Nanotechnological Innovations in the Treatment and Diagnosis of Viral Pathogens: Biomedical and Macromolecular Insights
Abstract
1. Introduction
2. Viruses: Definition and Evolutionary Patterns
3. Viral Diseases in Changing Environments
4. Viral Mechanisms of Evasion of Challenges Associated with Their Detection
5. Macromolecular Features of Viruses of Biomedical Interest
6. Nanotechnology: Historical Background, Synthesis Methods, and Classification of Nanomaterials
7. Treatment of Viral Diseases Utilizing Nanomaterials
7.1. Metallic Nanoparticles (MNPs)
7.2. Metal Oxide Nanoparticles (MO-NPs)
7.3. Carbon-Based Nanomaterials (CB-NMs)
7.3.1. Fullerenes
7.3.2. CNTs
7.3.3. GO
7.3.4. CQDs
8. Diagnosis of Viral Diseases Utilizing Nanomaterials
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kotra, L.P. Viral Disease. In xPharm: The Comprehensive Pharmacology Reference; Enna, S.J., Bylund, D.B., Eds.; Elsevier: New York, NY, USA, 2007; pp. 1–3. [Google Scholar]
 - Mougari, S.; Sahmi-Bounsiar, D.; Levasseur, A.; Colson, P.; La Scola, B. Virophages of Giant Viruses: An Update at Eleven. Viruses 2019, 11, 733. [Google Scholar] [CrossRef]
 - Furuse, Y.; Oshitani, H. Viruses That Can and Cannot Coexist With Humans and the Future of SARS-CoV-2. Front. Microbiol. 2020, 11, 583252. [Google Scholar] [CrossRef]
 - He, M.; He, C.Q.; Ding, N.Z. Human Viruses: An Ever-Increasing List. Virology 2025, 604, 110445. [Google Scholar] [CrossRef]
 - Parvez, M.K.; Parveen, S. Evolution and Emergence of Pathogenic Viruses: Past, Present, and Future. Intervirology 2017, 60, 1–7. [Google Scholar] [CrossRef]
 - Alizadeh, H.; Sharifi, A.; Damanbagh, S.; Nazarnia, H.; Nazarnia, M. Impacts of the COVID-19 Pandemic on the Social Sphere and Lessons for Crisis Management: A Literature Review. Nat. Hazards 2023, 117, 2139–2164. [Google Scholar] [CrossRef]
 - Murphy, F.A.; Nathanson, N. The Emergence of New Virus Diseases: An Overview. Semin. Virol. 1994, 5, 87–102. [Google Scholar] [CrossRef]
 - Singh, L.; Kruger, H.G.; Maguire, G.E.M.; Govender, T.; Parboosing, R. The Role of Nanotechnology in the Treatment of Viral Infections. Ther. Adv. Infect. Dis. 2017, 4, 105–131. [Google Scholar] [CrossRef] [PubMed]
 - Kirtane, A.R.; Verma, M.; Karandikar, P.; Furin, J.; Langer, R.; Traverso, G. Nanotechnology Approaches for Global Infectious Diseases. Nat. Nanotechnol. 2021, 16, 369–384. [Google Scholar] [CrossRef] [PubMed]
 - Chakravarty, M.; Vora, A. Nanotechnology-Based Antiviral Therapeutics. Drug Deliv. Transl. Res. 2020, 11, 748–787. [Google Scholar] [CrossRef] [PubMed]
 - Koonin, E.V.; Dolja, V.V.; Krupovic, M. The Logic of Virus Evolution. Cell Host. Microbe. 2022, 30, 917–929. [Google Scholar] [CrossRef]
 - Wang, Y.; Chi, C.; Zhang, J.; Zhang, K.; Deng, D.; Zheng, W.; Chen, N.; Meurens, F.; Zhu, J. Systematic Analysis of the Codon Usage Patterns of African Swine Fever Virus Genome Coding Sequences Reveals Its Host Adaptation Phenotype. Microb. Genom. 2024, 10, 001186. [Google Scholar] [CrossRef]
 - Mifsud, J.C.O.; Lytras, S.; Oliver, M.R.; Toon, K.; Costa, V.A.; Holmes, E.C.; Grove, J. Mapping Glycoprotein Structure Reveals Flaviviridae Evolutionary History. Nature 2024, 633, 695–703. [Google Scholar] [CrossRef]
 - Holmudden, M.; Gustafsson, J.; Bertrand, Y.J.K.; Schliep, A.; Norberg, P. Evolution Shapes and Conserves Genomic Signatures in Viruses. Commun. Biol. 2024, 7, 1412. [Google Scholar] [CrossRef]
 - Fan, Z.; Whitaker, V.M. Genomic Signatures of Strawberry Domestication and Diversification. Plant Cell 2024, 36, 1622–1636. [Google Scholar] [CrossRef]
 - Brownstein, C.D.; MacGuigan, D.J.; Kim, D.; Orr, O.; Yang, L.; David, S.R.; Kreiser, B.; Near, T.J. The Genomic Signatures of Evolutionary Stasis. Evolution 2024, 78, 821–834. [Google Scholar] [CrossRef]
 - Michalakis, Y.; Blanc, S. Aspects of the Lifestyle of Multipartite Viruses Apply to Monopartite Segmented and Perhaps Nonsegmented Viruses. npj Viruses 2024, 2, 31. [Google Scholar] [CrossRef]
 - Leeks, A.; Young, P.G.; Turner, P.E.; Wild, G.; West, S.A. Cheating Leads to the Evolution of Multipartite Viruses. PLoS Biol. 2023, 21, e3002092. [Google Scholar] [CrossRef] [PubMed]
 - Di Mattia, J.; Torralba, B.; Yvon, M.; Zeddam, J.L.; Blanc, S.; Michalakis, Y. Nonconcomitant Host-to-Host Transmission of Multipartite Virus Genome Segments May Lead to Complete Genome Reconstitution. Proc. Natl. Acad. Sci. USA 2022, 119, e2201453119. [Google Scholar] [CrossRef] [PubMed]
 - Gallet, R.; Di Mattia, J.; Ravel, S.; Zeddam, J.L.; Vitalis, R.; Michalakis, Y.; Blanc, S. Gene Copy Number Variations at the Within-Host Population Level Modulate Gene Expression in a Multipartite Virus. Virus Evol. 2022, 8, veac107. [Google Scholar] [CrossRef] [PubMed]
 - Medvedeva, S.; Borrel, G.; Krupovic, M.; Gribaldo, S. A Compendium of Viruses from Methanogenic Archaea Reveals Their Diversity and Adaptations to the Gut Environment. Nat. Microbiol. 2023, 8, 2170–2182. [Google Scholar] [CrossRef]
 - Minch, B.; Moniruzzaman, M. Expansion of the Genomic and Functional Diversity of Global Ocean Giant Viruses. npj Viruses 2025, 3, 32. [Google Scholar] [CrossRef]
 - Neri, U.; Wolf, Y.I.; Roux, S.; Camargo, A.P.; Lee, B.; Kazlauskas, D.; Chen, I.M.A.; Ivanova, N.; Zeigler Allen, L.; Paez-Espino, D.; et al. Expansion of the Global RNA Virome Reveals Diverse Clades of Bacteriophages. Cell 2022, 185, 4023–4037.e18. [Google Scholar] [CrossRef] [PubMed]
 - Remera, E.; Rwagasore, E.; Muvunyi, C.M.; Ahmed, A. Emergence of the First Molecularly Confirmed Outbreak of Rift Valley Fever Among Humans in Rwanda, Calls for Institutionalizing the One Health Strategy. IJID One Health 2024, 4, 100035. [Google Scholar] [CrossRef]
 - Carlson, C.J.; Albery, G.F.; Merow, C.; Trisos, C.H.; Zipfel, C.M.; Eskew, E.A.; Olival, K.J.; Ross, N.; Bansal, S. Climate Change Increases Cross-Species Viral Transmission Risk. Nature 2022, 607, 555–562. [Google Scholar] [CrossRef]
 - Foley, N.M.; Harris, A.J.; Bredemeyer, K.R.; Ruedi, M.; Puechmaille, S.J.; Teeling, E.C.; Criscitiello, M.F.; Murphy, W.J. Karyotypic Stasis and Swarming Influenced the Evolution of Viral Tolerance in a Species-Rich Bat Radiation. Cell Genom. 2024, 4, 100482. [Google Scholar] [CrossRef] [PubMed]
 - Wynne, J.W.; Wang, L.F. Bats and Viruses: Friend or Foe? PLoS Pathog. 2013, 9, e1003651. [Google Scholar] [CrossRef]
 - Guito, J.C.; Prescott, J.B.; Arnold, C.E.; Amman, B.R.; Schuh, A.J.; Spengler, J.R.; Sealy, T.K.; Harmon, J.R.; Coleman-McCray, J.D.; Kulcsar, K.A.; et al. Asymptomatic Infection of Marburg Virus Reservoir Bats Is Explained by a Strategy of Immunoprotective Disease Tolerance. Curr. Biol. 2021, 31, 257–270.e5. [Google Scholar] [CrossRef]
