Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,962)

Search Parameters:
Keywords = therapeutic alternative

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 2949 KiB  
Review
Nanocarriers Containing Curcumin and Derivatives for Arthritis Treatment: Mapping the Evidence in a Scoping Review
by Beatriz Yurie Sugisawa Sato, Susan Iida Chong, Nathalia Marçallo Peixoto Souza, Raul Edison Luna Lazo, Roberto Pontarolo, Fabiane Gomes de Moraes Rego, Luana Mota Ferreira and Marcel Henrique Marcondes Sari
Pharmaceutics 2025, 17(8), 1022; https://doi.org/10.3390/pharmaceutics17081022 - 6 Aug 2025
Abstract
Background/Objectives: Curcumin (CUR) is well known for its therapeutic properties, particularly attributed to its antioxidant and anti-inflammatory effects in managing chronic diseases such as arthritis. While CUR application for biomedical purposes is well known, the phytochemical has several restrictions given its poor water [...] Read more.
Background/Objectives: Curcumin (CUR) is well known for its therapeutic properties, particularly attributed to its antioxidant and anti-inflammatory effects in managing chronic diseases such as arthritis. While CUR application for biomedical purposes is well known, the phytochemical has several restrictions given its poor water solubility, physicochemical instability, and low bioavailability. These limitations have led to innovative formulations, with nanocarriers emerging as a promising alternative. For this reason, this study aimed to address the potential advantages of associating CUR with nanocarrier systems in managing arthritis through a scoping review. Methods: A systematic literature search of preclinical (in vivo) and clinical studies was performed in PubMed, Scopus, and Web of Science (December 2024). General inclusion criteria include using CUR or natural derivatives in nano-based formulations for arthritis treatment. These elements lead to the question: “What is the impact of the association of CUR or derivatives in nanocarriers in treating arthritis?”. Results: From an initial 536 articles, 34 were selected for further analysis (31 preclinical investigations and three randomized clinical trials). Most studies used pure CUR (25/34), associated with organic (30/34) nanocarrier systems. Remarkably, nanoparticles (16/34) and nanoemulsions (5/34) were emphasized. The formulations were primarily presented in liquid form (23/34) and were generally administered to animal models through intra-articular injection (11/31). Complete Freund’s Adjuvant (CFA) was the most frequently utilized among the various models to induce arthritis-like joint damage. The findings indicate that associating CUR or its derivatives with nanocarrier systems enhances its pharmacological efficacy through controlled release and enhanced solubility, bioavailability, and stability. Moreover, the encapsulation of CUR showed better results in most cases than in its free form. Nonetheless, most studies were restricted to the preclinical model, not providing direct evidence in humans. Additionally, inadequate information and clarity presented considerable challenges for preclinical evidence, which was confirmed by SYRCLE’s bias detection tools. Conclusions: Hence, this scoping review highlights the anti-arthritic effects of CUR nanocarriers as a promising alternative for improved treatment. Full article
(This article belongs to the Special Issue Advances in Polymer-Based Devices and Platforms for Pain Management)
14 pages, 340 KiB  
Article
FLOT Versus CROSS—What Is the Optimal Therapeutic Approach for Locally Advanced Adenocarcinoma of the Esophagus and the Esophagogastric Junction?
by Martin Leu, Hannes Mahler, Johanna Reinecke, Ute Margarethe König, Leif Hendrik Dröge, Manuel Guhlich, Benjamin Steuber, Marian Grade, Michael Ghadimi, Volker Ellenrieder, Stefan Rieken and Alexander Otto König
Cancers 2025, 17(15), 2587; https://doi.org/10.3390/cancers17152587 - 6 Aug 2025
Abstract
Background/Objectives: Neoadjuvant radiochemotherapy and perioperative chemotherapy are both well-established treatment strategies for locally advanced adenocarcinoma of the esophagus (EAC) and the esophagogastric junction (AEGJ). However, recent knowledge controversially discusses whether neoadjuvant radiotherapy or perioperative chemotherapy represents superior therapeutic options to prolong survival or [...] Read more.
Background/Objectives: Neoadjuvant radiochemotherapy and perioperative chemotherapy are both well-established treatment strategies for locally advanced adenocarcinoma of the esophagus (EAC) and the esophagogastric junction (AEGJ). However, recent knowledge controversially discusses whether neoadjuvant radiotherapy or perioperative chemotherapy represents superior therapeutic options to prolong survival or cause less toxicity. Methods: We retrospectively analyzed 76 patients with locally advanced EAC or AEGJ treated at our tertiary cancer center between January 2015 and March 2023. Patients received either perioperative FLOT chemotherapy (n = 36) or neoadjuvant radiochemotherapy following the CROSS protocol (n = 40), followed by surgical resection and standardized follow-up. We compared survival outcomes, toxicity profiles, treatment compliance, and surgical results between the two groups. Results: There were no statistically significant differences between FLOT and CROSS treatments in five-year loco-regional controls (LRC: 61.5% vs. 68.6%; p = 0.81), progression-free survival (PFS: 33.9% vs. 42.8%; p = 0.82), overall survival (OS: 60.2% vs. 63.4%; p = 0.91), or distant controls (DC: 42.1% vs. 56.5%; p = 0.39). High-grade hematologic toxicities did not significantly differ between groups (p > 0.05). Treatment compliance was lower in the FLOT group, with 50% (18/36) not completing all the planned chemotherapy cycles, compared to 17.5% (7/40) in the CROSS group. All the patients in the CROSS group received the full radiotherapy dose. Surgical outcomes and post-surgical tumor status were comparable between the groups. Conclusions: Although perioperative chemotherapy with FLOT has recently become a standard of care for locally advanced EAC and AEGJ, neoadjuvant radiochemotherapy per the CROSS protocol remains a well-tolerated alternative. In appropriately selected patients, both approaches yield comparable oncological outcomes. Full article
(This article belongs to the Special Issue Current Treatments of Esophageal and Esophagogastric Junction Cancers)
Show Figures

