Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (80)

Search Parameters:
Keywords = theranostic nanoplatform

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 4423 KB  
Review
Interpreting the Theranostic Applications of Alumina and Silica Substrates in Cancer
by Dimitris-Foivos Thanos, Pavlos Pantelis, Giorgos Theocharous, Sylvia Vagena, Cleo Kyriakopoulou, Giannis Pantelidis, Mary Markatou, Myrto Pliakostamou, Nikolaos Papanikolaou, Ekaterina-Michaela Tomou, Maria-Anna Gatou, Evangelia A. Pavlatou, Natassa Pippa, Vassilis G. Gorgoulis and Nefeli Lagopati
Molecules 2026, 31(3), 428; https://doi.org/10.3390/molecules31030428 - 26 Jan 2026
Abstract
In recent years, remarkable progress in nanomedicine has been achieved, leading to the development of several nanocarriers which aim to enhance the therapeutic efficacy in cancer treatment. Owing to their high versatility and highly tunable physicochemical properties, alumina (Al2O3) [...] Read more.
In recent years, remarkable progress in nanomedicine has been achieved, leading to the development of several nanocarriers which aim to enhance the therapeutic efficacy in cancer treatment. Owing to their high versatility and highly tunable physicochemical properties, alumina (Al2O3) and silica (SiO2) substrates represent promising and innovative nanoplatforms that are widely used in biomedical applications, such as drug-delivery, diagnosis, and biosensing in cancer. In particular, such platforms possess multiple advantageous properties, including mechanical stability, high loading capacity, tunable porosity, excellent biocompatibility, and in vitro and in vivo low toxicity. In this review article, we discuss their emerging role as biosensing platforms and drug delivery systems in oncology. As such, we describe how these substrates enable the incorporation of antibodies against various cancer biomarkers [e.g., cancer antigen 15-3 (CA15-3), serum amyloid A1 (SAA1), epithelial cell adhesion molecule (EpCAM), or human epidermal growth factor receptor 2 (HER2)] for the detection of multiple malignancies. Furthermore, we highlight the development of highly promising alumina- and silica-based platforms for drug delivery (e.g., chemotherapeutics, photosensitizers, or gene delivery agents) in cancer. Ultimately, by providing a comprehensive overview alongside a critical analysis, we demonstrate that such nanostructures represent promising platforms for potential clinical translation in cancer medicine, helping to mitigate the limitations of conventional cancer therapies. Full article
Show Figures

Figure 1

30 pages, 6458 KB  
Review
Carbon Dots and Biomimetic Membrane Systems: Mechanistic Interactions and Hybrid Nano-Lipid Platforms
by Nisreen Nusair and Mithun Bhowmick
Nanomaterials 2026, 16(2), 140; https://doi.org/10.3390/nano16020140 - 20 Jan 2026
Viewed by 137
Abstract
Carbon dots (CDs) have emerged as a distinct class of fluorescent nanomaterials distinguished by their tunable physicochemical properties, ultrasmall size, exceptional photoluminescence, versatile surface chemistry, high biocompatibility, and chemical stability, positioning them as promising candidates for biomedical applications ranging from sensing and imaging [...] Read more.
Carbon dots (CDs) have emerged as a distinct class of fluorescent nanomaterials distinguished by their tunable physicochemical properties, ultrasmall size, exceptional photoluminescence, versatile surface chemistry, high biocompatibility, and chemical stability, positioning them as promising candidates for biomedical applications ranging from sensing and imaging to drug delivery and theranostics. As CDs increasingly transition toward biological and clinical use, a fundamental understanding of their interactions with biological membranes becomes essential, as cellular membranes govern nanoparticle uptake, intracellular transport, and therapeutic performance. Model membrane systems, such as phospholipid vesicles and liposomes, offer controllable platforms to elucidate CD-membrane interactions by isolating key physicochemical variables otherwise obscured in complex biological environments. Recent studies demonstrate that CD surface chemistry, charge, heteroatom doping, size, and hydrophobicity, together with membrane composition, packing density, and phase behavior, dictate nanoparticle adsorption, insertion, diffusion, and membrane perturbation. In addition, CD-liposome hybrid systems have gained momentum as multifunctional nanoplatforms that couple the fluorescence and traceability of CDs with the encapsulation capacity and biocompatibility of lipid vesicles, enabling imaging-guided drug delivery and responsive theranostic systems. This review consolidates current insights into the mechanistic principles governing CD interactions with model membranes and highlights advances in CD-liposome hybrid nanostructures. By bridging fundamental nanoscale interactions with translational nanomedicine strategies, this work provides a framework for the rational design of next-generation CD-based biointerfaces with optimized structural, optical, and biological performance. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

