetes and one of the major global causes of visual impairment. Its pathogenesis involves chronic hyperglycaemia-induced oxidative stress, inflammation, mitochondrial dysfunction, neurodegeneration, and pathological angiogenesis, as well as emerging systemic contributors such as gut microbiota dysregulation. While current treatments, including anti-vascular endothelial growth factor (anti-VEGF) agents, corticosteroids, and laser photocoagulation, have shown clinical efficacy, they are largely limited to advanced stages of DR, require repeated invasive procedures, and do not adequately address early neurovascular and metabolic abnormalities. Resveratrol (RSV), a naturally occurring polyphenol, has emerged as a promising candidate due to its potent antioxidant, anti-inflammatory, neuroprotective, and anti-angiogenic properties. This review provides a comprehensive analysis of the molecular mechanisms by which RSV exerts protective effects in DR, including modulation of oxidative stress pathways, suppression of inflammatory cytokines, enhancement of mitochondrial function, promotion of autophagy, and inhibition of pathological neovascularisation. Despite its promising pharmacological profile, the clinical application of RSV is limited by poor aqueous solubility, rapid systemic metabolism, and low ocular bioavailability. Various routes of administration, including intravitreal injection, topical instillation, and oral and sublingual delivery, have been investigated to enhance its therapeutic potential. Recent advances in drug delivery systems, including nanoformulations, liposomal carriers, and sustained-release intravitreal implants, offer potential strategies to address these challenges. This review also explores RSV’s role in combination therapies, its potential as a disease-modifying agent in early-stage DR, and the relevance of personalised medicine approaches guided by metabolic and genetic factors. Overall, the review highlights the therapeutic potential and the key translational challenges in positioning RSV as a multi-targeted treatment strategy for DR. Full article
Show Figures

Figure 1

35 pages, 1395 KiB  
Review
Local Chemotherapy of Skin Pre-Neoplastic Lesions and Malignancies from the Perspective of Current Pharmaceutics
by Nadezhda Ivanova
Pharmaceutics 2025, 17(8), 1009; https://doi.org/10.3390/pharmaceutics17081009 - 1 Aug 2025
Viewed by 470
Abstract
In the preceding and early stages of cancer progression, local drug delivery to pre-cancerous and cancerous skin lesions may be applied as an alternative or supplementary therapy. At present, 5-Fluorouracil, imiquimod, and tirbanibulin creams and ointments have established their place in practice, while [...] Read more.
In the preceding and early stages of cancer progression, local drug delivery to pre-cancerous and cancerous skin lesions may be applied as an alternative or supplementary therapy. At present, 5-Fluorouracil, imiquimod, and tirbanibulin creams and ointments have established their place in practice, while several other active pharmaceutical ingredients (APIs) (e.g., calcipotriol, tretinoin, diclofenac) have been repurposed, used off-label, or are currently being investigated in mono- or combined chemotherapies of skin cancers. Apart from them, dozens to hundreds of therapeutics of natural and synthetic origin are proven to possess anti-tumor activity against melanoma, squamous cell carcinoma (SCC), and other skin cancer types in in vitro studies. Their clinical introduction is most often limited by low skin permeability, challenged targeted drug delivery, insufficient chemical stability, non-selective cytotoxicity, or insufficient safety data. A variety of prodrug and nanotechnological approaches, including vesicular systems, micro- and nanoemulsions, solid lipid nanoparticles, nanostructured lipid carriers, polymeric nanoparticles, and others, offer versatile solutions for overcoming the biophysical barrier function of the skin and the undesirable physicochemical nature of some drug molecules. This review aims to present the most significant aspects and latest achievements on the subject. Full article
Show Figures

