Switchable Tri-Functional Terahertz Metamaterial Integrated with Vanadium Dioxide and Photosensitive Silicon
Abstract
1. Introduction
2. Structure and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tonouchi, M. Cutting-edge terahertz technology. Nat. Photonics 2007, 1, 97–105. [Google Scholar] [CrossRef]
- Nagatsuma, T.; Horiguchi, S.; Minamikata, Y.; Yoshimizu, Y.; Hisatake, S.; Kuwano, S.; Yoshimoto, N.; Terada, J.; Takahashi, H. Terahertz wireless communications based on photonics technologies. Opt. Express 2013, 21, 23736–23747. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhao, X.; Yang, K.; Liu, Y.P.; Liu, Y.; Fu, W.L.; Luo, Y. Biomedical Applications of Terahertz Spectroscopy and Imaging. Trends Biotechnol. 2016, 34, 810–824. [Google Scholar] [CrossRef]
- Sizov, F.; Rogalski, A. THz detectors. Prog. Quantum Electron. 2010, 34, 278–347. [Google Scholar] [CrossRef]
- Ramakrishna, S.A. Physics of negative refractive index materials. Rep. Prog. Phys. 2005, 68, 449–521. [Google Scholar] [CrossRef]
- Smith, D.R.; Pendry, J.B.; Wiltshire, M.C.K. Metamaterials and negative refractive index. Science 2004, 305, 788–792. [Google Scholar] [CrossRef]
- Chen, H.T.; Padilla, W.J.; Zide, J.M.O.; Gossard, A.C.; Taylor, A.J.; Averitt, R.D. Active terahertz metamaterial devices. Nature 2006, 444, 597–600. [Google Scholar] [CrossRef]
- Xu, W.D.; Xie, L.J.; Ying, Y.B. Mechanisms and applications of terahertz metamaterial sensing: A review. Nanoscale 2017, 9, 13864–13878. [Google Scholar] [CrossRef]
- Qi, H.A.; Tang, B. An active tunable terahertz functional metamaterial based on hybrid-graphene vanadium dioxide. Phys. Chem. Chem. Phys. 2023, 25, 7825–7831. [Google Scholar] [CrossRef]
- Aita, V.; Roth, D.J.; Zaleska, A.; Krasavin, A.V.; Nicholls, L.H.; Shevchenko, M.; Rodríguez-Fortuño, F.J.; Zayats, A.V. Longitudinal field controls vector vortex beams in anisotropic epsilon-near-zero metamaterials. Nat. Commun. 2025, 16, 3807. [Google Scholar] [CrossRef]
- Padilla, W.J.; Averitt, R.D. Imaging with metamaterials. Nat. Rev. Phys. 2021, 4, 85–100. [Google Scholar] [CrossRef]
- Schurig, D.; Mock, J.J.; Justice, B.J.; Cummer, S.A.; Pendry, J.B.; Starr, A.F.; Smith, D.R. Metamaterial electromagnetic cloak at microwave frequencies. Science 2006, 314, 977–980. [Google Scholar] [CrossRef] [PubMed]
- Kruk, S.; Hopkins, B.; Kravchenko, I.I.; Miroshnichenko, A.; Neshev, D.N.; Kivshar, Y.S. Invited Article: Broadband highly efficient dielectric metadevices for polarization control. APL Photonics 2016, 1, 030801. [Google Scholar] [CrossRef]
- Tsakmakidis, K.L.; Baskourelos, K.; Stefański, T. Topological, nonreciprocal, and multiresonant slow light beyond the time-bandwidth limit. Appl. Phys. Lett. 2021, 119, 190501. [Google Scholar] [CrossRef]
- Ding, F.; Cui, Y.X.; Ge, X.C.; Jin, Y.; He, S.L. Ultra-broadband microwave metamaterial absorber. Appl. Phys. Lett. 2012, 100, 103506. [Google Scholar] [CrossRef]
- Zhu, Y.; Huang, Z.Y.; Su, J.B.; Tang, B. Actively tunable and switchable terahertz metamaterials with multi-band perfect absorption and polarization conversion. Phys. Chem. Chem. Phys. 2024, 26, 11649–11656. [Google Scholar] [CrossRef]
- Liu, X.L.; Starr, T.; Starr, A.F.; Padilla, W.J. Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance. Phys. Rev. Lett. 2010, 104, 207403. [Google Scholar] [CrossRef]
