Switchable Negative Group Delay Based on Sandwich Topological Protection Structure in Terahertz Band
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterizations
2.3. Calculations
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiang, W.; Zhou, Q.; He, J.; Habibi, M.A.; Melnyk, S.; El-Absi, M.; Han, B.; Renzo, M.D.; Schotten, H.D.; Lou, F.L.; et al. Terahertz communications and sensing for 6G and beyond: A comprehensive review. IEEE Commun. Tutor. 2024, 26, 2326–2381. [Google Scholar] [CrossRef]
- Cai, X.; Cheng, X.; Tufvesson, F. Toward 6G with terahertz communications: Understanding the propagation channels. IEEE Commun. Mag. 2024, 62, 32–38. [Google Scholar] [CrossRef]
- Richardson, D.J. Filling the light pipe. Science 2010, 330, 327–328. [Google Scholar] [CrossRef] [PubMed]
- Tucker, R.S.; Ku, P.C.; Chang-Hasnain, C.J. Slow-light optical buffers: Capabilities and fundamental limitations. J. Light. Technol. 2005, 23, 4046–4066. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, M.; Chen, X.; Bertrand, M.; Shams-Ansari, A.; Chandrasekhar, S.; Lončar, M. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 2018, 562, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, Q.; Wang, S.; Chen, Z.; Sillanpää, M.A.; Li, T. Optomechanical anti-lasing with infinite group delay at a phase singularity. Phys. Rev. Lett. 2021, 127, 273603. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wang, D.; Deng, C.; Lu, M.; Huang, L.; Hu, G.; Yun, B.; Zhang, R.; Li, M.; Dong, J. Large group delay in silicon-on-insulator chirped spiral Bragg grating waveguide. IEEE Photonics J. 2021, 13, 5500205. [Google Scholar] [CrossRef]
- Li, Y.; Xu, L.; Wang, D.; Huang, Q.; Zhang, C.; Zhang, X. Large group delay and low loss optical delay line based on chirped waveguide Bragg gratings. Opt. Express 2023, 31, 4630–4638. [Google Scholar] [CrossRef]
- Das, R.; Schneider, T. Integrated group delay units for real-time reconfigurable spectrum sensing of mm-wave signals. Opt. Lett. 2020, 45, 4778–4781. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Tan, Q.; Gan, Y.; Zhang, W.; Xiong, J. Polarization-insensitive classical electromagnetically induced transparency metamaterial with large group delay by Dirac semimetal. Results Phys. 2020, 19, 103377. [Google Scholar] [CrossRef]
- Li, C.; Qi, D.; Hao, F. Metal-insulator-metal plasmonic waveguide for low-distortion slow light at telecom frequencies. J. Mod. Opt. 2014, 61, 627–630. [Google Scholar] [CrossRef]
- Tang, G.J.; He, X.T.; Shi, F.L.; Liu, J.W.; Chen, X.D.; Dong, J.W. Topological photonic crystals: Physics, designs, and applications. Laser Photonics Rev. 2022, 16, 2100300. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, X.; Hu, Z.; Bongiovanni, D.; Jukić, D.; Tang, L.; Song, D.; Morandotti, R.; Chen, Z.; Buljan, H. Sub-symmetry-protected topological states. Nat. Phys. 2023, 19, 992–998. [Google Scholar] [CrossRef]
- Arora, S.; Bauer, T.; Barczyk, R.; Verhagen, E.; Kuipers, L. Direct quantification of topological protection in symmetry-protected photonic edge states at telecom wavelengths. Light. Sci. Appl. 2021, 10, 9. [Google Scholar] [CrossRef]
- He, L.; Liu, D.; Zhang, H.; Zhang, F.; Zhang, W.; Feng, X.; Huang, Y.; Cui, K.; Liu, F.; Zhang, W.; et al. Topologically Protected Quantum Logic Gates with Valley-Hall Photonic Crystals. Adv. Mater. 2024, 36, 2311611. [Google Scholar] [CrossRef]
- Hafezi, M.; Demler, E.A.; Lukin, M.D.; Taylor, J.M. Robust optical delay lines with topological protection. Nat. Phys. 2011, 7, 907–912. [Google Scholar] [CrossRef]
- Shalaev, M.I.; Walasik, W.; Litchinitser, N.M. Optically tunable topological photonic crystal. Optica 2019, 6, 839–844. [Google Scholar] [CrossRef]