Figure 1

13 pages, 286 KiB  
Review
Drug Repurposing and Artificial Intelligence in Multiple Sclerosis: Emerging Strategies for Precision Therapy
by Pedro Henrique Villar-Delfino, Paulo Pereira Christo and Caroline Maria Oliveira Volpe
Sclerosis 2025, 3(3), 28; https://doi.org/10.3390/sclerosis3030028 - 6 Aug 2025
Abstract
Multiple sclerosis (MS) is a chronic, immune-mediated disorder of the central nervous system (CNS) characterized by inflammation, demyelination, axonal degeneration, and gliosis. Its pathophysiology involves a complex interplay of genetic susceptibility, environmental triggers, and immune dysregulation, ultimately leading to progressive neurodegeneration and functional [...] Read more.
Multiple sclerosis (MS) is a chronic, immune-mediated disorder of the central nervous system (CNS) characterized by inflammation, demyelination, axonal degeneration, and gliosis. Its pathophysiology involves a complex interplay of genetic susceptibility, environmental triggers, and immune dysregulation, ultimately leading to progressive neurodegeneration and functional decline. Although significant advances have been made in disease-modifying therapies (DMTs), many patients continue to experience disease progression and unmet therapeutic needs. Drug repurposing—the identification of new indications for existing drugs—has emerged as a promising strategy in MS research, offering a cost-effective and time-efficient alternative to traditional drug development. Several compounds originally developed for other diseases, including immunomodulatory, anti-inflammatory, and neuroprotective agents, are currently under investigation for their efficacy in MS. Repurposed agents, such as selective sphingosine-1-phosphate (S1P) receptor modulators, kinase inhibitors, and metabolic regulators, have demonstrated potential in promoting neuroprotection, modulating immune responses, and supporting remyelination in both preclinical and clinical settings. Simultaneously, artificial intelligence (AI) is transforming drug discovery and precision medicine in MS. Machine learning and deep learning models are being employed to analyze high-dimensional biomedical data, predict drug–target interactions, streamline drug repurposing workflows, and enhance therapeutic candidate selection. By integrating multiomics and neuroimaging data, AI tools facilitate the identification of novel targets and support patient stratification for individualized treatment. This review highlights recent advances in drug repurposing and discovery for MS, with a particular emphasis on the emerging role of AI in accelerating therapeutic innovation and optimizing treatment strategies. Full article
Show Figures

