Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (88)

Search Parameters:
Keywords = terahertz wave modulator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3942 KiB  
Article
Experimental Demonstration of Terahertz-Wave Signal Generation for 6G Communication Systems
by Yazan Alkhlefat, Amr M. Ragheb, Maged A. Esmail, Sevia M. Idrus, Farabi M. Iqbal and Saleh A. Alshebeili
Optics 2025, 6(3), 34; https://doi.org/10.3390/opt6030034 - 28 Jul 2025
Abstract
Terahertz (THz) frequencies, spanning from 0.1 to 1 THz, are poised to play a pivotal role in the development of future 6G wireless communication systems. These systems aim to utilize photonic technologies to enable ultra-high data rates—on the order of terabits per second—while [...] Read more.
Terahertz (THz) frequencies, spanning from 0.1 to 1 THz, are poised to play a pivotal role in the development of future 6G wireless communication systems. These systems aim to utilize photonic technologies to enable ultra-high data rates—on the order of terabits per second—while maintaining low latency and high efficiency. In this work, we present a novel photonic method for generating sub-THz vector signals within the THz band, employing a semiconductor optical amplifier (SOA) and phase modulator (PM) to create an optical frequency comb, combined with in-phase and quadrature (IQ) modulation techniques. We demonstrate, both through simulation and experimental setup, the generation and successful transmission of a 0.1 THz vector. The process involves driving the PM with a 12.5 GHz radio frequency signal to produce the optical comb; then, heterodyne beating in a uni-traveling carrier photodiode (UTC-PD) generates the 0.1 THz radio frequency signal. This signal is transmitted over distances of up to 30 km using single-mode fiber. The resulting 0.1 THz electrical vector signal, modulated with quadrature phase shift keying (QPSK), achieves a bit error ratio (BER) below the hard-decision forward error correction (HD-FEC) threshold of 3.8 × 103. To the best of our knowledge, this is the first experimental demonstration of a 0.1 THz photonic vector THz wave based on an SOA and a simple PM-driven optical frequency comb. Full article
(This article belongs to the Section Photonics and Optical Communications)
Show Figures

Figure 1

15 pages, 4734 KiB  
Article
Research on the Terahertz Modulation Performance of VO2 Thin Films with Surface Plasmon Polaritons Structure
by Tao Chen, Qi Zhang, Jin Wang, Jiran Liang and Weibin Zhou
Coatings 2025, 15(7), 838; https://doi.org/10.3390/coatings15070838 - 17 Jul 2025
Viewed by 250
Abstract
This paper focuses on the switching and modulation techniques of terahertz waves, develops VO2 thin-film materials with an SPP structure, and uses terahertz time-domain spectroscopy (THz-TDS) to study the semiconductor–metal phase transition characteristics of VO2 thin films, especially the photoinduced semiconductor–metal [...] Read more.
This paper focuses on the switching and modulation techniques of terahertz waves, develops VO2 thin-film materials with an SPP structure, and uses terahertz time-domain spectroscopy (THz-TDS) to study the semiconductor–metal phase transition characteristics of VO2 thin films, especially the photoinduced semiconductor–metal phase transition characteristics of silicon-based VO2 thin films. The optical modulation characteristics of silicon-based VO2 thin films to terahertz waves under different light excitation modes, such as continuous light irradiation at different wavelengths and femtosecond pulsed laser irradiation, were analyzed. Combining the optical modulation characteristics of silicon-based VO2 thin films with the filtering characteristics of SPP structures, composite structures of VO2 thin films with metal hole arrays, composite structures of VO2 thin films with metal block arrays, and silicon-based VO2 microstructure arrays were designed. The characteristics of this dual-function device were tested experimentally. The experiment proves that the VO2 film material with an SPP structure has a transmission rate dropping sharply from 32% to 1% under light excitation; the resistivity changes by more than six orders of magnitude, and the modulation effect is remarkable. By applying the SPP structure to the VO2 material, the material can simultaneously possess modulation and filtering functions, enhancing its optical performance in the terahertz band. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