25 pages, 905 KB  
Review
Advances in Near-Infrared BODIPY Photosensitizers: Design Strategies and Applications in Photodynamic and Photothermal Therapy
by Dorota Bartusik-Aebisher, Kacper Rogóż, Gabriela Henrykowska and David Aebisher
Pharmaceuticals 2026, 19(1), 53; https://doi.org/10.3390/ph19010053 - 26 Dec 2025
Viewed by 475
Abstract
Background/Objectives: Boron-dipyrromethene (BODIPY) derivatives are a superior class of fluorophores prized for their exceptional photostability and tunable photophysical properties. While ideal for imaging, their translation to photodynamic therapy (PDT) has been hampered by excitation in the visible range, leading to poor tissue penetration. [...] Read more.
Background/Objectives: Boron-dipyrromethene (BODIPY) derivatives are a superior class of fluorophores prized for their exceptional photostability and tunable photophysical properties. While ideal for imaging, their translation to photodynamic therapy (PDT) has been hampered by excitation in the visible range, leading to poor tissue penetration. To overcome this, intense research has focused on developing near-infrared (NIR)-absorbing BODIPY photosensitizers (PS). This review aims to systematically summarize the hierarchical design strategies, from molecular engineering to advanced nanoplatform construction, that underpin the recent progress of NIR-BODIPY PS in therapeutic applications. Methods: We conducted a comprehensive literature review using PubMed, Scopus, and Web of Science databases. The search focused on keywords such as “BODIPY”, “aza-BODIPY”, “near-infrared”, “photodynamic therapy”, “photothermal therapy”, “nanocarriers”, “hypoxia”, “immuno-phototherapy”, and “antibacterial.” This review analyzes key studies describing molecular design, chemical modification strategies (e.g., heavy-atom effect, π-extension), nanoplatform formulation, and therapeutic applications in vitro and in vivo. Results: Our analysis reveals a clear progression in design complexity. At the molecular level, we summarize strategies to enhance selectivity, including active targeting, designing “smart” PS responsive to the tumor microenvironment (TME) (e.g., hypoxia or low pH), and precise subcellular localization (e.g., mitochondria, lysosomes). We then detail the core chemical strategies for achieving NIR absorption and high singlet oxygen yield, including π-extension, the internal heavy-atom effect, and heavy-atom-free mechanisms (e.g., dimerization). The main body of the review categorizes the evolution of advanced theranostic nanoplatforms, including targeted systems, stimuli-responsive ‘smart’ systems, photo-immunotherapy (PIT) platforms inducing immunogenic cell death (ICD), hypoxia-overcoming systems, and synergistic chemo-phototherapy carriers. Finally, we highlight emerging applications beyond oncology, focusing on the use of NIR-BODIPY PS for antibacterial therapy and biofilm eradication. Conclusions: NIR-BODIPY photosensitizers are a highly versatile and powerful class of theranostic agents. The field is rapidly moving from simple molecules to sophisticated, multifunctional nanoplatforms designed to overcome key clinical hurdles like hypoxia, poor selectivity, and drug resistance. While challenges in scalability and clinical translation remain, the rational design strategies and expanding applications, including in infectious diseases, confirm that NIR-BODIPY derivatives will be foundational to the next generation of precision photomedicine. Full article
Show Figures