- Grigorenko, A.N.; Polini, M.; Novoselov, K.S. Graphene plasmonics. Nat. Photonics 2012, 6, 749–758. [Google Scholar] [CrossRef]
- Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A.C. Graphene photonics and optoelectronics. Nat. Photonics 2010, 4, 611–622. [Google Scholar] [CrossRef]
- Jiang, L.; Dai, X.; Xiang, Y.; Wen, S. Tunable Group Delay of the Optical Pulse Reflection from Fabry-Perot Cavity with the Insertion of Graphene Sheets. IEEE Photonics J. 2014, 6, 3200109. [Google Scholar] [CrossRef]
- Chen, H.J.; Sun, B.B.; Wu, H.W.; Fang, X.W. Manipulation of slow and superluminal light based on a graphene nanoribbon resonator. Eur. Phys. J. D 2017, 71, 67. [Google Scholar] [CrossRef]
- Capmany, J.; Domenech, D.; Munoz, P. Graphene Integrated Microwave Photonics. J. Light. Technol. 2014, 32, 3785–3796. [Google Scholar] [CrossRef]
- Lu, H.; Zeng, C.; Zhang, Q.; Liu, X.; Hossain, M.M.; Reineck, P.; Gu, M. Graphene-based active slow surface plasmon polaritons. Sci. Rep. 2015, 5, 8443. [Google Scholar] [CrossRef]
- MinovKoppensich, F.H.L.; Chang, D.E.; Javier, G. Graphene plasmonics: A platform for strong light-matter interaction. Nano Lett. 2011, 11, 3370–3377. [Google Scholar] [CrossRef]
- Tang, T.T.; Zhang, Y.; Park, C.H.; Geng, B.; Girit, C.; Hao, Z.; Wang, F. A tunable phonon–exciton Fano system in bilayer graphene. Nat. Nanotechnol. 2010, 5, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Xu, J.; Li, W.; Li, J.; Peng, Y.; He, M. Optical bistability modulation based on graphene sandwich structure with topological interface modes. Opt. Express 2023, 31, 40490–40497. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Feng, J.; Han, S.; Xu, Z.; Mao, W.; Zhang, T.; Bae, S.H. Photonic van der Waals integration from 2D materials to 3D nanomembranes. Nat. Rev. Mater. 2023, 8, 498–517. [Google Scholar] [CrossRef]
- Xia, F.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics 2014, 8, 899–907. [Google Scholar] [CrossRef]
- Cheng, H.; Chen, S.; Yu, P.; Li, J.X.; Xie, B.Y.; Li, Z.C.; Tian, J.G. Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial. Appl. Phys. Lett. 2013, 103, 223102. [Google Scholar] [CrossRef]
- Zhan, T.; Shi, X.; Dai, Y.; Liu, X.; Zi, J. Transfer matrix method for optics in graphene layers. J. Phys. Conf. Ser. 2013, 25, 215301. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Liu, Q.; Liu, Y.; Wei, Y.; Weng, R.; Zhou, Y.; Jiang, L. Enhanced Group Delay of the Pulse Reflection with Graphene Surface Plasmon via Modified Otto Configuration. Adv. Condens. Matter Phys. 2017, 2017, 1569621. [Google Scholar] [CrossRef]
- Guan, Z.; Chen, X.D.; Mo, H.C.; Liu, J.W.; Shu, Q.Y.; Cao, Y.; Dong, J.W. Tunable topological boundary modes enabled by synthetic translation dimension. APL Photonics 2024, 9, 076116. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Pan, X.; Tang, J.; Peng, X.; Peng, Y. Switchable Negative Group Delay Based on Sandwich Topological Protection Structure in Terahertz Band. Nanomaterials 2025, 15, 251. https://doi.org/10.3390/nano15040251
Xu J, Pan X, Tang J, Peng X, Peng Y. Switchable Negative Group Delay Based on Sandwich Topological Protection Structure in Terahertz Band. Nanomaterials. 2025; 15(4):251. https://doi.org/10.3390/nano15040251
Chicago/Turabian StyleXu, Jiao, Xianmin Pan, Jiao Tang, Xianghua Peng, and Yuxiang Peng. 2025. "Switchable Negative Group Delay Based on Sandwich Topological Protection Structure in Terahertz Band" Nanomaterials 15, no. 4: 251. https://doi.org/10.3390/nano15040251
APA StyleXu, J., Pan, X., Tang, J., Peng, X., & Peng, Y. (2025). Switchable Negative Group Delay Based on Sandwich Topological Protection Structure in Terahertz Band. Nanomaterials, 15(4), 251. https://doi.org/10.3390/nano15040251