16 pages, 8598 KiB  
Article
Tunable Multi-Functional Metamaterial Based on Photosensitive Silicon for Unidirectional Reflectionlessness, Polarization Conversion, and Asymmetric Transmission
by Xue Ren, Yiwen Zhang, Yingqiao Zhang and Xingri Jin
Materials 2025, 18(11), 2614; https://doi.org/10.3390/ma18112614 - 3 Jun 2025
Viewed by 354
Abstract
We propose a tunable multi-functional metamaterial composed of two pairs of gold corner resonators interconnected with photosensitive silicon, operating in the terahertz range. This design achieves dual-band unidirectional reflectionlessness, polarization conversion, and asymmetric transmission for linearly polarized waves, regardless of whether the photosensitive [...] Read more.
We propose a tunable multi-functional metamaterial composed of two pairs of gold corner resonators interconnected with photosensitive silicon, operating in the terahertz range. This design achieves dual-band unidirectional reflectionlessness, polarization conversion, and asymmetric transmission for linearly polarized waves, regardless of whether the photosensitive silicon is in the insulating or conductivity state. When the photosensitive silicon transitions from the insulating state to the conductivity state, its conductivity increases significantly, resulting in a frequency shift phenomenon in the functional peak frequencies. Numerical simulations demonstrate the structure’s robust performance in dual-band unidirectional reflectionlessness and its significant asymmetric transmission, with minimal sensitivity to variations in the incident angle and photosensitive silicon sheet length. By integrating multiple functionalities and enabling frequency tunability through the control of photosensitive silicon conductivity, this design offers a reconfigurable solution for THz applications, such as switches, polarization converters, and modulators. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

13 pages, 1543 KiB  
Article
Switchable Tri-Functional Terahertz Metamaterial Integrated with Vanadium Dioxide and Photosensitive Silicon
by Gui Jin, Ying Zhu, Haorui Yang and Bin Tang
Nanomaterials 2025, 15(11), 835; https://doi.org/10.3390/nano15110835 - 30 May 2025
Viewed by 367
Abstract
This work presents a theoretical and numerical investigation of a switchable tri-functional terahertz metamaterial incorporating vanadium dioxide (VO2) and photosensitive silicon. The selective absorption, broadband linear-to-linear polarization conversion, and dual-band asymmetric transmission (AT) can be realized by utilizing the phase transition [...] Read more.
This work presents a theoretical and numerical investigation of a switchable tri-functional terahertz metamaterial incorporating vanadium dioxide (VO2) and photosensitive silicon. The selective absorption, broadband linear-to-linear polarization conversion, and dual-band asymmetric transmission (AT) can be realized by utilizing the phase transition characteristic of VO2. When VO2 behaves as a metal, the proposed metamaterial functions as a selective perfect absorber for x-polarized waves at 2.84 THz, while exhibiting near-zero absorption for y-polarized waves. When VO2 is in its insulating state, the proposed metamaterial acts as a linear polarization converter, achieving a polarization conversion ratio exceeding 99% within the frequency range of 1.07 to 4.29 THz. Meanwhile, a dual-band AT effect can be simultaneously realized associated with the broadband near-perfect polarization conversion. Furthermore, the polarization conversion efficiency and AT can be actively modulated by adjusting the conductivity of the photosensitive silicon, offering a novel approach for realizing multifunctional terahertz devices. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