Figure 1

19 pages, 2482 KB  
Review
Application of Metal-Doped Nanomaterials in Cancer Diagnosis and Treatment
by Xinhao Jin and Qi Sun
J. Nanotheranostics 2025, 6(4), 35; https://doi.org/10.3390/jnt6040035 - 17 Dec 2025
Viewed by 495
Abstract
Cancer remains a severe global health threat, with traditional therapies often plagued by limited efficacy and significant side effects. The emergence of nanotechnology, particularly metal-doped nanomaterials, offers a promising avenue for integrating diagnostic and therapeutic functions into a single platform, enabling a theranostic [...] Read more.
Cancer remains a severe global health threat, with traditional therapies often plagued by limited efficacy and significant side effects. The emergence of nanotechnology, particularly metal-doped nanomaterials, offers a promising avenue for integrating diagnostic and therapeutic functions into a single platform, enabling a theranostic approach to oncology. This article explores the design and application of various metal-doped nanosystems, including gadolinium-doped selenium molybdenum nanosheets for magnetic resonance/photoacoustic dual-mode imaging and photothermal therapy, and metal-doped hollow mesoporous silica nanoparticles that leverage the tumor’s acidic microenvironment to release ions for catalytic generation of reactive oxygen species. Despite their promise, the limited enzyme-like activity of some nanozymes, insufficient endogenous hydrogen peroxide in tumors, and the tumor microenvironment’s defensive mechanisms, such as high glutathione levels, can restrict therapeutic efficacy. Looking forward, the outlook for the field is contingent upon advancing material engineering strategies. Future research should prioritize the development of intelligent, multifunctional nanoplatforms that can dynamically respond to and remodel the tumor microenvironment. Innovations in surface modification for enhanced targeting, alongside rigorous preclinical studies focused on safety and standardized manufacturing, are crucial for bridging the gap between laboratory research and clinical application, ultimately paving the way for personalized cancer medicine. Full article
(This article belongs to the Special Issue Feature Review Papers in Nanotheranostics)
Show Figures

Figure 1

23 pages, 6819 KB  
Article
Pomegranate and Cherry Leaf Extracts as Stabilizers of Magnetic Hydroxyapatite Nanocarriers for Nucleic Acid Delivery
by Hina Inam, Simone Sprio, Federico Pupilli, Marta Tavoni and Anna Tampieri
Int. J. Mol. Sci. 2025, 26(23), 11562; https://doi.org/10.3390/ijms262311562 - 28 Nov 2025
Viewed by 442
Abstract
Small interfering RNAs (siRNAs) provide strong therapeutic potential due to their efficient gene-silencing properties; however, their instability limits clinical application. Nanoparticle carriers may overcome this problem; in particular, magnetic nanoparticles show great promise as they can be directed to the target sites by [...] Read more.
Small interfering RNAs (siRNAs) provide strong therapeutic potential due to their efficient gene-silencing properties; however, their instability limits clinical application. Nanoparticle carriers may overcome this problem; in particular, magnetic nanoparticles show great promise as they can be directed to the target sites by external magnetic fields, thus improving delivery efficiency and reducing off-target effects. In addition, magnetic nanoparticles offer a novel nanoplatform for theranostic applications, integrating siRNA delivery with magnetic resonance imaging and magnetic hyperthermia for synergistic diagnostic and therapeutic advantages. The present work reports the development of a novel platform based on biomimetic magnetic nanoparticles made of Fe(II)/Fe(III)-doped apatite (FeHA) nucleated and grown in the presence of cherry and pomegranate leaf extracts to enhance the colloidal stability and make it suitable for nucleic acid delivery under the guidance of magnetic fields. This approach allowed the obtention of FeHA suspension with increased negative zeta potential leading to very good stability. In addition, the functionalization with natural extracts conferred antioxidant properties also favoring the maintenance of the Fe(III)/Fe(II) ratio in the apatitic structure, inducing the superparamagnetic properties. To evaluate the delivery capability of the system, a model GAPDH-targeting siRNA molecule was employed. Its interaction with the nanoplatform was characterized by assessing loading capacity and release kinetics, which were further interpreted using mathematical modeling to elucidate the underlying release mechanisms. Full article
(This article belongs to the Special Issue The Role of Natural Products in Treating Human Diseases)
Show Figures