 - Guito, J.C.; Kirejczyk, S.G.M.; Schuh, A.J.; Albariño, C.G.; Sealy, T.K.; Chakrabarti, A.K.; Kainulainen, M.H.; Welch, S.R.; Montgomery, J.M.; Spengler, J.R.; et al. Coordinated Inflammatory Responses Dictate Marburg Virus Control by Reservoir Bats. Nat. Commun. 2024, 15, 1–15. [Google Scholar] [CrossRef]
 - Gibb, R.; Franklinos, L.H.V.; Redding, D.W.; Jones, K.E. Ecosystem Perspectives Are Needed to Manage Zoonotic Risks in a Changing Climate. BMJ 2020, 371, m3389. [Google Scholar] [CrossRef]
 - Ahmed, W.; Liu, Y.; Smith, W.; Ingall, W.; Belby, M.; Bivins, A.; Bertsch, P.; Williams, D.T.; Richards, K.; Simpson, S. Leveraging Wastewater Surveillance to Detect Viral Diseases in Livestock Settings. Sci. Total Environ. 2024, 931, 172593. [Google Scholar] [CrossRef]
 - Peña-Mosca, F.; Frye, E.A.; MacLachlan, M.J.; Pabilonia, K.L.; Sibley, S.D.; Rettler, H.; Fojtik, A.; Harden, M.V.; Anderson, T.K.; Bowman, A.S.; et al. The Impact of Highly Pathogenic Avian Influenza H5N1 Virus Infection on Dairy Cows. Nat. Commun. 2025, 16, 1–12. [Google Scholar] [CrossRef] [PubMed]
 - Gilbert, M.; Xiao, X.; Robinson, T.P. Intensifying Poultry Production Systems and the Emergence of Avian Influenza in China: A “One Health/Ecohealth” Epitome. Arch. Public Health 2017, 75, 1–7. [Google Scholar] [CrossRef]
 - Roussin-Léveillée, C.; Rossi, C.A.M.; Castroverde, C.D.M.; Moffett, P. The Plant Disease Triangle Facing Climate Change: A Molecular Perspective. Trends Plant Sci. 2024, 29, 895–914. [Google Scholar] [CrossRef] [PubMed]
 - Acosta, A.; Barrera, M.; Jarrín, D.; Cevallos, V.; Polanco, J.; Silva, M.; Ponce, P.; Lana, R.; Sotomayor, D.; Barrera, R.; et al. Linking Vector Favourable Environmental Conditions with Serological Evidence of Widespread Bluetongue Virus Exposure in Livestock in Ecuador. Sci. Rep. 2025, 15, 14382. [Google Scholar] [CrossRef]
 - Danve, C.; Castroverde, M.; Dina, D.; Van Zanten, M. Temperature Regulation of Plant Hormone Signaling During Stress and Development. J. Exp. Bot. 2021, 72, 7436–7458. [Google Scholar] [CrossRef]
 - Liu, S.; Han, Y.; Li, W.X.; Ding, S.W. Infection Defects of RNA and DNA Viruses Induced by Antiviral RNA Interference. Microbiol. Mol. Biol. Rev. 2023, 87, e00035-22. [Google Scholar] [CrossRef]
 - Carisse, O.; Vincent, S.; Lafond-Lapalme, J.; Fall, M.L.; Van der Heyden, H. Quantitative Insights into Grapevine Anthracnose (Elsinoë ampelina) Epidemiology: Impact of Temperature and Leaf Age on Incubation, Lesion Development, and Sporulation. Plant Dis. 2024, 108, 2838–2844. [Google Scholar] [CrossRef]
 - Yamaji, R.; Zhang, W.; Kamata, A.; Ujie, M.; Kondo, H.; Imai, M.; Takashima, E.; Ito, K.; Kawaoka, Y. Pandemic Risk Characterisation of Zoonotic Influenza A Viruses Using the Tool for Influenza Pandemic Risk Assessment (TIPRA). Lancet. Microbe. 2025, 6, e100973. [Google Scholar] [CrossRef]
 - de Souza, W.M.; Weaver, S.C. Effects of Climate Change and Human Activities on Vector-Borne Diseases. Nat. Rev. Microbiol. 2024, 22, 476–491. [Google Scholar] [CrossRef] [PubMed]
 - Chathuranga, K.; Weerawardhana, A.; Dodantenna, N.; Lee, J.S. Regulation of Antiviral Innate Immune Signaling and Viral Evasion Following Viral Genome Sensing. Exp. Mol. Med. 2021, 53, 1647–1668. [Google Scholar] [CrossRef] [PubMed]
 - Huang, J.; Yu, Z.; Li, X.; Yang, M.; Fang, Q.; Li, Z.; Wang, C.; Chen, T.; Cao, X. E3 Ligase HECTD3 Promotes RNA Virus Replication and Virus-Induced Inflammation via K33-Linked Polyubiquitination of PKR. Cell Death Dis. 2023, 14, 1–12. [Google Scholar] [CrossRef]
 - Mihalič, F.; Simonetti, L.; Giudice, G.; Davey, N.E.; Linding, R.; Lenassi, M.; Zagar, L.; Zupan, B.; Pugh, M.; Jerala, R.; et al. Large-Scale Phage-Based Screening Reveals Extensive Pan-Viral Mimicry of Host Short Linear Motifs. Nat. Commun. 2023, 14, 1–20. [Google Scholar] [CrossRef]
 - Maguire, C.; Wang, C.; Ramasamy, A.; Fonken, C.; Morse, B.; Lopez, N.; Wylie, D.; Melamed, E. Molecular Mimicry as a Mechanism of Viral Immune Evasion and Autoimmunity. Nat. Commun. 2024, 15, 9403. [Google Scholar] [CrossRef]
 - Zheng, Y.; Zhuang, M.W.; Han, L.; Zhang, J.; Nan, M.L.; Zhan, P.; Kang, D.; Liu, X.; Gao, C.; Wang, P.H. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Membrane (M) Protein Inhibits Type I and III Interferon Production by Targeting RIG-I/MDA-5 Signaling. Signal Transduct. Target. Ther. 2020, 5, 299. [Google Scholar] [CrossRef] [PubMed]
 - Luo, C.; Ma, C.; Xu, G.; Li, Y.; Wang, Y.; Zhang, X.; Chen, X.; Li, J.; Huang, A.; Wang, Y. Hepatitis B Surface Antigen Hijacks TANK-Binding Kinase 1 to Suppress Type I Interferon and Induce Early Autophagy. Cell Death Dis. 2025, 16, 304. [Google Scholar] [CrossRef] [PubMed]
 - Lanng, K.R.B.; Lauridsen, E.L.; Jakobsen, M.R. The Balance of STING Signaling Orchestrates Immunity in Cancer. Nat. Immunol. 2024, 25, 1144–1157. [Google Scholar] [CrossRef] [PubMed]
 - Dogrammatzis, C.; Saud, R.; Waisner, H.; Lasnier, S.; Suma, S.M.; Grieshaber, B.; Kalamvoki, M. Tracing the STING Exocytosis Pathway During Herpes Viruses Infection. mBio 2024, 15, e00373-24. [Google Scholar] [CrossRef]
 - Bodda, C.; Reinert, L.S.; Fruhwürth, S.; Richardo, T.; Sun, C.; Zhang, B.; Kalamvoki, M.; Pohlmann, A.; Mogensen, T.H.; Bergström, P.; et al. HSV1 VP1-2 Deubiquitinates STING to Block Type I Interferon Expression and Promote Brain Infection. J. Exp. Med. 2020, 217, e20191422. [Google Scholar] [CrossRef]
 - Deschamps, T.; Kalamvoki, M. Evasion of the STING DNA-Sensing Pathway by VP11/12 of Herpes Simplex Virus 1. J. Virol. 2017, 91, e00535-17. [Google Scholar] [CrossRef]
 - Pan, S.; Liu, X.; Ma, Y.; Cao, Y.; He, B. Herpes Simplex Virus 1 γ134.5 Protein Inhibits STING Activation That Restricts Viral Replication. J. Virol. 2018, 92, e01015-18. [Google Scholar] [CrossRef]
 - Na, E.J.; Chae, S.B.; Oh, B.; Jeong, C.G.; Park, S.C.; Oem, J.K. A Novel Approach Using IFNAR1 KO Mice for Assessing Akabane Virus Pathogenicity and Vaccine Efficacy. Vaccine 2025, 53, 127094. [Google Scholar] [CrossRef]
 - Van Etten, J.L.; Agarkova, I.V.; Dunigan, D.D.; Shao, Q.; Fang, Q. Emerging Structure of Chlorovirus PBCV-1. Virology 2025, 608, 110552. [Google Scholar] [CrossRef]
 - Landeras-Bueno, S.; Hariharan, C.; Avalos, R.D.; Kago, G.; Nguyen, H.T.; Sotomayor, M.; Gronenborn, A.M.; Salgado, E.N. Structural Stabilization of the Intrinsically Disordered SARS-CoV-2 N by Binding to RNA Sequences Engineered from the Viral Genome Fragment. Nat. Commun. 2025, 16, 6521. [Google Scholar] [CrossRef]
 - Mejía-Méndez, J.L.; Vazquez-Duhalt, R.; Hernández, L.R.; Sánchez-Arreola, E.; Bach, H. Virus-like Particles: Fundamentals and Biomedical Applications. Int. J. Mol. Sci. 2022, 23, 8579. [Google Scholar] [CrossRef] [PubMed]