Graphical abstract

41 pages, 3389 KiB  
Review
Fully Green Particles Loaded with Essential Oils as Phytobiotics: A Review on Preparation and Application in Animal Feed
by Maria Sokol, Ivan Gulayev, Margarita Chirkina, Maksim Klimenko, Olga Kamaeva, Nikita Yabbarov, Mariia Mollaeva and Elena Nikolskaya
Antibiotics 2025, 14(8), 803; https://doi.org/10.3390/antibiotics14080803 - 6 Aug 2025
Abstract
The modern livestock industry incorporates widely used antibiotic growth promoters into animal feed at sub-therapeutic levels to enhance growth performance and feed efficiency. However, this practice contributes to the emergence of antibiotic-resistant pathogens in livestock, which may be transmitted to humans through the [...] Read more.
The modern livestock industry incorporates widely used antibiotic growth promoters into animal feed at sub-therapeutic levels to enhance growth performance and feed efficiency. However, this practice contributes to the emergence of antibiotic-resistant pathogens in livestock, which may be transmitted to humans through the food chain, thereby diminishing the efficacy of antibiotics in treating bacterial infections. Current research explores the potential of essential oils from derived medicinal plants as alternative phytobiotics. This review examines modern encapsulation strategies that incorporate essential oils into natural-origin matrices to improve their stability and control their release both in vitro and in vivo. We discuss a range of encapsulation approaches utilizing polysaccharides, gums, proteins, and lipid-based carriers. This review highlights the increasing demand for antibiotic alternatives in animal nutrition driven by regulatory restrictions, and the potential benefits of essential oils in enhancing feed palatability and stabilizing the intestinal microbiome in monogastric animals and ruminants. Additionally, we address the economic viability and encapsulation efficiency of different matrix formulations. Full article
Show Figures

Figure 1

13 pages, 1197 KiB  
Systematic Review
Catheter Ablation vs. Standard Implantable Cardioverter Defibrillator Therapy in Symptomatic Brugada Syndrome: A Systematic Review and Meta-Analysis of Controlled Studies
by Paschalis Karakasis, Panagiotis Theofilis, Konstantinos Pamporis, Antonios P. Antoniadis and Nikolaos Fragakis
Med. Sci. 2025, 13(3), 115; https://doi.org/10.3390/medsci13030115 - 6 Aug 2025
Abstract
Background: Catheter ablation of the arrhythmogenic substrate has emerged as a promising therapeutic strategy for symptomatic Brugada syndrome (BrS). However, high-quality comparative evidence against conventional implantable cardioverter-defibrillator (ICD)-based management remains limited. Objectives: This meta-analysis aimed to evaluate the efficacy of catheter [...] Read more.
Background: Catheter ablation of the arrhythmogenic substrate has emerged as a promising therapeutic strategy for symptomatic Brugada syndrome (BrS). However, high-quality comparative evidence against conventional implantable cardioverter-defibrillator (ICD)-based management remains limited. Objectives: This meta-analysis aimed to evaluate the efficacy of catheter ablation in reducing ventricular fibrillation (VF) recurrence in symptomatic BrS compared to standard therapy. Methods: Medline, Cochrane Library, and Scopus were systematically searched through 1 June 2025. Study selection, data extraction, and quality assessment were independently conducted by three reviewers. Random-effects meta-analyses were used to pool risk estimates. Results: Three studies (two randomized controlled trials, one observational cohort; 130 symptomatic BrS patients) were included. Over a median follow-up of 3.9 years, catheter ablation was associated with a significantly lower risk of VF recurrence compared to standard therapy [risk ratio (RR) = 0.19, 95% confidence interval (CI) = (0.06, 0.60); I2 = 36%, p for heterogeneity = 0.21], with no deaths reported in any group. A sensitivity analysis restricted to randomized trials confirmed similar findings in favor of ablation. Conclusions: Catheter ablation was associated with reduced VF recurrence compared to ICD therapy alone, supporting its potential role as first-line treatment in symptomatic BrS or as an alternative for patients who decline ICD implantation. Full article
Show Figures