Figure 1

34 pages, 2229 KB  
Review
Multifunctional Nanoplatforms Bridging Diagnostics and Therapeutics in Cancer
by Hossein Omidian and Erma J. Gill
Micromachines 2025, 16(12), 1323; https://doi.org/10.3390/mi16121323 - 26 Nov 2025
Cited by 1 | Viewed by 654
Abstract
Accurate tumor visualization remains a central challenge in oncology, as single-modality imaging often lacks the depth, sensitivity, and specificity needed for precise therapeutic guidance. Nano-theranostic platforms address this by combining multimodal imaging with tumor-responsive activation and therapeutic functions within a single system. Advances [...] Read more.
Accurate tumor visualization remains a central challenge in oncology, as single-modality imaging often lacks the depth, sensitivity, and specificity needed for precise therapeutic guidance. Nano-theranostic platforms address this by combining multimodal imaging with tumor-responsive activation and therapeutic functions within a single system. Advances in carbon-based nanomaterials, metallic and metal oxide nanoplatforms, polymeric and lipid carriers, and biomimetic architectures enable integration of fluorescence (FL), near-infrared II fluorescence (NIR-II FL), photoacoustic (PA), magnetic resonance (MRI), computed tomography (CT), and ultrasound (US) imaging for comprehensive anatomical, functional, and molecular tumor characterization. Coupled with photothermal therapy (PTT), photodynamic therapy (PDT), chemo-dynamic therapy (CDT), ferroptosis induction, metabolic modulation, gas-based therapeutics, and immune activation, these nanoplatforms transform imaging from a passive diagnostic tool into an active, feedback-regulated therapeutic modality. This review outlines the mechanistic foundations, integrated functionalities, and preclinical significance of synergistic imaging-guided nano-theranostics. We also highlight emerging priorities—including adaptive closed-loop platforms, streamlined multifunctional designs, immunotherapy integration, and scalable, biocompatible manufacturing—to advance clinically viable nano-theranostics for precision oncology. Full article
(This article belongs to the Special Issue Emerging Trends in Optoelectronic Device Engineering)
Show Figures

Figure 1

29 pages, 5971 KB  
Review
The Ballet of Natural-Product: Carrier-Free “Triadic” Drug Delivery Platforms for Enhanced Tumor Treatment
by Liyan Yang and Zhonglei Wang
J. Funct. Biomater. 2025, 16(12), 433; https://doi.org/10.3390/jfb16120433 - 25 Nov 2025
Viewed by 996
Abstract
Cancer poses a considerable challenge to global public health and stands as the second leading cause of mortality worldwide. Chemotherapy provides limited benefits for advanced-stage cancer, mainly due to high systemic toxicity and drug resistance. Optimal cancer treatment requires a sophisticated, multidisciplinary collaboration [...] Read more.
Cancer poses a considerable challenge to global public health and stands as the second leading cause of mortality worldwide. Chemotherapy provides limited benefits for advanced-stage cancer, mainly due to high systemic toxicity and drug resistance. Optimal cancer treatment requires a sophisticated, multidisciplinary collaboration aimed at extending survival, enhancing quality of life, and reducing toxicity. Natural products present advantages, including a wide array of structural diversity, reduced toxicity, improved immune modulation, and the ability to act on multiple targets. Nanomedicine design shows promise in tumor treatment and diagnosis by improving efficacy and minimizing side effects. Due to the heterogeneity of tumors in genetics, metabolism, and microenvironment, natural product-based carrier-free drug delivery platforms have been actively investigated and demonstrated considerable potential for enhanced tumor treatment. “Triadic” strategies can simultaneously perform various functions on a carrier-free intelligent nanoplatform. These include combinational chemotherapy, photodynamic therapy (PDT) with bioimaging and chemotherapy, PDT combined with photothermal therapy (PTT) and chemotherapy, chemo-radio-theranostics, as well as gene therapy (GT) in conjunction with PTT and chemotherapy. This multifaceted approach enhances therapeutic efficacy, reduces multidrug resistance, and minimizes systemic toxicity. This review encompasses recent advancements in cancer therapy using carrier-free “triadic” nanomedicines based on natural products (between 2024 and 2025) and evaluates this evolving field, emphasizing the pivotal role of natural products—berberine, camptothecin, hypericin, erianin, curcumin, lactose, paclitaxel, gambogic acid, and glycyrrhizic acid—in drug delivery platforms. Furthermore, it addresses the challenges and bottlenecks encountered by carrier-free drug delivery platforms, offering valuable insights into their development trajectories. Full article
(This article belongs to the Special Issue 15th Anniversary of JFB—Advanced Biomaterials for Drug Delivery)
Show Figures