 - Liang, Y.; Chen, J.; Ma, S.; Song, H.; Feng, D.; Yan, G.Q.; Zhang, Y.; Lu, H. Ultrafast Tyrosinase-Mediated Biotinylation of Living Cell Surface Analysis Reveals Novel Cell Surface Proteins Responsible for Influenza A Virus Entry. J. Am. Chem. Soc. 2025, 147, 12360–12369. [Google Scholar] [CrossRef]
 - Sequeira, D.P.; Suomalainen, M.; Freitag, P.C.; Plückthun, A.; Klingenbrunner, M.; Fischer, L.; Hemmi, S.; Münz, C.; Volle, R.; Greber, U.F. Activated Blood-Derived Human Primary T Cells Support Replication of HAdV C5 and Virus Transmission to Polarized Human Primary Epithelial Cells. J. Virol. 2025, 99, e01825-24. [Google Scholar] [CrossRef]
 - Zwi-Dantsis, L.; Mohamed, S.; Massaro, G.; Moeendarbary, E. Adeno-Associated Virus Vectors: Principles, Practices, and Prospects in Gene Therapy. Viruses 2025, 17, 239. [Google Scholar] [CrossRef] [PubMed]
 - Zhang, X.; Li, K.; Zhou, S.; Wang, Y.; Li, X.; Zhang, H.; Chen, Y.; Li, Z.; Wang, N.; Liu, J. G3BP1 Regulates the Cell Cycle by Promoting IFNβ Production to Promote PCV2 Replication and Promotes Nuclear Transfer of Viral Proteins by Direct Binding. Int. J. Mol. Sci. 2025, 26, 1083. [Google Scholar] [CrossRef] [PubMed]
 - Siddiquee, N.H.; Joyoti, S.A.; Zaker, B.B.; Hossain, M.S.; Islam, M.R.; Rahman, M.S.; Al-Mamun, M.; Islam, M.T. Molecular Activity of Bioactive Phytocompounds for Inhibiting Host Cell Attachment and Membrane Fusion Interacting with West Nile Virus Envelope Glycoprotein. PLoS ONE 2025, 20, e0321902. [Google Scholar] [CrossRef] [PubMed]
 - Ren, B.R.; Qin, H.; Zhang, Y.F.; Li, Y.; Wang, Y.; Liu, H.; Chen, J.; Li, L.; Zhang, G. Optimizing Encephalomyocarditis Virus VP1 Protein Assembly on Pseudorabies Virus Envelope via US9 Protein Anchoring. Virulence 2025, 16, 2445235. [Google Scholar] [CrossRef]
 - Dewangan, N.; Jana, I.D.; Yadav, S.; Sardar, A.; Mallick, A.I.; Mondal, A.; Tarafdar, P.K. Design of Flavonoid-Based Lipid Domains as Fusion Inhibitors to Efficiently Block Coronavirus and Other Enveloped Virus Infection. Small 2025, 21, 2410727. [Google Scholar] [CrossRef]
 - Pisano, R.; Durlo, A. Nanosciences and Nanotechnologies: A Scientific–Historical Introductory Review. In History of Nanotechnology; Springer: Cham, Switzerland, 2025; pp. 3–90. [Google Scholar]
 - Pisano, R.; Durlo, A. Physics Scanning Devices and Nanoscale Techniques: An Historical Perspective. In History of Nanotechnology; Springer: Cham, Switzerland, 2025; pp. 475–524. [Google Scholar]
 - Hargittai, I. Forty Years of the Discovery of Buckminsterfullerene. Struct. Chem. 2025, 36, 779–782. [Google Scholar] [CrossRef]
 - Eldin, J.; Ibrahim, F.M.; Khatoon, U.T.; Velidandi, A. An Overview on the Role of Government Initiatives in Nanotechnology Innovation for Sustainable Economic Development and Research Progress. Sustainability 2025, 17, 1250. [Google Scholar] [CrossRef]
 - Sati, A.; Ranade, T.N.; Mali, S.N.; Yasin, H.K.A.; Samdani, N.; Satpute, N.N.; Yadav, S.; Pratap, A.P. Silver Nanoparticles (AgNPs) as Potential Antiviral Agents: Synthesis, Biophysical Properties, Safety, Challenges and Future Directions─Update Review. Molecules 2025, 30, 2004. [Google Scholar] [CrossRef]
 - Birusanti, A.B.; Espenti, C.S.; Surendra, T.V.; Srinivas, B.; Srinivasulu, M.; Peddulaiah, K.; Rao, K.M.; Han, S.S. Synthesis and Characterization of Multi-Responsive Iron Oxide Nanoparticles: Evaluation of Antibacterial Properties and Photocatalytic Activity. J. Mol. Liq. 2025, 417, 126619. [Google Scholar] [CrossRef]
 - Bhandari, K.; Nautiyal, N.; Bhandari, G.; Dhasmana, A.; Gupta, S.; Gangola, S.; Kumar, S.; Khan, A.A.; Fatima, S.; Kumar, P. A Comparative Investigation of Ultrasonication and Magnetic Stirring Methods for Green Synthesis of Zinc Oxide Nanoparticles Using Punica granatum Peels. Sci. Rep. 2025, 15, 24869. [Google Scholar] [CrossRef]
 - Xi, M.; Cheng, Y.; Meng, F.; Yao, X.; Nawaz, M.A.; Saif, M.; Li, Z.; Reina, T.R. Densely Embedded Homogeneous FeOx Nanoparticles in N-Doped Carbon Frameworks: A 3D Scaffold Catalyst for High-Temperature Fischer-Tropsch Synthesis. Chem. Eng. J. 2025, 503, 158333. [Google Scholar] [CrossRef]
 - Kong, N.; Ariga, K. Confined Nanoarchitectonics for Nano-reactors: In Situ Characterization and Tracking Systems at the Nanoscale. Nanoscale Horiz. 2025, 10, 1882–1904. [Google Scholar] [CrossRef] [PubMed]
 - Gao, Y.; Wang, L.; Zhou, C.; Zhao, Y.; Huang, H.; Wu, J. Low-Dimensional Antimicrobial Nanomaterials in Anti-infection Treatment and Wound Healing. Chin. Chem. Lett. 2025, 36, 110028. [Google Scholar] [CrossRef]
 - Sun, B.; Zhong, W.; Liu, H.; Ai, X.; Han, S.; Chen, Y. Controlling Rhodium-Based Nanomaterials for High-Efficiency Energy-Related Electrocatalysis. Energy Chem. 2025, 7, 100148. [Google Scholar] [CrossRef]
 - Xu, Z.; Tong, C.; Zhang, T.; Xu, Z.; Ma, Y.; Niu, Z.; Chen, J.; Zhang, M.; Shi, F. Rapid Detection of Brucellosis by Two-Signal Vertical Flow Immunofiltration Based on Three-Dimensional Flower-Like Au@Mn3O4 Nanozymes. ACS Appl. Nano Mater. 2025, 8, 6014–6024. [Google Scholar] [CrossRef]
 - Han, J.; Kim, S.; Kang, D.; Lee, S.H.; Cho, A.Y.; Lee, H.; Kwon, J.H.; Shin, Y.; Kim, Y.P.; Lee, J. Near-Infrared Long-Lived Luminescent Nanoparticle-Based Time-Gated Imaging for Background-Free Detection of Avian Influenza Virus. ACS Sens. 2025, 10, 1312–1320. [Google Scholar] [CrossRef]
 - Xue, Y.; Liu, C.; Andrews, G.; Wang, J.; Ge, Y. Recent Advances in Carbon Quantum Dots for Virus Detection, as Well as Inhibition and Treatment of Viral Infection. Nano Converg. 2022, 9, 15. [Google Scholar] [CrossRef] [PubMed]
 - Srivastava, N.; Mishra, V.; Mishra, Y.; Ranjan, A.; Aljabali, A.A.A.; El-Tanani, M.; Alfagih, I.M.; Tambuwala, M.M. Development and Evaluation of a Protease Inhibitor Antiretroviral Drug-Loaded Carbon Nanotube Delivery System for Enhanced Efficacy in HIV Treatment. Int. J. Pharm. 2024, 650, 123678. [Google Scholar] [CrossRef] [PubMed]
 - Kanagavalli, P.; Elkaffas, R.A.; Eissa, S. Ultrasensitive Electrochemical Biosensor for the Simultaneous Detection of the Two Monkeypox Virus Antigens M1R and A29 Using Reduced Graphene Oxide-ZIF-8 Nanocomposite. Chem. Eng. J. 2025, 516, 164015. [Google Scholar] [CrossRef]
 - Ji, Y.; Wang, Y.; Wang, X.; Lv, C.; Zhou, Q.; Jiang, G.; Yan, B.; Chen, L. Beyond the Promise: Exploring the Complex Interactions of Nanoparticles Within Biological Systems. J. Hazard. Mater. 2024, 468, 133800. [Google Scholar] [CrossRef]
 - Ghorai, S.; Shand, H.; Patra, S.; Panda, K.; Santiago, M.J.; Rahman, M.S.; Chinnapaiyan, S.; Unwalla, H.J. Nanomedicine for the Treatment of Viral Diseases: Smaller Solution to Bigger Problems. Pharmaceuticals 2024, 16, 407. [Google Scholar] [CrossRef]