Figure 1

20 pages, 3219 KiB  
Review
Tauopathies: Calmodulin Regulates Tau Hyperphosphorylation and Its Transformation into Disease-Specific Aggregates
by Danton H. O’Day
Biomolecules 2025, 15(8), 1133; https://doi.org/10.3390/biom15081133 - 6 Aug 2025
Abstract
Tauopathies are a diverse group of neurodegenerative diseases characterized by the presence of Tau inclusions in neurons and glia. Rather than the classic steps in the transformation of Tau into neurofibrillary tangles, as first studied in Alzheimer’s disease, studies on tauopathies reveal the [...] Read more.
Tauopathies are a diverse group of neurodegenerative diseases characterized by the presence of Tau inclusions in neurons and glia. Rather than the classic steps in the transformation of Tau into neurofibrillary tangles, as first studied in Alzheimer’s disease, studies on tauopathies reveal the presence of diverse Tau aggregates that appear to be disease-specific. Regardless, the phosphorylation and hyperphosphorylation of Tau, involving various kinases and phosphatases, appear to be central to all tauopathies. As in other neurodegenerative diseases, calcium dysregulation is an early event in multiple tauopathies, where it activates calmodulin to effect downstream events. Here, the events of Tau phosphorylation and hyperphosphorylation, which involve several CaM-dependent kinases and a single CaM-regulated phosphatase, are covered. In addition, CaM has been linked to other events, including Tau aggregation. As a central player in tauopathies, CaM offers several alternative therapeutic routes that are worth investigating. For example, evidence is presented here that supports targeting specific binding motifs of key CaM-regulated Tau kinases as a novel therapeutic approach. Full article
(This article belongs to the Section Molecular Biomarkers)
Show Figures

Figure 1

33 pages, 5098 KiB  
Review
Medicinal Plants for Skin Disorders: Phytochemistry and Pharmacological Insights
by Nazerke Bolatkyzy, Daniil Shepilov, Rakhymzhan Turmanov, Dmitriy Berillo, Tursunay Vassilina, Nailya Ibragimova, Gulzat Berganayeva and Moldyr Dyusebaeva
Molecules 2025, 30(15), 3281; https://doi.org/10.3390/molecules30153281 - 6 Aug 2025
Abstract
Skin disorders are common and often chronic conditions with significant therapeutic challenges. Limitations of conventional treatments, such as adverse effects and antimicrobial resistance, have increased interest in plant-based alternatives. This article presents the phytochemical composition and pharmacological potential of several medicinal plants traditionally [...] Read more.
Skin disorders are common and often chronic conditions with significant therapeutic challenges. Limitations of conventional treatments, such as adverse effects and antimicrobial resistance, have increased interest in plant-based alternatives. This article presents the phytochemical composition and pharmacological potential of several medicinal plants traditionally used in the treatment of skin diseases, including Rubus vulgaris, Plantago major, Artemisia terrae-albae, and Eryngium planum. Based on an analysis of scientific literature, the presence of bioactive compounds—including flavonoids, anthocyanins, phenolic acids, tannins, and sesquiterpenes—is summarized, along with their antioxidant, anti-inflammatory, and antimicrobial effects. Emphasis is placed on the correlation between traditional ethnomedicinal applications and pharmacological mechanisms. The findings support the potential of these species as sources for dermatological phytotherapeutics. Further research is needed to standardize active constituents, assess safety, and conduct clinical validation. Full article
(This article belongs to the Special Issue Bioactive Molecules in Medicinal Plants)
Show Figures