12 pages, 4596 KiB  
Article
High-Speed Terahertz Modulation Signal Generation Based on Integrated LN-RMZM and CPPLN
by Hangfeng Zhou, Miao Ma, Chenwei Zhang, Xinlong Zhao, Weichao Ma, Wangzhe Li and Mingjun Xia
Photonics 2025, 12(5), 490; https://doi.org/10.3390/photonics12050490 - 15 May 2025
Viewed by 409
Abstract
With the increasing communication frequencies in 6G networks, high-speed terahertz (THz) modulation signal generation has become a critical research area. This study first proposes an on-chip high-speed THz modulation signal generation system based on lithium niobate (LN), which integrates a pair of racetrack [...] Read more.
With the increasing communication frequencies in 6G networks, high-speed terahertz (THz) modulation signal generation has become a critical research area. This study first proposes an on-chip high-speed THz modulation signal generation system based on lithium niobate (LN), which integrates a pair of racetrack resonator-integrated Mach–Zehnder modulators (RMZMs) with a chirped periodically poled lithium niobate (CPPLN) waveguide. The on-chip system combines near-infrared electro-optic modulation and cascaded difference-frequency generation (CDFG) for high-speed THz modulation signal generation. At 300 K, utilizing two input optical waves at frequencies of 193.55 THz and 193.14 THz, this on-chip system enables high-speed THz modulation signal generation at 0.41 THz, with a 1 Gbit/s modulation rate and a 0.25 V modulation voltage. During the simulation, when the intensity of the input optical waves is 1000 MW/cm2, the generated 0.41 THz signal reaches a peak intensity of 21.24 MW/cm2. Furthermore, based on theoretical analysis and subsequent simulation, the on-chip system is shown to support a maximum modulation signal generation rate of 7.75 Gbit/s. These results demonstrate the potential of the proposed on-chip system as a compact and efficient solution for high-speed THz modulation signal generation. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

13 pages, 2679 KiB  
Article
Terahertz Frequency-Modulated Continuous-Wave Inspection of an Ancient Enamel Plate
by Frédéric Fauquet, Francesca Galluzzi, Rémy Chapoulie, Aurélie Mounier, Ayed Ben Amara and Patrick Mounaix
Sensors 2025, 25(9), 2928; https://doi.org/10.3390/s25092928 - 6 May 2025
Viewed by 544
Abstract
This study investigates the application of terahertz frequency-modulated continuous-wave (FMCW) imaging for the non-destructive inspection of a historical enamel plate, using both reflection and transmission modes. A 300 GHz FMCW radar system was employed to capture high-resolution images of the plate’s internal and [...] Read more.
This study investigates the application of terahertz frequency-modulated continuous-wave (FMCW) imaging for the non-destructive inspection of a historical enamel plate, using both reflection and transmission modes. A 300 GHz FMCW radar system was employed to capture high-resolution images of the plate’s internal and surface structures. Through optimized data acquisition and processing, the system successfully revealed subsurface features such as fractures, as well as surface-level textural variations linked to the decorative glazes. Although pigment differentiation remains a challenge, contrast variations observed in THz images suggest correlations with material composition. The results highlight the potential of FMCW terahertz imaging as a compact, rapid, and non-contact diagnostic tool for cultural heritage analysis. Its practicality and adaptability make it particularly suitable for in situ inspections in museums or restoration contexts. Full article
(This article belongs to the Special Issue Recent Advances in THz Sensing and Imaging)
Show Figures

Figure 1

14 pages, 6310 KiB  
Article
Tunable Dual Plasmon-Induced Transparency Based on Homogeneous Graphene-Metal Metasurfaces at Terahertz Frequency
by Guanqi Wang and Hao Meng
Crystals 2025, 15(4), 328; https://doi.org/10.3390/cryst15040328 - 29 Mar 2025
Viewed by 328
Abstract
In recent years, the active control of terahertz waves using artificial microstructures has attracted increasing attention, especially toward the ones that have multiple plasmon-induced transparency (PIT) responses. Here, a homogeneous graphene-metal metasurface, exhibiting tunable dual-PIT in its terahertz (THz) spectral response, is investigated [...] Read more.
In recent years, the active control of terahertz waves using artificial microstructures has attracted increasing attention, especially toward the ones that have multiple plasmon-induced transparency (PIT) responses. Here, a homogeneous graphene-metal metasurface, exhibiting tunable dual-PIT in its terahertz (THz) spectral response, is investigated numerically and theoretically. Individual and simultaneous control of the two PIT transmission windows and the two slow-light effects are achieved by reconstructing the Fermi energies of the graphene strips. The modulation behavior can be expounded by the classical coupled three-particle model, which is confirmed by the simulation results. Moreover, the electric field distribution is introduced to analyze the dual-PIT active modulation mechanism. This work provides theoretical guidance for versatile applications in multi-function terahertz switches and slow-light devices. Full article
Show Figures