 - Cheng, X.; Chen, G.; Rodriguez, W.R. Micro- and Nanotechnology for Viral Detection. Anal. Bioanal. Chem. 2009, 393, 487–501. [Google Scholar] [CrossRef] [PubMed]
 - Lembo, D.; Cavalli, R. Nanoparticulate Delivery Systems for Antiviral Drugs. Antivir. Chem. Chemother. 2010, 21, 53–70. [Google Scholar] [CrossRef]
 - Vazquez-Munoz, R.; Lopez-Ribot, J.L. Nanotechnology as an Alternative to Reduce the Spread of COVID-19. Challenges 2020, 11, 15. [Google Scholar] [CrossRef]
 - Zhuo, Y.; Zhao, Y.G.; Zhang, Y. Enhancing Drug Solubility, Bioavailability, and Targeted Therapeutic Applications through Magnetic Nanoparticles. Molecules 2024, 29, 4854. [Google Scholar] [CrossRef] [PubMed]
 - Bamrungsap, S.; Zhao, Z.; Chen, T.; Wang, L.; Li, C.; Fu, T.; Tan, W. Nanotechnology in Therapeutics: A Focus on Nanoparticles as a Drug Delivery System. Nanomedicine 2012, 7, 1253–1271. [Google Scholar] [CrossRef]
 - Rao, L.; Tian, R.; Chen, X. Cell-Membrane-Mimicking Nanodecoys Against Infectious Diseases. ACS Nano 2020, 14, 2569–2574. [Google Scholar] [CrossRef]
 - Imran, M.; Jha, L.A.; Hasan, N.; Shrestha, J.; Pangeni, R.; Parvez, N.; Mohammed, Y.; Jha, S.K.; Paudel, K.R. “Nanodecoys”—Future of Drug Delivery by Encapsulating Nanoparticles in Natural Cell Membranes. Int. J. Pharm. 2022, 621, 121790. [Google Scholar] [CrossRef]
 - Arruebo, M.; Fernández-Pacheco, R.; Ibarra, M.R.; Santamaría, J. Magnetic Nanoparticles for Drug Delivery. Nano Today 2007, 2, 22–32. [Google Scholar] [CrossRef]
 - Mamaeva, V.; Sahlgren, C.; Lindén, M. Mesoporous Silica Nanoparticles in Medicine—Recent Advances. Adv. Drug Deliv. Rev. 2013, 65, 689–702. [Google Scholar] [CrossRef]
 - Yang, J.; Zeng, H.; Luo, Y.; Chen, Y.; Wang, M.; Wu, C.; Hu, P. Recent Applications of PLGA in Drug Delivery Systems. Polymers 2024, 16, 2606. [Google Scholar] [CrossRef]
 - Liu, Y.; Yang, G.; Jin, S.; Xu, L.; Zhao, C.X. Development of High-Drug-Loading Nanoparticles. Chempluschem 2020, 85, 2143–2157. [Google Scholar] [CrossRef]
 - Wang, N.; Cheng, X.; Li, N.; Wang, H.; Chen, H. Nanocarriers and Their Loading Strategies. Adv. Healthc. Mater. 2019, 8, 1801002. [Google Scholar] [CrossRef] [PubMed]
 - Gurunathan, S.; Qasim, M.; Choi, Y.; Do, J.T.; Park, C.; Hong, K.; Kim, J.H.; Song, H. Antiviral Potential of Nanoparticles—Can Nanoparticles Fight Against Coronaviruses? Nanomaterials 2020, 10, 1645. [Google Scholar] [CrossRef] [PubMed]
 - Ayipo, Y.O.; Bakare, A.A.; Badeggi, U.M.; Jimoh, A.A.; Lawal, A.; Mordi, M.N. Recent Advances on Therapeutic Potentials of Gold and Silver Nanobiomaterials for Human Viral Diseases. Curr. Res. Chem. Biol. 2022, 2, 100021. [Google Scholar] [CrossRef]
 - Alavi, M.; Kamarasu, P.; McClements, D.J.; Moore, M.D. Metal and Metal Oxide-Based Antiviral Nanoparticles: Properties, Mechanisms of Action, and Applications. Adv. Colloid Interface Sci. 2022, 306, 102726. [Google Scholar] [CrossRef]
 - Paradowska, E.; Studzińska, M.; Jabłońska, A.; Lozovski, V.; Rusinchuk, N.; Mukha, I.; Vitiuk, N.; Leśnikowski, Z.J. Antiviral Effect of Nonfunctionalized Gold Nanoparticles Against Herpes Simplex Virus Type-1 (HSV-1) and Possible Contribution of Near-Field Interaction Mechanism. Molecules 2021, 26, 5960. [Google Scholar] [CrossRef]
 - Papp, I.; Sieben, C.; Ludwig, K.; Roskamp, M.; Böttcher, C.; Schlecht, S.; Herrmann, A.; Haag, R. Inhibition of Influenza Virus Infection by Multivalent Sialic-Acid-Functionalized Gold Nanoparticles. Small 2010, 6, 2900–2906. [Google Scholar] [CrossRef] [PubMed]
 - Andresen, H.; Mager, M.; Grießner, M.; Charchar, P.; Todorova, N.; Bell, N.; Theocharidis, G.; Bertazzo, S.; Yarovsky, I.; Stevens, M.M. Single-Step Homogeneous Immunoassays Utilizing Epitope-Tagged Gold Nanoparticles: On the Mechanism, Feasibility, and Limitations. Chem. Mater. 2014, 26, 4696–4704. [Google Scholar] [CrossRef]
 - Bowman, M.C.; Ballard, T.E.; Ackerson, C.J.; Feldheim, D.L.; Margolis, D.M.; Melander, C. Inhibition of HIV Fusion with Multivalent Gold Nanoparticles. J. Am. Chem. Soc. 2008, 130, 6896–6897. [Google Scholar] [CrossRef]
 - Rawat, P.; Gupta, S. Dual Engineered Gold Nanoparticle Based Synergistic Prophylaxis Delivery System for HIV/AIDS. Med. Hypotheses 2021, 150, 110576. [Google Scholar] [CrossRef]
 - Garrido, C.; Simpson, C.A.; Dahl, N.P.; Lee, B.; Moyo, V.; Kavanaugh, J.S.; Cronican, J.J.; Elmer, J.J.; Weiss, R.A.; Becker, M.L. Gold Nanoparticles to Improve HIV Drug Delivery. Future Med. Chem. 2015, 7, 1097–1107. [Google Scholar] [CrossRef] [PubMed]
 - Vieira, I.R.S.; Tessaro, L.; Conte-Junior, C.A. Gold Nanoparticles for Treatment of Infectious Diseases. In Gold Nanoparticles for Drug Delivery; Elsevier: Amsterdam, The Netherlands, 2024; pp. 277–303. [Google Scholar]
 - Farfán-Castro, S.; García-Soto, M.J.; Comas-García, M.; Arévalo-Villalobos, J.I.; Palestino, G.; González-Ortega, O.; Rosales-Mendoza, S. Synthesis and Immunogenicity Assessment of a Gold Nanoparticle Conjugate for the Delivery of a Peptide from SARS-CoV-2. Nanomedicine 2021, 34, 102372. [Google Scholar] [CrossRef]
 - Salazar, V.A.; Comenge, J.; Suárez-López, R.; Burger, J.A.; Sanders, R.W.; Bastús, N.G.; Jaime, C.; Joseph-Munne, J.; Puntes, V. Gold Nanoparticle Virus-like Particles Presenting SARS-CoV-2 Spike Protein: Synthesis, Biophysical Properties and Immunogenicity in BALB/c Mice. Vaccines 2024, 12, 829. [Google Scholar] [CrossRef]
 - Elechiguerra, J.L.; Burt, J.L.; Morones, J.R.; Camacho-Bragado, A.; Gao, X.; Lara, H.H.; Yacaman, M.J. Interaction of Silver Nanoparticles with HIV-1. J. Nanobiotechnol. 2005, 3, 6. [Google Scholar] [CrossRef] [PubMed]
 - Rogers, J.V.; Parkinson, C.V.; Choi, Y.W.; Speshock, J.L.; Hussain, S.M. A Preliminary Assessment of Silver Nanoparticle Inhibition of Monkeypox Virus Plaque Formation. Nanoscale Res. Lett. 2008, 3, 129–133. [Google Scholar] [CrossRef]
 - Lu, L.; Sun, R.W.Y.; Chen, R.; Hui, C.K.; Ho, C.M.; Luk, J.M.; Lau, G.K.K.; Che, C.M. Silver Nanoparticles Inhibit Hepatitis B Virus Replication. Antivir. Ther. 2008, 13, 252–262. [Google Scholar] [CrossRef]
 - Szymańska, E.; Orłowski, P.; Winnicka, K.; Tomaszewska, E.; Bąska, P.; Celichowski, G.; Grobelny, J.; Basa, A.; Krzyżowska, M. Multifunctional Tannic Acid/Silver Nanoparticle-Based Mucoadhesive Hydrogel for Improved Local Treatment of HSV Infection: In Vitro and In Vivo Studies. Int. J. Mol. Sci. 2018, 19, 387. [Google Scholar] [CrossRef]
 - Yang, X.X.; Li, C.M.; Huang, C.Z. Curcumin Modified Silver Nanoparticles for Highly Efficient Inhibition of Respiratory Syncytial Virus Infection. Nanoscale 2016, 8, 3040–3048. [Google Scholar] [CrossRef]
 - Morris, D.; Ansar, M.; Speshock, J.; Ivanciuc, T.; Qu, Y.; Casola, A.; Garofalo, R. Antiviral and Immunomodulatory Activity of Silver Nanoparticles in Experimental RSV Infection. Viruses 2019, 11, 732. [Google Scholar] [CrossRef]