Figure 1

38 pages, 547 KiB  
Review
Sleep Disorders and Stroke: Pathophysiological Links, Clinical Implications, and Management Strategies
by Jamir Pitton Rissardo, Ibrahim Khalil, Mohamad Taha, Justin Chen, Reem Sayad and Ana Letícia Fornari Caprara
Med. Sci. 2025, 13(3), 113; https://doi.org/10.3390/medsci13030113 - 5 Aug 2025
Abstract
Sleep disorders and stroke are intricately linked through a complex, bidirectional relationship. Sleep disturbances such as obstructive sleep apnea (OSA), insomnia, and restless legs syndrome (RLS) not only increase the risk of stroke but also frequently emerge as consequences of cerebrovascular events. OSA, [...] Read more.
Sleep disorders and stroke are intricately linked through a complex, bidirectional relationship. Sleep disturbances such as obstructive sleep apnea (OSA), insomnia, and restless legs syndrome (RLS) not only increase the risk of stroke but also frequently emerge as consequences of cerebrovascular events. OSA, in particular, is associated with a two- to three-fold increased risk of incident stroke, primarily through mechanisms involving intermittent hypoxia, systemic inflammation, endothelial dysfunction, and autonomic dysregulation. Conversely, stroke can disrupt sleep architecture and trigger or exacerbate sleep disorders, including insomnia, hypersomnia, circadian rhythm disturbances, and breathing-related sleep disorders. These post-stroke sleep disturbances are common and significantly impair rehabilitation, cognitive recovery, and quality of life, yet they remain underdiagnosed and undertreated. Early identification and management of sleep disorders in stroke patients are essential to optimize recovery and reduce the risk of recurrence. Therapeutic strategies include lifestyle modifications, pharmacological treatments, medical devices such as continuous positive airway pressure (CPAP), and emerging alternatives for CPAP-intolerant individuals. Despite growing awareness, significant knowledge gaps persist, particularly regarding non-OSA sleep disorders and their impact on stroke outcomes. Improved diagnostic tools, broader screening protocols, and greater integration of sleep assessments into stroke care are urgently needed. This narrative review synthesizes current evidence on the interplay between sleep and stroke, emphasizing the importance of personalized, multidisciplinary approaches to diagnosis and treatment. Advancing research in this field holds promise for reducing the global burden of stroke and improving long-term outcomes through targeted sleep interventions. Full article
22 pages, 2630 KiB  
Review
Transfection Technologies for Next-Generation Therapies
by Dinesh Simkhada, Su Hui Catherine Teo, Nandu Deorkar and Mohan C. Vemuri
J. Clin. Med. 2025, 14(15), 5515; https://doi.org/10.3390/jcm14155515 - 5 Aug 2025
Abstract
Background: Transfection is vital for gene therapy, mRNA treatments, CAR-T cell therapy, and regenerative medicine. While viral vectors are effective, non-viral systems like lipid nanoparticles (LNPs) offer safer, more flexible alternatives. This work explores emerging non-viral transfection technologies to improve delivery efficiency [...] Read more.
Background: Transfection is vital for gene therapy, mRNA treatments, CAR-T cell therapy, and regenerative medicine. While viral vectors are effective, non-viral systems like lipid nanoparticles (LNPs) offer safer, more flexible alternatives. This work explores emerging non-viral transfection technologies to improve delivery efficiency and therapeutic outcomes. Methods: This review synthesizes the current literature and recent advancements in non-viral transfection technologies. It focuses on the mechanisms, advantages, and limitations of various delivery systems, including lipid nanoparticles, biodegradable polymers, electroporation, peptide-based carriers, and microfluidic platforms. Comparative analysis was conducted to evaluate their performance in terms of transfection efficiency, cellular uptake, biocompatibility, and potential for clinical translation. Several academic search engines and online resources were utilized for data collection, including Science Direct, PubMed, Google Scholar Scopus, the National Cancer Institute’s online portal, and other reputable online databases. Results: Non-viral systems demonstrated superior performance in delivering mRNA, siRNA, and antisense oligonucleotides, particularly in clinical applications. Biodegradable polymers and peptide-based systems showed promise in enhancing biocompatibility and targeted delivery. Electroporation and microfluidic systems offered precise control over transfection parameters, improving reproducibility and scalability. Collectively, these innovations address key challenges in gene delivery, such as stability, immune response, and cell-type specificity. Conclusions: The continuous evolution of transfection technologies is pivotal for advancing gene and cell-based therapies. Non-viral delivery systems, particularly LNPs and emerging platforms like microfluidics and biodegradable polymers, offer safer and more adaptable alternatives to viral vectors. These innovations are critical for optimizing therapeutic efficacy and enabling personalized medicine, immunotherapy, and regenerative treatments. Future research should focus on integrating these technologies to develop next-generation transfection platforms with enhanced precision and clinical applicability. Full article
Show Figures