Figure 1

11 pages, 2277 KiB  
Article
How to Enhance Diagnosis in Fabry Disease: The Power of Information
by Maria Chiara Meucci, Rosa Lillo, Margherita Calcagnino, Giampaolo Tocci, Eustachio Agricola, Federico Biondi, Claudio Di Brango, Vincenzo Guido, Valentina Parisi, Francesca Giordana, Veronica Melita, Mariaelena Lombardi, Angela Beatrice Scardovi, Li Van Stella Truong, Francesca Musella, Francesco di Spigno, Benedetta Matrone, Ivana Pariggiano, Paolo Calabrò, Roberto Spoladore, Stefania Luceri, Stefano Carugo, Francesca Graziani and Francesco Burzottaadd Show full author list remove Hide full author list
Cardiogenetics 2025, 15(3), 21; https://doi.org/10.3390/cardiogenetics15030021 - 31 Jul 2025
Viewed by 95
Abstract
Background: Cardiac involvement is common in Fabry disease (FD) and typically manifests with left ventricular hypertrophy (LVH). Patients with FD are frequently misdiagnosed, and this is mainly related to the lack of disease awareness among clinicians. The aim of this study was to [...] Read more.
Background: Cardiac involvement is common in Fabry disease (FD) and typically manifests with left ventricular hypertrophy (LVH). Patients with FD are frequently misdiagnosed, and this is mainly related to the lack of disease awareness among clinicians. The aim of this study was to determine whether providing a targeted educational intervention on FD may enhance FD diagnosis. Methods. This research was designed as a single-arm before-and-after intervention study and evaluated the impact of providing a specific training on FD to cardiologists from different Italian centers, without experience in rare diseases. In the 12-month period after the educational intervention, the rate of FD screening and diagnosis was assessed and compared with those conducted in the two years preceding the study initiation. Results: Fifteen cardiologists participated to this study, receiving a theoretical and practical training on FD. In the two previous two years, they conducted 12 FD screening (6/year), and they did not detect any cases of FD. After the training, they performed 45 FD screenings, with an eight-fold rise in the annual screening rate. The screened population (age: 61 ± 11 years, men: 82%) was mainly composed of patients with unexplained LVH (n = 43). There were four new FD diagnoses and, among of them, three had a late-onset GLA variant. After the cascade genetic screening, 11 affected relatives and 8 heterozygous carriers were also detected. Conclusions: A targeted educational intervention for cardiologists allowed the identification of four new families with FD. Enhancing FD awareness is helpful to reduce the diagnostic and therapeutic delay. Full article
(This article belongs to the Section Education in Cardiogenetics)
Show Figures

Figure 1

22 pages, 1916 KiB  
Article
Freeze-Dried Probiotic Fermented Camel Milk Enriched with Ajwa Date Pulp: Evaluation of Functional Properties, Probiotic Viability, and In Vitro Antidiabetic and Anticancer Activities
by Sally S. Sakr and Hassan Barakat
Foods 2025, 14(15), 2698; https://doi.org/10.3390/foods14152698 - 31 Jul 2025
Viewed by 338
Abstract
Noncommunicable diseases (NCDs) like diabetes and cancer drive demand for therapeutic functional foods. This study developed freeze-dried fermented camel milk (FCM) with Ajwa date pulp (ADP), evaluating its physical and functional properties, probiotic survival, and potential benefits for diabetes and cancer. To achieve [...] Read more.
Noncommunicable diseases (NCDs) like diabetes and cancer drive demand for therapeutic functional foods. This study developed freeze-dried fermented camel milk (FCM) with Ajwa date pulp (ADP), evaluating its physical and functional properties, probiotic survival, and potential benefits for diabetes and cancer. To achieve this target, six FCM formulations were prepared using ABT-5 starter culture (containing Lactobacillus acidophilus, Bifidobacterium bifidum, and Streptococcus thermophilus) with or without Lacticaseibacillus rhamnosus B-1937 and ADP (12% or 15%). The samples were freeze-dried, and their functional properties, such as water activity, dispersibility, water absorption capacity, water absorption index, water solubility index, insolubility index, and sedimentation, were assessed. Reconstitution properties such as density, flowability, air content, porosity, loose bulk density, packed bulk density, particle density, carrier index, Hausner ratio, porosity, and density were examined. In addition, color and probiotic survivability under simulated gastrointestinal conditions were analyzed. Also, antidiabetic potential was assessed via α-amylase and α-glucosidase inhibition assays, while cytotoxicity was evaluated using the MTT assay on Caco-2 cells. The results show that ADP supplementation significantly improved dispersibility (up to 72.73% in FCM15D+L). These improvements are attributed to changes in particle size distribution and increased carbohydrate and mineral content, which facilitate powder rehydration and reduce clumping. All FCM variants demonstrated low water activity (0.196–0.226), indicating good potential for shelf stability. The reconstitution properties revealed that FCM powders with ADP had higher bulk and packed densities but lower particle density and porosity than controls. Including ADP reduced interstitial air and increased occluded air within the powders, which may minimize oxidation risks and improve packaging efficiency. ADP incorporation resulted in a significant decrease in lightness (L*) and increases in redness (a*) and yellowness (b*), with greater pigment and phenolic content at higher ADP levels. These changes reflect the natural colorants and browning reactions associated with ADP, leading to a more intense and visually distinct product. Probiotic survivability was higher in ADP-fortified samples, with L. acidophilus and B. bifidum showing resilience in intestinal conditions. The FCM15D+L formulation exhibited potent antidiabetic effects, with IC50 values of 111.43 μg mL−1 for α-amylase and 77.21 μg mL−1 for α-glucosidase activities, though lower than control FCM (8.37 and 10.74 μg mL−1, respectively). Cytotoxicity against Caco-2 cells was most potent in non-ADP samples (IC50: 82.22 μg mL−1 for FCM), suggesting ADP and L. rhamnosus may reduce antiproliferative effects due to proteolytic activity. In conclusion, the study demonstrates that ADP-enriched FCM is a promising functional food with enhanced probiotic viability, antidiabetic potential, and desirable physical properties. This work highlights the potential of camel milk and date synergies in combating some NCDs in vitro, suggesting potential for functional food application. Full article
Show Figures