 - Luceri, A.; Francese, R.; Lembo, D.; Ferraris, M.; Balagna, C. Silver Nanoparticles: Review of Antiviral Properties, Mechanism of Action and Applications. Microorganisms 2023, 11, 629. [Google Scholar] [CrossRef]
 - Abo-zeid, Y.; Williams, G.R. The Potential Anti-infective Applications of Metal Oxide Nanoparticles: A Systematic Review. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020, 12, e1592. [Google Scholar] [CrossRef]
 - Aderibigbe, B.A. Metal-Based Nanoparticles for the Treatment of Infectious Diseases. Molecules 2017, 22, 1370. [Google Scholar] [CrossRef]
 - Hang, X.; Peng, H.; Song, H.; Qi, Z.; Miao, X.; Xu, W. Antiviral Activity of Cuprous Oxide Nanoparticles Against Hepatitis C Virus In Vitro. J. Virol. Methods 2015, 222, 150–157. [Google Scholar] [CrossRef] [PubMed]
 - Antoine, T.E.; Hadigal, S.R.; Yakoub, A.M.; Mishra, Y.K.; Bhattacharya, P.; Haddad, C.; Valyi-Nagy, T.; Adelung, R.; Prabhakar, B.S.; Shukla, D. Intravaginal Zinc Oxide Tetrapod Nanoparticles as Novel Immunoprotective Agents Against Genital Herpes. J. Immunol. 2016, 196, 4566–4575. [Google Scholar] [CrossRef]
 - Te Velthuis, A.J.W.; van den Worm, S.H.E.; Sims, A.C.; Baric, R.S.; Snijder, E.J.; van Hemert, M.J. Zn2+ Inhibits Coronavirus and Arterivirus RNA Polymerase Activity In Vitro and Zinc Ionophores Block the Replication of These Viruses in Cell Culture. PLoS Pathog. 2010, 6, e1001176. [Google Scholar] [CrossRef]
 - Rios-Ibarra, C.P.; Salinas-Santander, M.; Orozco-Nunnelly, D.A.; Bravo-Madrigal, J. Nanoparticle-based Antiviral Strategies to Combat the Influenza Virus (Review). Biomed. Rep. 2024, 20, 1–8. [Google Scholar] [CrossRef]
 - Patoo, T.S.; Khanday, F.; Qurashi, A. Prospectus of Advanced Nanomaterials for Antiviral Properties. Mater. Adv. 2022, 3, 2960–2970. [Google Scholar] [CrossRef]
 - Greijer, B.; Nefedova, A.; Agback, T.; Agback, P.; Kisand, V.; Rausalu, K.; Vanetsev, A.; Seisenbaeva, G.A.; Ivask, A.; Kessler, V.G. Molecular Mechanisms Behind the Anti Corona Virus Activity of Small Metal Oxide Nanoparticles. Nanoscale 2025, 17, 3728–3738. [Google Scholar] [CrossRef] [PubMed]
 - Ryoo, S.R.; Jang, H.; Kim, K.S.; Lee, B.; Kim, K.B.; Kim, Y.K.; Yeo, W.S.; Lee, Y.; Kim, D.E.; Min, D.H. Functional Delivery of DNAzyme with Iron Oxide Nanoparticles for Hepatitis C Virus Gene Knockdown. Biomaterials 2012, 33, 2754–2761. [Google Scholar] [CrossRef] [PubMed]
 - Xu, P.Y.; Li, X.Q.; Chen, W.G.; Deng, L.L.; Tan, Y.Z.; Zhang, Q.; Xie, S.Y.; Zheng, L.S. Progress in Antiviral Fullerene Research. Nanomaterials 2022, 12, 2547. [Google Scholar] [CrossRef]
 - Muñoz, A.; Sigwalt, D.; Illescas, B.M.; Luczkowiak, J.; Rodríguez-Pérez, L.; Nierengarten, I.; Holler, M.; Remy, J.S.; Buffet, K.; Vincent, S.P.; et al. Synthesis of Giant Globular Multivalent Glycofullerenes as Potent Inhibitors in a Model of Ebola Virus Infection. Nat. Chem. 2015, 8, 50–57. [Google Scholar] [CrossRef] [PubMed]
 - Mashino, T.; Shimotohno, K.; Ikegami, N.; Nishikawa, D.; Okuda, K.; Takahashi, K.; Nakamura, S.; Mochizuki, M. Human Immunodeficiency Virus-Reverse Transcriptase Inhibition and Hepatitis C Virus RNA-Dependent RNA Polymerase Inhibition Activities of Fullerene Derivatives. Bioorg. Med. Chem. Lett. 2005, 15, 1107–1109. [Google Scholar] [CrossRef]
 - Yasuno, T.; Ohe, T.; Kataoka, H.; Umeda, S.; Nakamura, S.; Mashino, T. Fullerene Derivatives as Dual Inhibitors of HIV-1 Reverse Transcriptase and Protease. Bioorg. Med. Chem. Lett. 2021, 31, 127675. [Google Scholar] [CrossRef]
 - Innocenzi, P.; Stagi, L. Carbon-based Antiviral Nanomaterials: Graphene, C-dots, and Fullerenes. A Perspective. Chem. Sci. 2020, 11, 6606–6622. [Google Scholar] [CrossRef] [PubMed]
 - Fedorova, N.E.; Klimova, R.R.; Tulenev, Y.A.; Chichev, E.V.; Kornev, A.B.; Troshin, P.A.; Kushch, A.A. Carboxylic Fullerene C60 Derivatives: Efficient Microbicides Against Herpes Simplex Virus and Cytomegalovirus Infections In Vitro. Mendeleev Commun. 2012, 22, 254–256. [Google Scholar] [CrossRef]
 - Ramos-Soriano, J.; Reina, J.J.; Illescas, B.M.; De La Cruz, N.; Rodríguez-Pérez, L.; Lasala, F.; Rojo, J.; Delgado, R.; Martín, N. Synthesis of Highly Efficient Multivalent Disaccharide/[60]Fullerene Nanoballs for Emergent Viruses. J. Am. Chem. Soc. 2019, 141, 15403–15412. [Google Scholar] [CrossRef] [PubMed]
 - Falynskova, I.N.; Ionova, K.S.; Dedova, A.V.; Leneva, I.A.; Makhmudova, N.R.; Rasnetsov, L.D. Antiviral Activity of Fullerene-(tris-aminocaproic acid) Hydrate Against Respiratory Syncytial Virus in HEp-2 Cell Culture. Pharm. Chem. J. 2014, 48, 85–88. [Google Scholar] [CrossRef]
 - Kataoka, H.; Ohe, T.; Takahashi, K.; Nakamura, S.; Mashino, T. Novel Fullerene Derivatives as Dual Inhibitors of Hepatitis C Virus NS5B Polymerase and NS3/4A Protease. Bioorg. Med. Chem. Lett. 2016, 26, 4565–4567. [Google Scholar] [CrossRef]
 - Da Ros, T.; Spalluto, G.; Prato, M. Biological Applications of Fullerene Derivatives: A Brief Overview. Croat. Chem. Acta 2001, 74, 743–755. [Google Scholar]
 - Bosi, S.; Da Ros, T.; Spalluto, G.; Prato, M. Fullerene Derivatives: An Attractive Tool for Biological Applications. Eur. J. Med. Chem. 2003, 38, 913–923. [Google Scholar] [CrossRef]
 - Käsermann, F.; Kempf, C. Photodynamic Inactivation of Enveloped Viruses by Buckminsterfullerene. Antiviral Res. 1997, 34, 65–70. [Google Scholar] [CrossRef]
 - Käsermann, F.; Kempf, C. Buckminsterfullerene and Photodynamic Inactivation of Viruses. Rev. Med. Virol. 1998, 8, 143–151. [Google Scholar] [CrossRef]
 - Saifuddin, N.; Raziah, A.Z.; Junizah, A.R. Carbon Nanotubes: A Review on Structure and Their Interaction with Proteins. J. Chem. 2013, 2013, 676815. [Google Scholar] [CrossRef]
 - Pondman, K.M.; Salvador-Morales, C.; Paudyal, B.; Sim, R.B.; Kishore, U. Interactions of the Innate Immune System with Carbon Nanotubes. Nanoscale Horiz. 2017, 2, 174–186. [Google Scholar] [CrossRef]
 - Nunes, E.; Lima, C.; Luiza, A.; Octaviano, M.; Roberto, J.; Piqueira, C.; Sobhie Diaz, R.; Justo, F.; Justo, J.F. Coronavirus and Carbon Nanotubes: Seeking Immunological Relationships to Discover Immunotherapeutic Possibilities. Int. J. Nanomed. 2022, 17, 751–781. [Google Scholar] [CrossRef]
 - Meher, B.R.; Wang, Y. Binding of Single Walled Carbon Nanotube to WT and Mutant HIV-1 Proteases: Analysis of Flap Dynamics and Binding Mechanism. J. Mol. Graph. Model. 2012, 38, 430–445. [Google Scholar] [CrossRef]
 - Dubey, R.; Dutta, D.; Sarkar, A.; Chattopadhyay, P. Functionalized Carbon Nanotubes: Synthesis, Properties and Applications in Water Purification, Drug Delivery, and Material and Biomedical Sciences. Nanoscale Adv. 2021, 3, 5722–5744. [Google Scholar] [CrossRef]