Figure 1

24 pages, 4148 KB  
Article
Theranostic Verteporfin-Conjugated Upconversion Nanoparticles for Cancer Treatment
by Oleksandr Shapoval, Vitalii Patsula, David Větvička, Miroslav Šlouf, Martina Kabešová, Taras Vasylyshyn, Ludmila Maffei Svobodová, Magdalena Konefal, Olga Kočková, Jan Pankrác, Petr Matouš, Vít Herynek and Daniel Horák
Nanomaterials 2025, 15(22), 1690; https://doi.org/10.3390/nano15221690 - 7 Nov 2025
Cited by 1 | Viewed by 1015
Abstract
Photodynamic therapy (PDT) is a highly selective, clinically approved, minimally invasive technique that effectively eliminates cancer cells. Its effectiveness is limited by poor light penetration into tissue and the hydrophobic nature of photosensitizers, highlighting the need for new approaches to treatment. Here, a [...] Read more.
Photodynamic therapy (PDT) is a highly selective, clinically approved, minimally invasive technique that effectively eliminates cancer cells. Its effectiveness is limited by poor light penetration into tissue and the hydrophobic nature of photosensitizers, highlighting the need for new approaches to treatment. Here, a theranostic upconversion nanoplatform, consisting of a NaYF4:Yb,Er,Tm,Fe core and a NaHoF4 shell codoped with Yb, Nd, Gd and Tb ions, was designed to enhance PDT outcomes by integrating multi-wavelength upconversion luminescence, T2-weighted magnetic resonance imaging (MRI) and PDT. The synthesized core–shell upconversion nanoparticles (CS-UCNPs) were coated with new verteporfin (VP)-conjugated alendronate-terminated poly(N,N-dimethylacrylamide-co-2-aminoethyl acrylate) [Ale-P(DMA-AEA)] grafted with poly(ethylene glycol) (PEG). Under 980 nm NIR irradiation, CS-UCNP@Ale-P(DMA-AEA)-PEG-VP nanoparticles generated reactive oxygen species (ROS) due to the efficient energy transfer between CS-UCNPs and VP. In a pilot preclinical study, intratumoral administration of nanoparticle conjugates to mice, followed by exposure to NIR light, induced necrosis of pancreatic tumor and suppressed its growth. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

28 pages, 1723 KB  
Review
Nanotechnological Innovations in the Treatment and Diagnosis of Viral Pathogens: Biomedical and Macromolecular Insights
by Marco Chávez-Tinoco, Bruno Solis-Cruz, Edgar R. López-Mena, Karla S. García-Salazar, Daniel Hernández-Patlán and Jorge L. Mejía-Méndez
J. Nanotheranostics 2025, 6(4), 30; https://doi.org/10.3390/jnt6040030 - 1 Nov 2025
Viewed by 1110
Abstract
Viral diseases remain a persistent threat to global health, agriculture, and biodiversity, as demonstrated by recent pandemics. The high mutation rates, diversity, and intricate replication mechanisms within a host can often challenge conventional detection and therapeutic approaches. The emergence of novel viruses underscores [...] Read more.
Viral diseases remain a persistent threat to global health, agriculture, and biodiversity, as demonstrated by recent pandemics. The high mutation rates, diversity, and intricate replication mechanisms within a host can often challenge conventional detection and therapeutic approaches. The emergence of novel viruses underscores the critical importance of innovative and multidisciplinary strategies to outpace these diseases. In this context, nanotechnology has emerged as a transformative frontier, offering unique tools to address the limitations of traditional virology. This review examines the latest nanotechnological innovations designed to combat viral diseases. Like the development of advanced nanoplatforms, metallic and polymeric nanostructures, and carbon-based materials, and evaluating their roles in viral theranostics. This article provides critical biomedical insights into the function and relationship of nanomaterials, mechanisms of action, and their interaction with biological systems. This work aims to provide a valuable resource for guiding future research toward the clinical translation of nanomaterial-based strategies for the prevention, diagnosis, and treatment of viral infections. Full article
Show Figures