Figure 1

26 pages, 9475 KiB  
Article
Microalgae-Derived Vesicles: Natural Nanocarriers of Exogenous and Endogenous Proteins
by Luiza Garaeva, Eugene Tolstyko, Elena Putevich, Yury Kil, Anastasiia Spitsyna, Svetlana Emelianova, Anastasia Solianik, Eugeny Yastremsky, Yuri Garmay, Elena Komarova, Elena Varfolomeeva, Anton Ershov, Irina Sizova, Evgeny Pichkur, Ilya A. Vinnikov, Varvara Kvanchiani, Alina Kilasoniya Marfina, Andrey L. Konevega and Tatiana Shtam
Plants 2025, 14(15), 2354; https://doi.org/10.3390/plants14152354 - 31 Jul 2025
Viewed by 330
Abstract
Extracellular vesicles (EVs), nanoscale membrane-enclosed particles, are natural carriers of proteins and nucleic acids. Microalgae are widely used as a source of bioactive substances in the food and cosmetic industries and definitely have a potential to be used as the producers of EVs [...] Read more.
Extracellular vesicles (EVs), nanoscale membrane-enclosed particles, are natural carriers of proteins and nucleic acids. Microalgae are widely used as a source of bioactive substances in the food and cosmetic industries and definitely have a potential to be used as the producers of EVs for biomedical applications. In this study, the extracellular vesicles isolated from the culture medium of two unicellular microalgae, Chlamydomonas reinhardtii (Chlamy-EVs) and Parachlorella kessleri (Chlore-EVs), were characterized by atomic force microscopy (AFM), cryo-electronic microscopy (cryo-EM), and nanoparticle tracking analysis (NTA). The biocompatibility with human cells in vitro (HEK-293T, DF-2 and A172) and biodistribution in mouse organs and tissues in vivo were tested for both microalgal EVs. An exogenous therapeutic protein, human heat shock protein 70 (HSP70), was successfully loaded to Chlamy- and Chlore-EVs, and its efficient delivery to human glioma and colon carcinoma cell lines has been confirmed. Additionally, in order to search for potential therapeutic biomolecules within the EVs, their proteomes have been characterized. A total of 105 proteins were identified for Chlamy-EVs and 33 for Chlore-EVs. The presence of superoxide dismutase and catalase in the Chlamy-EV constituents allows for considering them as antioxidant agents. The effective delivery of exogenous cargo to human cells and the possibility of the particle yield optimization by varying the microalgae growth conditions make them favorable producers of EVs for biotechnology and biomedical application. Full article
(This article belongs to the Section Plant Cell Biology)
Show Figures