Figure 1

23 pages, 6083 KiB  
Article
Switchable and Tunable Terahertz Metamaterial Absorber with Ultra-Broadband and Multi-Band Response for Cancer Detection
by Yadgar I. Abdulkarim
Sensors 2025, 25(5), 1463; https://doi.org/10.3390/s25051463 - 27 Feb 2025
Cited by 5 | Viewed by 1442
Abstract
This paper proposes a switchable and tunable terahertz metamaterial absorber utilizing a graphene-VO2 layered structure. The design employs reconfigurable seven-layer architecture from top to bottom as (topaz/VO2/topaz/Si/graphene/topaz/Au). CST software 2018 was used to simulate the absorption properties of terahertz waves [...] Read more.
This paper proposes a switchable and tunable terahertz metamaterial absorber utilizing a graphene-VO2 layered structure. The design employs reconfigurable seven-layer architecture from top to bottom as (topaz/VO2/topaz/Si/graphene/topaz/Au). CST software 2018 was used to simulate the absorption properties of terahertz waves (0–14 THz). The proposed metamaterial exhibits dual functionalities depending on the VO2 phase state. In the insulating state, the design achieves a tri-band response with distinct peaks at 3.12 THz, 5.65 THz, and 7.24 THz. Conversely, the VO2’s conducting state enables ultra-broadband absorption from 2.52 THz to 11.62 THz. Extensive simulations were conducted to demonstrate the tunability of absorption: Simulated absorption spectra were obtained for broadband and multi-band states. Electric field distributions were analyzed at resonance frequencies for both conducting and insulating states. The impact was studied of VO2 conductivity, loss tangent, and graphene’s chemical potential on absorption. The influence was investigated of topaz layer thickness on the absorption spectrum. Absorption behavior was examined of VO2 under different states and layer configurations. Variations were analyzed of absorption spectra with frequency, polarization angle, and incident angle. The proposed design used for the detection of cervical and breast cancer detection and the sensitivity is about is 0.2489 THz/RIU. The proposed design holds significant promise for real-world applications due to its reconfigurability. This tunability allows for tailoring absorption properties across a broad terahertz range, making it suitable for advanced devices like filters, modulators, and perfect absorbers. Full article
Show Figures

Figure 1

18 pages, 6130 KiB  
Article
The Role of Asymmetry on the Resonances of Conjoined Split-Ring Resonators
by Mei Zhu, Xitao Wang, Lian Zhang, Jiguo Geng and Jun Chen
Symmetry 2025, 17(3), 332; https://doi.org/10.3390/sym17030332 - 22 Feb 2025
Viewed by 2000
Abstract
The conjoined split-ring resonator (Co-SRR) is proposed as the unit cell to construct terahertz (THz) metamaterial. The size and position of the gaps on both sides of the structure were adjusted, and the impact on the electromagnetic response to the incident THz wave [...] Read more.
The conjoined split-ring resonator (Co-SRR) is proposed as the unit cell to construct terahertz (THz) metamaterial. The size and position of the gaps on both sides of the structure were adjusted, and the impact on the electromagnetic response to the incident THz wave was investigated via simulation. Results show that by properly controlling the structural asymmetry, the resonances can be tuned simultaneously or independently. The devices exhibit frequency shifts of up to 510 GHz, a tuning range of free spectral range (FSR) as wide as 613 GHz, and a high modulation depth (MD) of 93.4%. Additionally, a wide range of amplitude modulation can occur across multiple frequencies. Incorporating spatial asymmetry further enhances the performance, resulting in a high quality factor (Q) of 44.8 and a figure of merit (FOM) of 40.1. The impressive characteristics prove that Co-SRR-based metamaterial is a great candidate for applications in optical sensing, switching, filtering and programming devices. Full article
Show Figures