Figure 1

17 pages, 2674 KB  
Article
Preparation and Performance of Phthalocyanine @ Copper Iodide Cluster Nanoparticles for X-Ray-Induced Photodynamic Therapy
by Wei Xie, Yunan Li, Guoyan Tang, Zhihua Li, Mengyu Yao, Biyuan Zheng, Xingshu Li and Jian-Dong Huang
Molecules 2025, 30(21), 4229; https://doi.org/10.3390/molecules30214229 - 29 Oct 2025
Viewed by 908
Abstract
The efficacy of X-ray-induced photodynamic therapy (X-PDT) for deep tumors is often hindered by conventional scintillators, typically rare-earth nanoparticles plagued by long-term toxicity and suboptimal scintillation yields. Here, we introduce a copper iodide (Cu-I) cluster, Cu2I2(PPh3)2 [...] Read more.
The efficacy of X-ray-induced photodynamic therapy (X-PDT) for deep tumors is often hindered by conventional scintillators, typically rare-earth nanoparticles plagued by long-term toxicity and suboptimal scintillation yields. Here, we introduce a copper iodide (Cu-I) cluster, Cu2I2(PPh3)2(pz), composed of earth-abundant elements, as an efficient and biocompatible energy transducer for X-PDT. A theranostic nanoplatform, CuI@PcNP, was engineered by co-encapsulating the Cu-I cluster and a phthalocyanine photosensitizer (Pc4OH) within a 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-polyethylene glycol-2000 (DSPE-PEG2K) matrix, which confers excellent physiological stability. This nano-architecture ensures nanoscale proximity between the cluster (donor) and photosensitizer (acceptor), facilitating efficient (58%) Förster resonance energy transfer (FRET) while overcoming aggregation-induced quenching. Upon X-ray irradiation, the platform effectively converted X-rays to visible light, activating Pc4OH to generate potent reactive oxygen species (ROS) and inducing significant dose-dependent cytotoxicity in human hepatocellular carcinoma (HepG2) cells. In a murine hepatoma model, enabling image-guided X-PDT that resulted in a 77.4% tumor inhibition rate with negligible systemic toxicity. Collectively, this work pioneers the integration of phthalocyanine with Cu-I clusters, providing a stable and versatile nanoplatform for image-guided X-PDT. Full article
(This article belongs to the Special Issue Photochemistry in Asia)
Show Figures

Graphical abstract

22 pages, 615 KB  
Review
Theranostic Nanoplatforms in Nuclear Medicine: Current Advances, Emerging Trends, and Perspectives for Personalized Oncology
by María Jimena Salgueiro and Marcela Zubillaga
J. Nanotheranostics 2025, 6(4), 27; https://doi.org/10.3390/jnt6040027 - 3 Oct 2025
Cited by 3 | Viewed by 2403
Abstract
The convergence of nanotechnology with nuclear medicine has led to the development of theranostic nanoplatforms that combine targeted imaging and therapy within a single system. This review provides a critical and updated synthesis of the current state of nanoplatform-based theranostics, with a particular [...] Read more.
The convergence of nanotechnology with nuclear medicine has led to the development of theranostic nanoplatforms that combine targeted imaging and therapy within a single system. This review provides a critical and updated synthesis of the current state of nanoplatform-based theranostics, with a particular focus on their application in oncology. We explore multifunctional nanocarriers that integrate diagnostic radionuclides for SPECT/PET imaging with therapeutic radioisotopes (α-, β-, or Auger emitters), chemotherapeutics, and biological targeting ligands. We highlight advances in nanomaterial engineering—such as hybrid architectures, surface functionalization, and stimuli-responsive designs—that improve tumor targeting, biodistribution, and therapeutic outcomes. Emphasis is placed on translational challenges including pharmacokinetics, toxicity, regulatory pathways, and GMP-compliant manufacturing. The article closes with a forward-looking perspective on how theranostic nanoplatforms could reshape the future of personalized oncology through precision-targeted diagnostics and radiotherapy. Full article
Show Figures