Figure 1

21 pages, 3471 KiB  
Review
Nanomedicine: The Effective Role of Nanomaterials in Healthcare from Diagnosis to Therapy
by Raisa Nazir Ahmed Kazi, Ibrahim W. Hasani, Doaa S. R. Khafaga, Samer Kabba, Mohd Farhan, Mohammad Aatif, Ghazala Muteeb and Yosri A. Fahim
Pharmaceutics 2025, 17(8), 987; https://doi.org/10.3390/pharmaceutics17080987 - 30 Jul 2025
Viewed by 267
Abstract
Nanotechnology is revolutionizing medicine by enabling highly precise diagnostics, targeted therapies, and personalized healthcare solutions. This review explores the multifaceted applications of nanotechnology across medical fields such as oncology and infectious disease control. Engineered nanoparticles (NPs), such as liposomes, polymeric carriers, and carbon-based [...] Read more.
Nanotechnology is revolutionizing medicine by enabling highly precise diagnostics, targeted therapies, and personalized healthcare solutions. This review explores the multifaceted applications of nanotechnology across medical fields such as oncology and infectious disease control. Engineered nanoparticles (NPs), such as liposomes, polymeric carriers, and carbon-based nanomaterials, enhance drug solubility, protect therapeutic agents from degradation, and enable site-specific delivery, thereby reducing toxicity to healthy tissues. In diagnostics, nanosensors and contrast agents provide ultra-sensitive detection of biomarkers, supporting early diagnosis and real-time monitoring. Nanotechnology also contributes to regenerative medicine, antimicrobial therapies, wearable devices, and theranostics, which integrate treatment and diagnosis into unified systems. Advanced innovations such as nanobots and smart nanosystems further extend these capabilities, enabling responsive drug delivery and minimally invasive interventions. Despite its immense potential, nanomedicine faces challenges, including biocompatibility, environmental safety, manufacturing scalability, and regulatory oversight. Addressing these issues is essential for clinical translation and public acceptance. In summary, nanotechnology offers transformative tools that are reshaping medical diagnostics, therapeutics, and disease prevention. Through continued research and interdisciplinary collaboration, it holds the potential to significantly enhance treatment outcomes, reduce healthcare costs, and usher in a new era of precise and personalized medicine. Full article
Show Figures

Figure 1

46 pages, 2561 KiB  
Review
Lipid-Based Nanotechnologies for Delivery of Green Tea Catechins: Advances, Challenges, and Therapeutic Potential
by Stanila Stoeva-Grigorova, Nadezhda Ivanova, Yoana Sotirova, Maya Radeva-Ilieva, Nadezhda Hvarchanova and Kaloyan Georgiev
Pharmaceutics 2025, 17(8), 985; https://doi.org/10.3390/pharmaceutics17080985 - 30 Jul 2025
Viewed by 196
Abstract
Knowing the superior biochemical defense mechanisms of sessile organisms, it is not hard to believe the cure for any human sickness might be hidden in nature—we “just” have to identify it and make it safely available in the right dose to our organs [...] Read more.
Knowing the superior biochemical defense mechanisms of sessile organisms, it is not hard to believe the cure for any human sickness might be hidden in nature—we “just” have to identify it and make it safely available in the right dose to our organs and cells that are in need. For decades, green tea catechins (GTCs) have been a case in point. Because of their low redox potential and favorable positioning of hydroxyl groups, these flavonoid representatives (namely, catechin—C, epicatechin—EC, epicatechin gallate—ECG, epigallocatechin—EGC, epigallocatechin gallate—EGCG) are among the most potent plant-derived (and not only) antioxidants. The proven anti-inflammatory, neuroprotective, antimicrobial, and anticarcinogenic properties of these phytochemicals further contribute to their favorable pharmacological profile. Doubtlessly, GTCs hold the potential to “cope” with the majority of today‘s socially significant diseases, yet their mass use in clinical practice is still limited. Several factors related to the compounds’ membrane penetrability, chemical stability, and solubility overall determine their low bioavailability. Moreover, the antioxidant-to-pro-oxidant transitioning behavior of GTCs is highly conditional and, to a certain degree, unpredictable. The nanoparticulate delivery systems represent a logical approach to overcoming one or more of these therapeutic challenges. This review particularly focuses on the lipid-based nanotechnologies known to be a leading choice when it comes to drug permeation enhancement and not drug release modification nor drug stabilization solely. It is our goal to present the privileges of encapsulating green tea catechins in either vesicular or particulate lipid carriers with respect to the increasingly popular trends of advanced phytotherapy and functional nutrition. Full article
Show Figures