Figure 1

10 pages, 2484 KiB  
Article
Switchable Negative Group Delay Based on Sandwich Topological Protection Structure in Terahertz Band
by Jiao Xu, Xianmin Pan, Jiao Tang, Xianghua Peng and Yuxiang Peng
Nanomaterials 2025, 15(4), 251; https://doi.org/10.3390/nano15040251 - 7 Feb 2025
Cited by 1 | Viewed by 819
Abstract
A switchable enhancement group delay in the terahertz band based on a novel sandwich topology protection structure with graphene is proposed in this paper. The notable phase transition of the reflected beam comes from the topological edge-protected mode excited at the sandwich photonic [...] Read more.
A switchable enhancement group delay in the terahertz band based on a novel sandwich topology protection structure with graphene is proposed in this paper. The notable phase transition of the reflected beam comes from the topological edge-protected mode excited at the sandwich photonic crystal surface, and the non-trivial topology of the photonic crystal allows the structure to be immune against defects and imperfections, which lays the foundation for the enhancement of group delay in the terahertz band. And the introduction of graphene creates favorable conditions for the reversible switching of positive and negative reflection group delay. Moreover, the reflected group delay can also be flexibly and dynamically controlled by the incident angle. The positive and negative reversible switching reflected group delay proposed in the terahertz band greatly reduces the optical transmission loss and significantly increases the transmission efficiency compared with the traditional metal sandwich structure, which provides a feasible idea for the realization of multi-dimensional manipulation of the wavelength and phase of electromagnetic waves in the terahertz band. The novel scheme is expected to provide potential applications in fields such as optical buffers or ultrafast modulators. Full article
Show Figures

Figure 1

17 pages, 4791 KiB  
Article
Photoreconfigurable Metasurface for Independent Full-Space Control of Terahertz Waves
by Zhengxuan Jiang, Guowen Ding, Xinyao Luo and Shenyun Wang
Sensors 2025, 25(1), 119; https://doi.org/10.3390/s25010119 - 27 Dec 2024
Cited by 2 | Viewed by 1362
Abstract
We present a novel photoreconfigurable metasurface designed for independent and efficient control of electromagnetic waves with identical incident polarization and frequency across the entire spatial domain. The proposed metasurface features a three-layer architecture: a top layer incorporating a gold circular split ring resonator [...] Read more.
We present a novel photoreconfigurable metasurface designed for independent and efficient control of electromagnetic waves with identical incident polarization and frequency across the entire spatial domain. The proposed metasurface features a three-layer architecture: a top layer incorporating a gold circular split ring resonator (CSRR) filled with perovskite material and dual C-shaped perovskite resonators; a middle layer of polyimide dielectric; and a bottom layer comprising a perovskite substrate with an oppositely oriented circular split ring resonator filled with gold. By modulating the intensity of a laser beam, we achieve autonomous manipulation of incident circularly polarized terahertz waves in both transmission and reflection modes. Simulation results demonstrate that the metasurface achieves a cross-polarized transmission coefficient of 0.82 without laser illumination and a co-polarization reflection coefficient of 0.8 under laser illumination. Leveraging the geometric phase principle, adjustments to the rotational orientation of the reverse split ring and dual C-shaped perovskite structures enable independent control of transmission and reflection phases. Furthermore, the proposed metasurface induces a +1 order orbital angular momentum in transmission and +2 order in reflection, facilitating beam deflection through metasurface convolution principles. Imaging using metasurface digital imaging technology showcases patterns “NUIST” in reflection and “LOONG” in transmission, illustrating the metasurface design principles via the proposed metasurface. The proposed metasurface’s capability for full-space control and reconfigurability presents promising applications in advanced imaging systems, dynamic beam steering, and tunable terahertz devices, highlighting its potential for future technological advancements. Full article
Show Figures