 - Versiani, A.F.; Astigarraga, R.G.; Rocha, E.S.O.; da Silva, J.B.; Barboza, A.P.M.; Fernandes, L.L.; Ladeira, L.O.; Guatimosim, C.; Ladeira, L.O.; da Fonseca, F.G. Multi-walled Carbon Nanotubes Functionalized with Recombinant Dengue Virus 3 Envelope Proteins Induce Significant and Specific Immune Responses in Mice. J. Nanobiotechnol. 2017, 15, 26. [Google Scholar] [CrossRef]
 - Liu, Z.; Winters, M.; Holodniy, M.; Dai, H. siRNA Delivery into Human T Cells and Primary Cells with Carbon-Nanotube Transporters. Angew. Chem. Int. Ed. 2007, 46, 2023–2027. [Google Scholar] [CrossRef]
 - Banerjee, I.; Douaisi, M.P.; Mondal, D.; Kane, R.S. Light-activated Nanotube–Porphyrin Conjugates as Effective Antiviral Agents. Nanotechnology 2012, 23, 105101. [Google Scholar] [CrossRef] [PubMed]
 - Hashmi, A.; Nayak, V.; Singh, K.R.; Jain, B.; Baid, M.; Alexis, F.; Singh, A.K. Potentialities of Graphene and Its Allied Derivatives to Combat Against SARS-CoV-2 Infection. Mater. Today Adv. 2022, 13, 100208. [Google Scholar] [CrossRef]
 - Morales-Torres, S.; Jiříčková, A.; Jankovský, O.; Sofer, Z.; Sedmidubský, D. Synthesis and Applications of Graphene Oxide. Materials 2022, 15, 920. [Google Scholar] [CrossRef] [PubMed]
 - Ye, S.; Shao, K.; Li, Z.; Guo, N.; Zuo, Y.; Li, Q.; Lu, Z.; Chen, L.; He, Q.; Han, H. Antiviral Activity of Graphene Oxide: How Sharp Edged Structure and Charge Matter. ACS Appl. Mater. Interfaces 2015, 7, 21578–21579. [Google Scholar] [CrossRef]
 - Sametband, M.; Kalt, I.; Gedanken, A.; Sarid, R. Herpes Simplex Virus Type-1 Attachment Inhibition by Functionalized Graphene Oxide. ACS Appl. Mater. Interfaces 2014, 6, 1228–1235. [Google Scholar] [CrossRef] [PubMed]
 - Ziem, B.; Thien, H.; Achazi, K.; Yue, C.; Stern, D.; Silberreis, K.; Gholami, M.F.; Beckert, F.; Gröger, D.; Mülhaupt, R.; et al. Highly Efficient Multivalent 2D Nanosystems for Inhibition of Orthopoxvirus Particles. Adv. Healthc. Mater. 2016, 5, 2922–2930. [Google Scholar] [CrossRef]
 - Ziem, B.; Azab, W.; Gholami, M.F.; Rabe, J.P.; Osterrieder, N.; Haag, R. Size-dependent Inhibition of Herpesvirus Cellular Entry by Polyvalent Nanoarchitectures. Nanoscale 2017, 9, 3774–3783. [Google Scholar] [CrossRef] [PubMed]
 - Song, Z.; Wang, X.; Zhu, G. Virus Capture and Destruction by Label-Free Graphene Oxide for Detection and Disinfection Applications. Small 2015, 11, 1171–1176. [Google Scholar] [CrossRef]
 - Carbonaro, C.M.; Corpino, R.; Salis, M.; Mocci, F.; Thakkar, S.V.; Olla, C.; Ricci, P.C. On the Emission Properties of Carbon Dots: Reviewing Data and Discussing Models. C 2019, 5, 60. [Google Scholar] [CrossRef]
 - Dong, X.; Moyer, M.M.; Yang, F.; Sun, Y.P.; Yang, L. Carbon Dots’ Antiviral Functions Against Noroviruses. Sci. Rep. 2017, 7, 519. [Google Scholar] [CrossRef]
 - Du, T.; Liang, J.; Dong, N.; Liu, L.; Fang, L.; Xiao, S.; Han, H. Carbon Dots as Inhibitors of Virus by Activation of Type I Interferon Response. Carbon 2016, 110, 278–285. [Google Scholar] [CrossRef]
 - Haleem, A.; Javaid, M.; Singh, R.P.; Rab, S.; Suman, R. Applications of Nanotechnology in Medical Field: A Brief Review. Glob. Health J. 2023, 7, 70–77. [Google Scholar] [CrossRef]
 - Sharifi, E.; Yousefiasl, S.; Trovato, M.; Sartorius, R.; Esmaeili, Y.; Saghazadeh, A.; Goodarzi, P.; Kumar, A.; Roviello, G.; Moghaddam, F.A.; et al. Nanostructures for Prevention, Diagnosis, and Treatment of Viral Respiratory Infections: From Influenza Virus to SARS-CoV-2 Variants. J. Nanobiotechnol. 2023, 21, 199. [Google Scholar] [CrossRef]
 - Mokhtarzadeh, A.; Eivazzadeh-Keihan, R.; Pashazadeh, P.; Hejazi, M.; Gharaatifar, N.; Hasanzadeh, M.; Baradaran, B.; de la Guardia, M. Nanomaterial-based Biosensors for Detection of Pathogenic Virus. TrAC Trends Anal. Chem. 2017, 97, 445–457. [Google Scholar] [CrossRef]
 - Yuan, X.; Yang, C.; He, Q.; Chen, J.; Yu, D.; Li, J.; Zhai, S.; Qin, Z.; Du, K.; Chu, Z. Current and Perspective Diagnostic Techniques for COVID-19. ACS Infect. Dis. 2020, 6, 1998–2016. [Google Scholar] [CrossRef] [PubMed]
 - Thwala, L.N.; Ndlovu, S.C.; Mpofu, K.T.; Lugongolo, M.Y.; Mthunzi-Kufa, P. Nanotechnology-Based Diagnostics for Diseases Prevalent in Developing Countries: Current Advances in Point-of-Care Tests. Nanomaterials 2023, 13, 1247. [Google Scholar] [CrossRef] [PubMed]
 - Baskar, A.; Madhivanan, K.; Atchudan, R.; Arya, S.; Sundramoorthy, A.K. Nanoparticle Electrochemical Biosensors for Virus Detection. Clin. Chim. Acta 2025, 566, 120054. [Google Scholar] [CrossRef]
 - Draz, M.S.; Shafiee, H. Applications of Gold Nanoparticles in Virus Detection. Theranostics 2018, 8, 1985–2017. [Google Scholar] [CrossRef]
 - Lai, H.; Huang, R.; Weng, X.; Huang, B.; Yao, J.; Pian, Y. Classification and Applications of Nanomaterials in Vitro Diagnosis. Heliyon 2024, 10, e32314. [Google Scholar] [CrossRef]
 - Mehdizadeh, A.; Najafi Moghadam, P.; Ehsanimehr, S.; Fareghi, A.R. Preparation of a New Magnetic Nanocomposite for the Removal of Dye Pollutions from Aqueous Solutions: Synthesis and Characterization. Mater. Chem. Horizons 2022, 1, 23–34. [Google Scholar] [CrossRef]
 - Jouyandeh, M.; Sajadi, S.M.; Seidi, F.; Habibzadeh, S.; Munir, M.T.; Abida, O.; Rabiee, N.; Bagherzadeh, M.; Iravani, S.; Saeb, M.R. Metal Nanoparticles-assisted Early Diagnosis of Diseases. OpenNano 2022, 8, 100104. [Google Scholar] [CrossRef]
 - Burlec, A.F.; Corciova, A.; Boev, M.; Batir-Marin, D.; Mircea, C.; Cioanca, O.; Danila, G.; Danila, M.; Bucur, A.F.; Hancianu, M. Current Overview of Metal Nanoparticles′ Synthesis, Characterization, and Biomedical Applications, with a Focus on Silver and Gold Nanoparticles. Pharmaceuticals 2023, 16, 1410. [Google Scholar] [CrossRef]
 - Ibrahim Fouad, G. A Proposed Insight into the Anti-viral Potential of Metallic Nanoparticles Against Novel Coronavirus Disease-19 (COVID-19). Bull. Natl. Res. Cent. 2021, 45, 36. [Google Scholar] [CrossRef]
 - Heydari-Bafrooei, E.; Ensafi, A.A. Nanomaterials-based Biosensing Strategies for Biomarkers Diagnosis, A Review. Biosens. Bioelectron. X 2023, 13, 100245. [Google Scholar] [CrossRef]
 - Nautiyal, D.; Jain, U. Emerging Trends in Fluorescent and Quenching Nanomaterials for Viral Detection: Innovations in Biological and Chemical Sensing. Talanta Open 2025, 11, 100430. [Google Scholar] [CrossRef]
 - Zehbe, I.; Hacker, G.W.; Su, H.; Hauser-Kronberger, C.; Hainfeld, J.F.; Tubbs, R. Sensitive In Situ Hybridization with Catalyzed Reporter Deposition, Streptavidin-Nanogold, and Silver Acetate Autometallography: Detection of Single-copy Human Papillomavirus. Am. J. Pathol. 1997, 150, 1553–1561. [Google Scholar] [PubMed]
 - Elahi, N.; Kamali, M.; Baghersad, M.H. Recent Biomedical Applications of Gold Nanoparticles: A Review. Talanta 2018, 184, 537–556. [Google Scholar] [CrossRef]