Figure 1

21 pages, 4979 KB  
Article
Synthesis and Characterization of Multifunctional Mesoporous Silica Nanoparticles Containing Gold and Gadolinium as a Theranostic System
by André Felipe Oliveira, Isabela Barreto da Costa Januário Meireles, Maria Angela Barros Correia Menezes, Klaus Krambrock and Edésia Martins Barros de Sousa
J. Nanotheranostics 2025, 6(4), 26; https://doi.org/10.3390/jnt6040026 - 26 Sep 2025
Viewed by 1440
Abstract
Among the many nanomaterials studied for biomedical uses, silica and gold nanoparticles have gained significant attention because of their unique physical and chemical properties and their compatibility with living tissues. Mesoporous silica nanoparticles (MSNs) have great stability and a large surface area, while [...] Read more.
Among the many nanomaterials studied for biomedical uses, silica and gold nanoparticles have gained significant attention because of their unique physical and chemical properties and their compatibility with living tissues. Mesoporous silica nanoparticles (MSNs) have great stability and a large surface area, while gold nanoparticles (AuNPs) display remarkable optical features. Both types of nanoparticles have been widely researched for their individual roles in drug delivery, imaging, biosensing, and therapy. When combined with gadolinium (Gd), a common contrast agent, these nanostructures provide improved imaging due to gadolinium’s strong paramagnetic properties. This study focuses on incorporating gold nanoparticles and gadolinium into a silica matrix to develop a theranostic system. Various analytical techniques were used to characterize the nanocomposites, including infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis), thermogravimetric analysis (TGA), nitrogen adsorption, scanning electron microscopy (SEM), dynamic light scattering (DLS), X-ray fluorescence (XRF), X-ray diffraction (XRD), vibrating sample magnetometry (VSM), and neutron activation analysis (NAA). Techniques like XRF mapping, XANES, nitrogen adsorption, SEM, and VSM were crucial in confirming the presence of gadolinium and gold within the silica network. VSM and EPR analyses confirmed the attenuation of the saturation magnetization for all nanocomposites. This validates their potential for biomedical applications in diagnostics. Moreover, activating gold nanoparticles in a nuclear reactor generated a promising radioisotope for cancer treatment. These results indicate the potential of using a theranostic nanoplatform that employs mesoporous silica as a carrier, gold nanoparticles for radioisotopes, and gadolinium for imaging purposes. Full article
Show Figures

Figure 1

26 pages, 1121 KB  
Review
Strategic Objectives of Nanotechnology-Driven Repurposing in Radiopharmacy—Implications for Radiopharmaceutical Repurposing (Beyond Oncology)
by María Jimena Salgueiro and Marcela Zubillaga
Pharmaceutics 2025, 17(9), 1159; https://doi.org/10.3390/pharmaceutics17091159 - 3 Sep 2025
Viewed by 1273
Abstract
The integration of nanotechnology into drug repurposing strategies is redefining the development landscape for diagnostic, therapeutic, and theranostic agents. In radiopharmacy, nanoplatforms are increasingly being explored to enhance or extend the use of existing radiopharmaceuticals, complementing earlier applications in other biomedical fields. Many [...] Read more.
The integration of nanotechnology into drug repurposing strategies is redefining the development landscape for diagnostic, therapeutic, and theranostic agents. In radiopharmacy, nanoplatforms are increasingly being explored to enhance or extend the use of existing radiopharmaceuticals, complementing earlier applications in other biomedical fields. Many of these nanoplatforms evolve into multifunctional systems by incorporating additional imaging modalities (e.g., MRI, fluorescence) or non-radioactive therapies (e.g., photodynamic therapy, chemotherapy). These hybrid constructs often emerge from the reformulation, repositioning, or revival of previously approved or abandoned compounds, generating entities with novel pharmacological, pharmacokinetic, and biodistribution profiles. However, their translational potential faces significant regulatory hurdles. Existing frameworks—typically designed for single-modality drugs or devices—struggle to accommodate the combined complexity of nanoengineering, radioactive components, and integrated functionalities. This review examines how these systems challenge current norms in classification, safety assessment, preclinical modeling, and regulatory coordination. It also addresses emerging concerns around digital adjuncts such as AI-assisted dosimetry and software-based therapy planning. Finally, the article outlines international initiatives aimed at closing regulatory gaps and provides future directions for building harmonized, risk-adapted frameworks that support innovation while ensuring safety and efficacy. Full article
Show Figures