Figure 1

20 pages, 1545 KiB  
Review
Nanomedicine as a Promising Treatment Approach for Obesity
by Abeer Alanazi, Alexander Craven, Spiridon V. Spirou, Maria Jose Santos-Martinez, Carlos Medina and Oliviero L. Gobbo
J. Nanotheranostics 2025, 6(3), 21; https://doi.org/10.3390/jnt6030021 - 5 Aug 2025
Abstract
Obesity is a chronic disorder associated with serious comorbidities such as diabetes, cardiovascular disease, and cancer. Conventional pharmacological treatments often suffer from limited efficacy, poor selectivity, and undesirable side effects, highlighting the need for more effective alternatives. Nanomedicine offers a promising approach by [...] Read more.
Obesity is a chronic disorder associated with serious comorbidities such as diabetes, cardiovascular disease, and cancer. Conventional pharmacological treatments often suffer from limited efficacy, poor selectivity, and undesirable side effects, highlighting the need for more effective alternatives. Nanomedicine offers a promising approach by overcoming these limitations through targeted drug delivery and enhanced therapeutic precision. This review examines key nanotechnological strategies in obesity management, including targeting white adipose tissue (WAT) and the vascular marker prohibitin, promoting WAT browning, and utilizing photothermal therapy and magnetic hyperthermia as nanotheranostic tools. We discuss major nanomedicine platforms—such as liposomes, nanoemulsions, and polymeric nanoparticles—alongside emerging applications in gene nanotherapy and herbal formulations. Potential toxicity concerns are also addressed. In summary, nanomedicine holds substantial potential to revolutionize obesity treatment through targeted, effective, and multifunctional therapeutic strategies. Full article
Show Figures

Figure 1

13 pages, 1769 KiB  
Article
Antimicrobial Photodynamic Activity of the Zn(II) Phthalocyanine RLP068/Cl Versus Antimicrobial-Resistant Priority Pathogens
by Ilaria Baccani, Sara Cuffari, Francesco Giuliani, Gian Maria Rossolini and Simona Pollini
Int. J. Mol. Sci. 2025, 26(15), 7545; https://doi.org/10.3390/ijms26157545 - 5 Aug 2025
Abstract
The emergence and spread of antimicrobial resistance among pathogens are significantly reducing available therapeutic options, highlighting the urgent need for novel and complementary treatment strategies. Antimicrobial photodynamic therapy (aPDT) is a promising alternative approach that can overcome antimicrobial resistance through a multitarget mechanism [...] Read more.
The emergence and spread of antimicrobial resistance among pathogens are significantly reducing available therapeutic options, highlighting the urgent need for novel and complementary treatment strategies. Antimicrobial photodynamic therapy (aPDT) is a promising alternative approach that can overcome antimicrobial resistance through a multitarget mechanism of action, exerting direct bactericidal and fungicidal effects with minimal risk of resistance development. Although aPDT has shown efficacy against a variety of pathogens, data on its activity against large collections of clinical multidrug-resistant strains are still limited. In this study, we assessed the antimicrobial activity of the photosensitizer RLP068/Cl combined with a red light-emitting LED source at 630 nm (Molteni Farmaceutici, Italy) against a large panel of Gram-negative and Gram-positive bacterial strains harboring relevant resistance traits and Candida species. Our results demonstrated the significant microbicidal activity of RLP068/Cl against all of the tested strains regardless of their resistance phenotype, with particularly prominent activity against Gram-positive bacteria (range of bactericidal concentrations 0.05–0.1 µM), which required significantly lower exposure to photosensitizer compared to Candida and Gram-negative species (range 5–20 µM). Overall, these findings support the potential use of RLP068/Cl-mediated aPDT as an effective therapeutic strategy for the management of localized infections caused by MDR organisms, particularly when conventional therapeutic options are limited. Full article
Show Figures