 - Alaqad, K.; Saleh, T.A. Gold and Silver Nanoparticles: Synthesis Methods, Characterization Routes and Applications Towards Drugs. J. Environ. Anal. Toxicol. 2016, 6, 384. [Google Scholar] [CrossRef]
 - Bagheri, M.; Validi, M.; Gholipour, A.; Makvandi, P.; Sharifi, E. Chitosan Nanofiber Biocomposites for Potential Wound Healing Applications: Antioxidant Activity with Synergic Antibacterial Effect. Bioeng. Transl. Med. 2022, 7, e10254. [Google Scholar] [CrossRef]
 - Pilaquinga, F.; Morey, J.; Torres, M.; Seqqat, R.; de las, N.; Piña, M. Silver Nanoparticles as a Potential Treatment Against SARS-CoV-2: A Review. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2021, 13, e1707. [Google Scholar] [CrossRef]
 - Tan, P.; Li, H.; Wang, J.; Gopinath, S.C.B. Silver Nanoparticle in Biosensor and Bioimaging: Clinical Perspectives. Biotechnol. Appl. Biochem. 2021, 68, 1236–1242. [Google Scholar] [CrossRef]
 - Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of Silver Nanoparticles: Chemical, Physical and Biological Methods. Res. Pharm. Sci. 2014, 9, 385–406. [Google Scholar] [PubMed]
 - Li, D.; Chen, H.; Gao, X.; Mei, X.; Yang, L. Development of General Methods for Detection of Virus by Engineering Fluorescent Silver Nanoclusters. ACS Sens. 2021, 6, 613–627. [Google Scholar] [CrossRef]
 - Yang, J.; Jin, R. New Advances in Atomically Precise Silver Nanoclusters. ACS Mater. Lett. 2019, 1, 482–489. [Google Scholar] [CrossRef]
 - Cao, Q.; Teng, Y.; Yang, X.; Wang, J.; Wang, E. A Label-free Fluorescent Molecular Beacon Based on DNA-Ag Nanoclusters for the Construction of Versatile Biosensors. Biosens. Bioelectron. 2015, 74, 318–321. [Google Scholar] [CrossRef]
 - Valdez, J.; Bawage, S.; Gomez, I.; Singh, S.R. Facile and Rapid Detection of Respiratory Syncytial Virus Using Metallic Nanoparticles. J. Nanobiotechnol. 2016, 14, 13. [Google Scholar] [CrossRef]
 - Pawar, A.A.; Sahoo, J.; Verma, A.; Lodh, A.; Lakkakula, J. Usage of Platinum Nanoparticles for Anticancer Therapy over Last Decade: A Review. Part. Part. Syst. Charact. 2021, 38, 2100115. [Google Scholar] [CrossRef]
 - Boanini, E.; Torricelli, P.; Cassani, M.C.; Rubini, K.; Fini, M.; Pagani, S.; Bigi, A. Platinum Nanoparticles Supported on Functionalized Hydroxyapatite: Anti-oxidant Properties and Bone Cells Response. Ceram. Int. 2020, 46, 19574–19582. [Google Scholar] [CrossRef]
 - Gutiérrez de la Rosa, S.Y.; Muñiz Diaz, R.; Villalobos Gutiérrez, P.T.; Patakfalvi, R.; Gutiérrez Coronado, Ó. Functionalized Platinum Nanoparticles with Biomedical Applications. Int. J. Mol. Sci. 2022, 23, 9404. [Google Scholar] [CrossRef] [PubMed]
 - Jeelani, P.G.; Mulay, P.; Venkat, R.; Ramalingam, C. Multifaceted Application of Silica Nanoparticles. A Review. Silicon 2020, 12, 1337–1354. [Google Scholar] [CrossRef]
 - Wolff, C.M.; Frischmann, P.D.; Schulze, M.; Bohn, B.J.; Wein, R.; Livadas, P.; Carlson, M.T.; Jäckel, F.; Feldmann, J.; Würthner, F. All-in-one Visible-light-driven Water Splitting by Combining Nanoparticulate and Molecular Co-catalysts on CdS Nanorods. Nat. Energy 2018, 3, 862–869. [Google Scholar] [CrossRef]
 - Qaddare, S.H.; Salimi, A. Amplified Fluorescent Sensing of DNA Using Luminescent Carbon Dots and AuNPs/GO as a Sensing Platform: A Novel Coupling of FRET and DNA Hybridization for Homogeneous HIV-1 Gene Detection at Femtomolar Level. Biosens. Bioelectron. 2017, 89, 773–780. [Google Scholar] [CrossRef] [PubMed]
 - Mirza, S.; Ahmad, M.S.; Shah, M.I.A.; Ateeq, M. Magnetic Nanoparticles: Drug Delivery and Bioimaging Applications. In Metal Nanoparticles for Drug Delivery and Diagnostic Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 189–213. [Google Scholar]
 - Zhao, Z.; Cui, H.; Song, W.; Ru, X.; Zhou, W.; Yu, X. A Simple Magnetic Nanoparticles-based Viral RNA Extraction Method for Efficient Detection of SARS-CoV-2. bioRxiv 2020. [Google Scholar] [CrossRef]
 - Khizar, S.; Al-Dossary, A.A.; Zine, N.; Jaffrezic-Renault, N.; Errachid, A.; Elaissari, A. Contribution of Magnetic Particles in Molecular Diagnosis of Human Viruses. Talanta 2022, 241, 123243. [Google Scholar] [CrossRef]
 - Jat, S.K.; Gandhi, H.A.; Bhattacharya, J.; Sharma, M.K. Magnetic Nanoparticles: An Emerging Nano-based Tool to Fight Against Viral Infections. Mater. Adv. 2021, 2, 4479–4496. [Google Scholar] [CrossRef]
 - Ehtesabi, H. Application of Carbon Nanomaterials in Human Virus Detection. J. Sci. Adv. Mater. Devices 2020, 5, 436–450. [Google Scholar] [CrossRef]
 - Molaei, M.J. Principles, Mechanisms, and Application of Carbon Quantum Dots in Sensors: A Review. Anal. Methods 2020, 12, 1266–1287. [Google Scholar] [CrossRef]
 - Mondal, S. Carbon Nanotube-reinforced Polymer Nanocomposite for Biomedical Applications. In Green Biocomposites for Biomedical Engineering; Hoque, M.E., Sharif, A., Jawaid, M., Eds.; Woodhead Publishing: Cambridge, UK, 2021; pp. 265–283. [Google Scholar]
 - Pirzada, M.; Altintas, Z. Nanomaterials for Virus Sensing and Tracking. Chem. Soc. Rev. 2022, 51, 5805–5841. [Google Scholar] [CrossRef]
 - Zhu, Z. An Overview of Carbon Nanotubes and Graphene for Biosensing Applications. Nano-Micro Lett. 2017, 9, 25. [Google Scholar] [CrossRef] [PubMed]
 - Wang, L.; Gu, C.; Wu, L.; Tan, W.; Shang, Z.; Tian, Y.; Ma, J. Recent Advances in Carbon Dots for Electrochemical Sensing and Biosensing: A Systematic Review. Microchem. J. 2024, 207, 111687. [Google Scholar] [CrossRef]
 - Justino, C.I.L.; Gomes, A.R.; Freitas, A.C.; Duarte, A.C.; Rocha-Santos, T.A.P. Graphene Based Sensors and Biosensors. TrAC Trends Anal. Chem. 2017, 91, 53–66. [Google Scholar] [CrossRef]
 - Dutta, R.; Rajendran, K.; Jana, S.K.; Saleena, L.M.; Ghorai, S. Use of Graphene and Its Derivatives for the Detection of Dengue Virus. Biosensors 2023, 13, 349. [Google Scholar] [CrossRef]
 - Vermisoglou, E.; Panáček, D.; Jayaramulu, K.; Pykal, M.; Frébort, I.; Kolář, M.; Hajdúch, M.; Zbořil, R.; Otyepka, M. Human Virus Detection with Graphene-based Materials. Biosens. Bioelectron. 2020, 166, 112436. [Google Scholar] [CrossRef]
 - Altintas, Z.; Gittens, M.; Guerreiro, A.; Thompson, K.A.; Walker, J.; Piletsky, S.; Tothill, I.E. Detection of Waterborne Viruses Using High Affinity Molecularly Imprinted Polymers. Anal. Chem. 2015, 87, 6801–6807. [Google Scholar] [CrossRef] [PubMed]
 - Omar, N.A.S.; Fen, Y.W.; Abdullah, J.; Anas, N.A.A.; Ramdzan, N.S.M.; Mahdi, M.A. Optical and Structural Properties of Cadmium Sulphide Quantum Dots Based Thin Films as Potential Sensing Material for Dengue Virus E-protein. Results Phys. 2018, 11, 734–739. [Google Scholar] [CrossRef]