Figure 1

110 pages, 4916 KiB  
Review
Revolutionizing Free-Space Optics: A Survey of Enabling Technologies, Challenges, Trends, and Prospects of Beyond 5G Free-Space Optical (FSO) Communication Systems
by Isiaka A. Alimi and Paulo P. Monteiro
Sensors 2024, 24(24), 8036; https://doi.org/10.3390/s24248036 - 16 Dec 2024
Cited by 5 | Viewed by 9123
Abstract
As the demand for high-speed, low-latency communication continues to grow, free-space optical (FSO) communication has gained prominence as a promising solution for supporting the next generation of wireless networks, especially in the context of the 5G and beyond era. It offers high-speed, low-latency [...] Read more.
As the demand for high-speed, low-latency communication continues to grow, free-space optical (FSO) communication has gained prominence as a promising solution for supporting the next generation of wireless networks, especially in the context of the 5G and beyond era. It offers high-speed, low-latency data transmission over long distances without the need for a physical infrastructure. However, the deployment of FSO systems faces significant challenges, such as atmospheric turbulence, weather-induced signal degradation, and alignment issues, all of which can impair performance. This paper offers a comprehensive survey of the enabling technologies, challenges, trends, and future prospects for FSO communication in next-generation networks, while also providing insights into the current mitigation strategies. The survey explores the critical enabling technologies such as adaptive optics, modulation schemes, and error correction codes that are revolutionizing FSO communication and addressing the unique challenges of FSO links. Also, the integration of FSO with radio frequency, millimeter-wave, and Terahertz technologies is explored, emphasizing hybrid solutions that enhance reliability and coverage. Additionally, the paper highlights emerging trends, such as the integration of FSO with artificial intelligence-driven optimization techniques and the growing role of machine learning in enhancing FSO system performance for dynamic environments. By analyzing the current trends and identifying key challenges, this paper emphasizes the prospects of FSO communication in the evolving landscape of 5G and future networks. In this regard, it assesses the potential of FSO to meet the demands for high-speed, low-latency communication and offers insights into its scalability, reliability, and deployment strategies for 5G and beyond. The paper concludes by identifying the open challenges and future research directions critical to realizing the full potential of FSO in next-generation communication systems. Full article
Show Figures

Figure 1

19 pages, 5816 KiB  
Article
Transcriptomic Analysis of Blood Collagen-Induced Arthritis Mice Exposed to 0.1 THz Reveals Inhibition of Genes and Pathways Involved in Rheumatoid Arthritis
by Mactar Ndiaga Dione, Qi Zhang, Sen Shang and Xiaoyun Lu
Int. J. Mol. Sci. 2024, 25(23), 12812; https://doi.org/10.3390/ijms252312812 - 28 Nov 2024
Cited by 2 | Viewed by 1268
Abstract
Inflammation plays an essential role in the phases of rheumatoid arthritis (RA) as the joints secrete a range of molecules that modulate the inflammatory process. While therapies based on physical properties have shown effectiveness in a range of animal experimental models, the understanding [...] Read more.
Inflammation plays an essential role in the phases of rheumatoid arthritis (RA) as the joints secrete a range of molecules that modulate the inflammatory process. While therapies based on physical properties have shown effectiveness in a range of animal experimental models, the understanding of their biological mechanisms remains unclear. The aim of this study was to investigate the immunomodulatory effects of a 0.1 terahertz (THz) wave in rheumatoid arthritis in an attempt to dissect the molecular pathways implicated. The collagen-induced rheumatoid arthritis (CIA) model joint mice were irradiated daily for 30 min over a period of 2 weeks with continuous 0.1 terahertz waves. High-throughput bulk RNA sequencing of the murine blood was performed to analyze and characterize the differences in gene expression changes between the control (Ctrl), CIA (RA), and CIA exposed to THz. Differentially expressed genes, canonical pathway analysis, gene set enrichment, and protein–protein interaction were further run on the selected DEGs. We found that terahertz exposure downregulated gene ontologies representing the “TGF-β signaling pathway”, “apoptosis”, “activation of T cell receptor signaling pathway”, and “non-canonical NF-κB signal transduction”. These observations were further confirmed by a decreased level in the expression of transcription factors Nfib and Nfatc3, and an increased level of Lsp1. In addition, the expression of Mmp8 was significantly restored. These results indicate that THz ultimately attenuates the inflammatory response of hemocytes through the T cell and NF-κB pathway, and these changes are reverberated in the blood transcriptome. In this first report of transcriptome sequencing in a model of rheumatoid arthritis exposed to terahertz waves, the downregulated DEGs were associated with anti-inflammatory effects. Full article
(This article belongs to the Special Issue Molecular Advances and Perspectives in Rheumatic Diseases)
Show Figures