Figure 1

34 pages, 4581 KB  
Review
Nanoradiopharmaceuticals: Design Principles, Radiolabeling Strategies, and Biomedicine Applications
by Andrés Núñez-Salinas, Cristian Parra-Garretón, Daniel Acuña, Sofía Peñaloza, Germán Günther, Soledad Bollo, Francisco Arriagada and Javier Morales
Pharmaceutics 2025, 17(7), 912; https://doi.org/10.3390/pharmaceutics17070912 - 14 Jul 2025
Cited by 5 | Viewed by 2605
Abstract
Nanoradiopharmaceuticals integrate nanotechnology with nuclear medicine to enhance the precision and effectiveness of radiopharmaceuticals used in diagnostic imaging and targeted therapies. Nanomaterials offer improved targeting capabilities and greater stability, helping to overcome several limitations. This review presents a comprehensive overview of the fundamental [...] Read more.
Nanoradiopharmaceuticals integrate nanotechnology with nuclear medicine to enhance the precision and effectiveness of radiopharmaceuticals used in diagnostic imaging and targeted therapies. Nanomaterials offer improved targeting capabilities and greater stability, helping to overcome several limitations. This review presents a comprehensive overview of the fundamental design principles, radiolabeling techniques, and biomedical applications of nanoradiopharmaceuticals, with a particular focus on their expanding role in precision oncology. It explores key areas, including single- and multi-modal imaging modalities (SPECT, PET), radionuclide therapies involving beta, alpha, and Auger emitters, and integrated theranostic systems. A diverse array of nanocarriers is examined, including liposomes, micelles, albumin nanoparticles, PLGA, dendrimers, and gold, iron oxide, and silica-based platforms, with an assessment of both preclinical and clinical research outcomes. Theranostic nanoplatforms, which integrate diagnostic and therapeutic functions within a single system, enable real-time monitoring and personalized dose optimization. Although some of these systems have progressed to clinical trials, several obstacles remain, including formulation stability, scalable manufacturing, regulatory compliance, and long-term safety considerations. In summary, nanoradiopharmaceuticals represent a promising frontier in personalized medicine, particularly in oncology. By combining diagnostic and therapeutic capabilities within a single nanosystem, they facilitate more individualized and adaptive treatment approaches. Continued innovation in formulation, radiochemistry, and regulatory harmonization will be crucial to their successful routine clinical use. Full article
(This article belongs to the Special Issue Nanosystems for Advanced Diagnostics and Therapy)
Show Figures

Figure 1

29 pages, 1584 KB  
Review
Medulloblastoma: Molecular Targets and Innovative Theranostic Approaches
by Alice Foti, Fabio Allia, Marilena Briglia, Roberta Malaguarnera, Gianpiero Tamburrini, Francesco Cecconi, Vittoria Pagliarini, Francesca Nazio and Adriana Carol Eleonora Graziano
Pharmaceutics 2025, 17(6), 736; https://doi.org/10.3390/pharmaceutics17060736 - 4 Jun 2025
Cited by 3 | Viewed by 2172
Abstract
Background/Objectives: Medulloblastoma is a rare tumor that represents almost two-thirds of all embryonal pediatric brain tumor cases. Current treatments, including surgery, radiation, and chemotherapy, are often associated with adverse effects, such as toxicity, resistance, and lack of specificity. According to multiple bulk and [...] Read more.
Background/Objectives: Medulloblastoma is a rare tumor that represents almost two-thirds of all embryonal pediatric brain tumor cases. Current treatments, including surgery, radiation, and chemotherapy, are often associated with adverse effects, such as toxicity, resistance, and lack of specificity. According to multiple bulk and single-cell omics-based approaches, it is now clear that each molecular subgroup of medulloblastoma possesses intrinsic genetic and molecular features that could drive the definition of distinct therapeutic targets, and of markers that have the potential to improve diagnosis. Nanomedicine offers a promising approach to overcome these challenges through precision-targeted therapies and theranostic platforms that merge diagnosis and treatment. This review explores the role of nanomedicine in medulloblastoma. Here, possible theranostic nanoplatforms combining targeted drug delivery and simultaneous imaging are reviewed, highlighting their potential as tools for personalized medicine. Methods: We performed a chronological analysis of the literature by using the major web-based research platforms, focusing on molecular targets, and the potential application of nanomedicine to overcome conventional treatment limitations. Results: Advances in nanoparticle-based drug delivery systems enable selective targeting of key molecular pathways, improving therapeutic efficacy while minimizing off-target effects. Additionally, nanotechnology-based imaging agents, including MRI contrast agents and fluorescent probes, improve diagnostic accuracy and treatment monitoring. Despite these advantages, some significant challenges remain, including overcoming the blood–brain barrier, ensuring biocompatibility, and addressing regulatory pathways for clinical translation. Conclusions: In conclusion, we sought to identify the current knowledge on the topic and hope to inspire future research to obtain new nanoplatforms for personalized medicine. Full article
Show Figures

Graphical abstract

Back to TopTop