 - Wang, C.Z.; Han, H.H.; Tang, X.Y.; Zhou, D.M.; Wu, C.; Chen, G.R.; He, X.P.; Tian, H. Sialylglycan-Assembled Supra-Dots for Ratiometric Probing and Blocking of Human-Infecting Influenza Viruses. ACS Appl. Mater. Interfaces 2017, 9, 25164–25170. [Google Scholar] [CrossRef] [PubMed]
 


| Viral Disease | Virus Involved  | Time Period  | Transmission | Symptoms | Lethality | Geographical Extent | 
|---|---|---|---|---|---|---|
| Spanish flu [8,9]  | Influenza A (H1N1)  | 1918–1919 | Respiratory droplets | High fever, cough, fatigue, muscle pain | 2–4% | Worldwide (pandemic) | 
| Asian flu [10,11]  | Influenza A (H2N2)  | 1957–1958 | Respiratory droplets | Fever, cough, sore throat | ~0.2–0.5% | Worldwide (pandemic) | 
| Hong Kong flu [10,12]  | Influenza A (H3N2)  | 1968–1969 | Respiratory droplets | Typical flu symptoms | ~0.5% | Worldwide (pandemic) | 
| Ebola [13,14]  | Ebola virus (Filoviridae) | Outbreaks since 1976 | Bodily fluid contact | Fever, hemorrhages, vomiting, diarrhea | 25–90% (depending on outbreak) | Central and West Africa | 
| Smallpox [15,16]  | Variola virus (Orthopoxvirus) | Epidemics until 1980 | Droplets, direct contact | High fever, skin rashes, lesions | ~30% | Worldwide (eradicated) | 
| HIV/AIDS [17,18]  | Human immunodeficiency virus (HIV) | 1981–present | Blood, sexual contact, perinatal | Progressive immunosuppression, opportunistic infections | ~0.8% (varies with treatment) | Worldwide (pandemic) | 
| SARS [19,20,21]  | SARS-CoV-1 | 2002–2003 | Droplets, direct contact | Fever, cough, severe pneumonia | ~10% | Asia, North America | 
| Swine flu [22,23,24]  | Influenza A (H1N1)  | 2009–2010 | Respiratory droplets | High fever, cough, sore throat, fatigue, muscle pain | ~0.02–0.05% | Worldwide (pandemic) | 
| MERS [25,26]  | MERS-CoV | 2012–present (isolated cases) | Contact with infected camels, human-to-human | Fever, cough, severe dyspnea | ~35% | Middle East, global cases | 
| Zika [27,28]  | Zika virus (Flaviviridae) | 2015–2016 (large outbreak)  | Aedes spp. mosquito bite | Mild fever, rash, congenital microcephaly | Very low (<1%) | Latin America, Caribbean | 
| COVID-19 [29,30]  | SARS-CoV-2 | 2019–present | Droplets, aerosols, indirect contact | Fever, cough, loss of smell, respiratory distress | ~0.5–2% (depending on variant) | Worldwide (pandemic) | 
| Nanomaterial | Virus | Detection Method | Other Features | 
|---|---|---|---|
| AuNPs [158,163,165] | SARS-CoV-2 | LSRP | LOD: 0.22 ± 0.08 pM | 
| AuNPs [158] | SARS-CoV-2 | Colorimetric | LOD: 0.18 ng/μL | 
| AuNPs [158,163,165] | Influenza A and B | Colorimetric | 10 nM, (visible color change) | 
| AuNPs [158,163,165] | Zika and Dengue | SERS | LOD: 10.92 ng/mL | 
| AuNPs [158,163,165] | HIV | LSRP | LOD: 30 pg/mL | 
| Au/PtNRs [161] | Mumps | Optical | LOD: 10 ng/mL | 
| Au/Fe3O4NPs [161] | Influenza | SPR | LOD: 7.27 fg/mL | 
| AgNPs [173] | Novovirus | Fluorescence | LOD: 18 nM | 
| AgNPs [173] | HIV-1 | Fluorescence | LOD: 2.9 × 10−10 mol/L | 
| AgNPs [173] | Citrus Tristeza Virus | Fluorescence | LOD: 2.5 nM | 
| AgNPs [173] | HPV | Fluorescence | LOD: 2 nM | 
| AgNPs [173] | Influenza H1N1 and H5N1 | Fluorescence | LOD: 10 nM and 0.45 nM | 
| AfNPs [185] | HIV and Hepatitis B | Fluorescence | LOD: 4–8 nM | 
| PtNPs [161] | Hepatitis B | CNN | LOD: 250 copies/mL | 
| SiNPs [163] | HIV | Fluorescence | Particle size: 50–70 nm | 
| SiNPs [163] | HIV | Fluorescence | Detection range: 0.02 to 500 pg/mL | 
| ZnO [161,163] | Zika | Electrochemical | LOD: 1.0 pg/mL | 
| CuO [163] | HPV | Electrochemical | LOD: 1.0 nM | 
| MagNPs [186] | Hepatitis B | Electrochemical | LOD: 0.9 pg/mL | 
| MagNPs [186] | Hepatitis B | Colorimetric/PCR | LOD: 320 pg/mL | 
| MagNPs [186] | Hepatitis A | LOD: 6.2 pmol/L | |
| MagNPs [186] | SARS-CoV-2 | Magnetic particle spectroscopy | LOD: 0.084 nM | 
| Nanomaterial | Virus | Detection Method | Other Features | 
|---|---|---|---|
| CNT [187] | Dengue | Amperometric | LOD: 12 ng/mL | 
| CNT [187] | Dengue | Electrochemical | LOD: 0.035 µg/mL | 
| CNT [187] | Dengue | Colorimetric | Quantification range: 1–1000 ng/mL  | 
| G [195] | SARS-CoV-2 | Electrochemical | LOD: 1.6 PFU/mL | 
| GO [187] | Influenza A (H1N1) | Electrochemical | LOD: 8 pM | 
| GO [187] | Ebola | Optical | LOD: 1.4 pM | 
| GO [187] | Dengue | Electrochemical | LOD: 0.12 PFU/mL | 
| GO [195] | Hepatitis C | Optical | LOD: 0.4 nM | 
| GO [195] | Hepatitis C | Electrochemical | LOD: 0.2 nM | 
| GO [195] | HIV | Electrochemical | LOD: 8.3 fM | 
| GO [195] | HIV | Optical | LOD: 0.4 nM | 
| GO [187] | HIV | Optical | LOD: 1.18 ng/mL | 
| GO [195] | Rotavirus | Electrochemical | LOD: 103 PFU/mL | 
| GO [195] | Rotavirus | Optical | LOD: 102 PFU mL−1 | 
| GO [195] | Hepatitis B | Electrochemical | LOD: 0.1 ng/mL | 
| rGO [195] | Influenza A (H1N1) | Electrochemical | LOD: 0.5 PFU/mL | 
| rGO [195] | Influenza A (H1N1) | Electrochemical | LOD: 33 PFU/mL | 
| rGO [195] | Influenza A (H1N1) | Electrochemical | LOD: 5 pM | 
| rGO [195] | Influenza A (H1N1) | Optical | LOD: 3.8 pg/mL | 
| rGO [195] | Ebola | Electrochemical | LOD: 2.4 pg/mL | 
| rGO [195] | Ebola | Electrochemical | LOD: 1 μg/mL | 
| rGO [195] | Dengue | Optical | LOD: 0.08 pM | 
| rGO [195] | Hepatitis C | Optical | LOD: 10 fM | 
| rGO [195] | Rotavirus | Optical | LOD: 102 PFU/mL | 
| GQD [195] | Hepatitis B | Electrochemical | LOD: 1 nM | 
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.  | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chávez-Tinoco, M.; Solis-Cruz, B.; López-Mena, E.R.; García-Salazar, K.S.; Hernández-Patlán, D.; Mejía-Méndez, J.L. Nanotechnological Innovations in the Treatment and Diagnosis of Viral Pathogens: Biomedical and Macromolecular Insights. J. Nanotheranostics 2025, 6, 30. https://doi.org/10.3390/jnt6040030
Chávez-Tinoco M, Solis-Cruz B, López-Mena ER, García-Salazar KS, Hernández-Patlán D, Mejía-Méndez JL. Nanotechnological Innovations in the Treatment and Diagnosis of Viral Pathogens: Biomedical and Macromolecular Insights. Journal of Nanotheranostics. 2025; 6(4):30. https://doi.org/10.3390/jnt6040030
Chicago/Turabian StyleChávez-Tinoco, Marco, Bruno Solis-Cruz, Edgar R. López-Mena, Karla S. García-Salazar, Daniel Hernández-Patlán, and Jorge L. Mejía-Méndez. 2025. "Nanotechnological Innovations in the Treatment and Diagnosis of Viral Pathogens: Biomedical and Macromolecular Insights" Journal of Nanotheranostics 6, no. 4: 30. https://doi.org/10.3390/jnt6040030
APA StyleChávez-Tinoco, M., Solis-Cruz, B., López-Mena, E. R., García-Salazar, K. S., Hernández-Patlán, D., & Mejía-Méndez, J. L. (2025). Nanotechnological Innovations in the Treatment and Diagnosis of Viral Pathogens: Biomedical and Macromolecular Insights. Journal of Nanotheranostics, 6(4), 30. https://doi.org/10.3390/jnt6040030
        