Figure 1

12 pages, 3043 KiB  
Article
Fabry–Perot Effect Suppression in Gas Cells Used in THz Absorption Spectrometers. Experimental Verification
by George K. Raspopin, Alexey V. Borisov, Arnaud Cuisset, Francis Hindle, Semyon V. Yakovlev and Yury V. Kistenev
Sensors 2024, 24(22), 7380; https://doi.org/10.3390/s24227380 - 19 Nov 2024
Viewed by 986
Abstract
A standard measuring gas cell used in absorption spectrometers is a cylinder enclosed by two transparent windows. The Fabry–Perot effects caused by multiple reflections of terahertz waves between these windows produce significant variations in the transmitted radiation intensity. Therefore, the Fabry–Perot effects should [...] Read more.
A standard measuring gas cell used in absorption spectrometers is a cylinder enclosed by two transparent windows. The Fabry–Perot effects caused by multiple reflections of terahertz waves between these windows produce significant variations in the transmitted radiation intensity. Therefore, the Fabry–Perot effects should be taken into account to correctly measure absorption spectra in Bouguer law-based absorption spectroscopy. One approach to reducing the Fabry–Perot effects is based on inserting an additional external movable window with the standard measuring gas cell. This was proposed and numerically analyzed in our previous work. This paper is aimed at the experimental validation of this method when using amplitude modulation (AM) spectroscopy. Also, a comparison of the efficiency of reducing the Fabry–Perot effects using this method is experimentally compared to frequency modulation spectroscopy. The latter was shown to effectively reduce the Fabry–Perot effects compared to AM spectroscopy with the standard measuring gas cell, and the use of the external movable window was shown to further improve the elimination of Fabry–Perot effects. Full article
(This article belongs to the Special Issue Recent Advances in THz Sensing and Imaging)
Show Figures

Figure 1

16 pages, 3710 KiB  
Article
Experimental Analysis of Terahertz Wave Scattering Characteristics of Simulated Lunar Regolith Surface
by Suyun Wang and Kazuma Hiramatsu
Remote Sens. 2024, 16(20), 3819; https://doi.org/10.3390/rs16203819 - 14 Oct 2024
Cited by 2 | Viewed by 1320
Abstract
This study investigates terahertz (THz) wave scattering from a simulated lunar regolith surface, with a focus on the Brewster feature, backscattering, and bistatic scattering within the 325 to 500 GHz range. We employed a generalized power-law spectrum to characterize surface roughness and fabricated [...] Read more.
This study investigates terahertz (THz) wave scattering from a simulated lunar regolith surface, with a focus on the Brewster feature, backscattering, and bistatic scattering within the 325 to 500 GHz range. We employed a generalized power-law spectrum to characterize surface roughness and fabricated Gaussian correlated surfaces from Durable Resin V2 using 3D printing technology. The complex dielectric permittivity of these materials was determined through THz time-domain spectroscopy (THz-TDS). Our experimental setup comprised a vector network analyzer (VNA) equipped with dual waveguide frequency extenders for the WR-2.2 band, transmitter and receiver modules, polarizing components, and a scattering chamber. We systematically analyzed the effects of root-mean-square (RMS) height, correlation length, dielectric constant, frequency, polarization, and observation angle on THz scattering. The findings highlight the significant impact of surface roughness on the Brewster angle shift, backscattering, and bistatic scattering. These insights are crucial for refining theoretical models and developing algorithms to retrieve physical parameters for lunar and other celestial explorations. Full article
(This article belongs to the Special Issue Future of Lunar Exploration)
Show Figures

Figure 1

Back to TopTop