Graphical abstract

21 pages, 4846 KiB  
Article
Bioactive Chalcone-Loaded Mesoporous Silica KIT-6 Nanocarrier: A Promising Strategy for Inflammation and Pain Management in Zebrafish
by Maria Kueirislene Amâncio Ferreira, Francisco Rogenio Silva Mendes, Emmanuel Silva Marinho, Roberto Lima de Albuquerque, Jesyka Macedo Guedes, Izabell Maria Martins Teixeira, Ramon Róseo Paula Pessoa Bezerra de Menezes, Vinicius Patricio Santos Caldeira, Anne Gabriella Dias Santos, Marisa Jádna Silva Frederico, Antônio César Honorato Barreto, Inês Domingues, Tigressa Helena Soares Rodrigues, Jane Eire Silva Alencar de Menezes and Hélcio Silva dos Santos
Pharmaceutics 2025, 17(8), 981; https://doi.org/10.3390/pharmaceutics17080981 - 30 Jul 2025
Viewed by 550
Abstract
Background/Objectives: The incorporation of bioactive molecules into mesoporous carriers is a promising strategy to improve stability, solubility, and therapeutic efficacy. In this study, we report for the first time the encapsulation of the synthetic chalcone 4-Cl into KIT-6 mesoporous silica and evaluate [...] Read more.
Background/Objectives: The incorporation of bioactive molecules into mesoporous carriers is a promising strategy to improve stability, solubility, and therapeutic efficacy. In this study, we report for the first time the encapsulation of the synthetic chalcone 4-Cl into KIT-6 mesoporous silica and evaluate its cytotoxicity, toxicological profile, and pharmacological activities (antinociceptive, anti-inflammatory, and anxiolytic) using an in vivo zebrafish (Danio rerio) model. Methods: Zebrafish were orally dosed with 4-Cl, 4-Cl/KIT-6, or KIT-6 (4, 20, 40 mg/kg) and mortality was recorded for 96 h. For analgesia, zebrafish pretreated with 4-Cl, 4-Cl/KIT-6, KIT-6, or morphine received a tail stimulus (0.1% formalin). Locomotor activity (quadrant crossings) was monitored for 30 min to assess analgesia (neurogenic: 0–5 min; inflammatory: 15–30 min). For inflammation, abdominal edema and weight gain were assessed 4 h after intraperitoneal carrageenan (1.5%). Zebrafish (n = 6/group) received 4-Cl, 4-Cl/KIT-6, or KIT-6 (4, 20, 40 mg/kg, p.o.). Controls received ibuprofen (100 mg/kg, p.o.) or 3% DMSO. Weight was measured hourly for 4 h post-carrageenan (difference between baseline and hourly weights). Results: Physicochemical characterizations confirmed successful encapsulation without compromising the ordered structure of KIT-6, as evidenced by a significant reduction in surface area and pore volume, indicating efficient drug incorporation. In vivo assays demonstrated that the 4-Cl/KIT-6 formulation maintained the pharmacological activities of the free chalcone, reduced toxicity, and, notably, revealed a significant anxiolytic effect for the first time. Conclusions: These findings highlight KIT-6 as a promising platform for chalcone delivery systems and provide a solid basis for future preclinical investigations. Full article
Show Figures

Figure 1

Back to TopTop