Figure 1

29 pages, 3455 KiB  
Review
Recent Advances in Nanoparticle and Nanocomposite-Based Photodynamic Therapy for Cervical Cancer: A Review
by Dorota Bartusik-Aebisher, Mohammad A. Saad, Agnieszka Przygórzewska and David Aebisher
Cancers 2025, 17(15), 2572; https://doi.org/10.3390/cancers17152572 - 4 Aug 2025
Abstract
Cervical cancer represents a significant global health challenge. Photodynamic therapy (PDT) appears to be a promising, minimally invasive alternative to standard treatments. However, the clinical efficacy of PDT is sometimes limited by the low solubility and aggregation of photosensitizers, their non-selective distribution in [...] Read more.
Cervical cancer represents a significant global health challenge. Photodynamic therapy (PDT) appears to be a promising, minimally invasive alternative to standard treatments. However, the clinical efficacy of PDT is sometimes limited by the low solubility and aggregation of photosensitizers, their non-selective distribution in the body, hypoxia in the tumor microenvironment, and limited light penetration. Recent advances in nanoparticle and nanocomposite platforms have addressed these challenges by integrating multiple functional components into a single delivery system. By encapsulating or conjugating photosensitizers in biodegradable matrices, such as mesoporous silica, organometallic structures and core–shell construct nanocarriers increase stability in water and extend circulation time, enabling both passive and active targeting through ligand decoration. Up-conversion and dual-wavelength responsive cores facilitate deep light conversion in tissues, while simultaneous delivery of hypoxia-modulating agents alleviates oxygen deprivation to sustain reactive oxygen species generation. Controllable “motor-cargo” constructs and surface modifications improve intratumoral diffusion, while aggregation-induced emission dyes and plasmonic elements support real-time imaging and quantitative monitoring of therapeutic response. Together, these multifunctional nanosystems have demonstrated potent cytotoxicity in vitro and significant tumor suppression in vivo in mouse models of cervical cancer. Combining targeted delivery, controlled release, hypoxia mitigation, and image guidance, engineered nanoparticles provide a versatile and powerful platform to overcome the current limitations of PDT and pave the way toward more effective, patient-specific treatments for cervical malignancies. Our review of the literature summarizes studies on nanoparticles and nanocomposites used in PDT monotherapy for cervical cancer, published between 2023 and July 2025. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

18 pages, 2852 KiB  
Article
Fe3O4@β-cyclodextrin Nanosystem: A Promising Adjuvant Approach in Cancer Treatment
by Claudia Geanina Watz, Ciprian-Valentin Mihali, Camelia Oprean, Lavinia Krauss Maldea, Calin Adrian Tatu, Mirela Nicolov, Ioan-Ovidiu Sîrbu, Cristina A. Dehelean, Vlad Socoliuc and Elena-Alina Moacă
Nanomaterials 2025, 15(15), 1192; https://doi.org/10.3390/nano15151192 - 4 Aug 2025
Abstract
The high incidence of melanoma leading to a poor prognosis rate endorses the development of alternative and innovative approaches in the treatment of melanoma. Therefore, the present study aims to develop and characterize, in terms of physicochemical features and biological impact, an aqueous [...] Read more.
The high incidence of melanoma leading to a poor prognosis rate endorses the development of alternative and innovative approaches in the treatment of melanoma. Therefore, the present study aims to develop and characterize, in terms of physicochemical features and biological impact, an aqueous suspension of magnetite (Fe3O4) coated with β-cyclodextrin (Fe3O4@β-CD) as a potential innovative alternative nanosystem for melanoma therapy. The nanosystem exhibited physicochemical characteristics suitable for biological applications, revealing a successful complexation of Fe3O4 NPs with β-CD and an average size of 18.1 ± 2.1 nm. In addition, the in vitro evaluations revealed that the newly developed nanosystem presented high biocompatibility on a human keratinocyte (HaCaT) monolayer and selective antiproliferative activity on amelanotic human melanoma (A375) cells, inducing early apoptosis features when concentrations of 10, 15, and 20 μg/mL were employed for 48 h and 72 h. Collectively, the Fe3O4@β-CD nanosystem reveals promising features for an adjuvant approach in melanoma treatment, mainly due to its β-cyclodextrin coating, thus endorsing a potential co-loading of therapeutic drugs. Furthermore, the intrinsic magnetic core of Fe3O4 NPs supports the magnetically based cancer treatment strategies. Full article
(This article belongs to the Special Issue Synthesis of Functional Nanoparticles for Biomedical Applications)
Show Figures

Figure 1

18 pages, 914 KiB  
Review
Advances in Surgical Management of Malignant Gastric Outlet Obstruction
by Sang-Ho Jeong, Miyeong Park, Kyung Won Seo and Jae-Seok Min
Cancers 2025, 17(15), 2567; https://doi.org/10.3390/cancers17152567 - 4 Aug 2025
Viewed by 27
Abstract
Malignant gastric outlet obstruction (MGOO) is a serious complication arising from advanced gastric or pancreatic head cancer, significantly impairing patients’ quality of life by disrupting oral intake and inducing severe gastrointestinal symptoms. With benign causes such as peptic ulcer disease on the decline, [...] Read more.
Malignant gastric outlet obstruction (MGOO) is a serious complication arising from advanced gastric or pancreatic head cancer, significantly impairing patients’ quality of life by disrupting oral intake and inducing severe gastrointestinal symptoms. With benign causes such as peptic ulcer disease on the decline, malignancies now account for 50–80% of gastric outlet obstruction (GOO) cases globally. This review outlines the pathophysiology, evolving epidemiology, and treatment modalities for MGOO. Therapeutic approaches include conservative management, endoscopic stenting, surgical gastrojejunostomy (GJ), stomach partitioning gastrojejunostomy (SPGJ), and endoscopic ultrasound-guided gastroenterostomy (EUS-GE). While endoscopic stenting offers rapid symptom relief with minimal invasiveness, it has higher rates of re-obstruction. Surgical options like GJ and SPGJ provide more durable palliation, especially for patients with longer expected survival. SPGJ, a modified surgical technique, demonstrates reduced incidence of delayed gastric emptying and may improve postoperative oral intake and survival compared to conventional GJ. EUS-GE represents a promising, minimally invasive alternative that combines surgical durability with endoscopic efficiency, although long-term data remain limited. Treatment selection should consider patient performance status, tumor characteristics, prognosis, and institutional resources. This comprehensive review underscores the need for individualized, multidisciplinary decision-making to optimize symptom relief, nutritional status, and overall outcomes in patients with MGOO. Full article
(This article belongs to the Special Issue Advances in the Treatment of Upper Gastrointestinal Cancer)
Show Figures

Figure 1

24 pages, 1115 KiB  
Review
Stem Cell-Derived Corneal Epithelium: Engineering Barrier Function for Ocular Surface Repair
by Emily Elizabeth Fresenko, Jian-Xing Ma, Matthew Giegengack, Atalie Carina Thompson, Anthony Atala, Andrew J. W. Huang and Yuanyuan Zhang
Int. J. Mol. Sci. 2025, 26(15), 7501; https://doi.org/10.3390/ijms26157501 - 3 Aug 2025
Viewed by 140
Abstract
The cornea, the transparent anterior window of the eye, critically refracts light and protects intraocular structures. Corneal pathologies, including trauma, infection, chemical injury, metabolic diseases, genetic conditions, and age-related degeneration, can lead to significant visual impairment. While penetrating keratoplasty or full-thickness corneal transplantation [...] Read more.
The cornea, the transparent anterior window of the eye, critically refracts light and protects intraocular structures. Corneal pathologies, including trauma, infection, chemical injury, metabolic diseases, genetic conditions, and age-related degeneration, can lead to significant visual impairment. While penetrating keratoplasty or full-thickness corneal transplantation remains a standard and effective intervention for severe corneal dysfunction, limitations in donor tissue availability and the risk of immunogenic graft rejection necessitate alternative therapeutic strategies. Furthermore, for cases of isolated epithelial disfunction, a full-thickness cornea graft may not be required or effective. This review examines the potential of corneal epithelial constructs derived from autologous stem cells with functional barrier properties for corneal reconstruction and in vitro pharmacotoxicity testing. In this review, we delineate the current limitations of corneal transplantation, the advantages of stem cell-based approaches, and recent advances in generating engineered corneal epithelium. Finally, we address remaining technical challenges and propose future research directions aimed at clinical translation. Full article
(This article belongs to the Special Issue Enhancing Stem Cell Grafting in Tissue Regeneration and Repair)
Show Figures

Figure 1

Back to TopTop