- Wang, B.X.; Qin, X.; Duan, G.; Yang, G.; Huang, W.Q.; Huang, Z. Dielectric-Based Metamaterials for Near-Perfect Light Absorption. Adv. Funct. Mater. 2024, 34, 2402068. [Google Scholar] [CrossRef]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef]
- Singh, R.; Plum, E.; Menzel, C.; Rockstuhl, C.; Azad, A.K.; Cheville, R.A.; Lederer, F.; Zhang, W.; Zheludev, N.I. Terahertz metamaterial with asymmetric transmission. Phys. Rev. B 2009, 80, 153104. [Google Scholar] [CrossRef]
- Sheikh Ansari, A.; Iyer, A.K.; Gholipour, B. Asymmetric transmission in nanophotonics. Nanophotonics 2023, 12, 2639–2667. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Tang, B. Switchable Multi-Functional VO2-Integrated Metamaterial Devices in the Terahertz Region. J. Light. Technol. 2021, 39, 5864–5868. [Google Scholar] [CrossRef]
- Zhou, Y.; Liang, Z.; Qin, Z.; Hou, E.; Shi, X.; Zhang, Y.; Xiong, Y.; Tang, Y.; Fan, Y.; Yang, F.; et al. Small–sized long wavelength infrared absorber with perfect ultra–broadband absorptivity. Opt. Express 2020, 28, 1279–1290. [Google Scholar] [CrossRef]
- Tian, J.; Luo, H.; Li, Q.; Pei, X.; Du, K.; Qiu, M. Near-Infrared Super-Absorbing All-Dielectric Metasurface Based on Single-Layer Germanium Nanostructures. Laser Photonics Rev. 2018, 12, 1800076. [Google Scholar] [CrossRef]
- Zhao, J.C.; Li, N.; Cheng, Y.Z. Ultrabroadband chiral metasurface for linear polarization conversion and asymmetric transmission based on enhanced interference theory. Chin. Opt. Lett. 2023, 21, 113602. [Google Scholar] [CrossRef]
- Degl’Innocenti, R.; Lin, H.; Navarro-Cía, M. Recent progress in terahertz metamaterial modulators. Nanophotonics 2022, 11, 1485–1514. [Google Scholar] [CrossRef]
- Shen, S.; Liu, X.; Shen, Y.; Qu, J.; Pickwell-MacPherson, E.; Wei, X.; Sun, Y. Recent Advances in the Development of Materials for Terahertz Metamaterial Sensing. Adv. Opt. Mater. 2021, 10, 2101008. [Google Scholar] [CrossRef]
- Ren, Y.; Zhou, T.L.; Jiang, C.; Tang, B. Thermally switching between perfect absorber and asymmetric transmission in vanadium dioxide-assisted metamaterials. Opt. Express 2021, 29, 7666–7679. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, T.; Jin, G.; Su, J.; Tang, B. Switchable asymmetric transmission with broadband polarization conversion in vanadium dioxide-assisted terahertz metamaterials. Phys. Chem. Chem. Phys. 2024, 26, 1017–1022. [Google Scholar] [CrossRef]
- Han, W.; Zuo, Y.; Zhu, W.; Wei, G.; Du, K.; Zhang, B.; Xiong, X.; Wang, T.; Zhou, C.; Liu, Y.; et al. Selectable Narrowband Anisotropic Perfect Absorbers Based on α-MoO3 Metamaterials for Refractive Index Sensing. IEEE Sens. J. 2025, 25, 13149–13159. [Google Scholar] [CrossRef]
- Meng, Q.; Liu, Q.; Wang, Z.; Zheng, W.; Zhu, Z.; Zhang, J.; Qin, S. Electrically driven mid-infrared thermal emission from a graphene metamaterial with near unity emissivity. Opt. Laser Technol. 2025, 184, 112562. [Google Scholar] [CrossRef]
- Barho, F.B.; Gonzalez-Posada, F.; Cerutti, L.; Taliercio, T. Heavily Doped Semiconductor Metamaterials for Mid-Infrared Multispectral Perfect Absorption and Thermal Emission. Adv. Opt. Mater. 2020, 8, 1901502. [Google Scholar] [CrossRef]
- Koshelev, K.L.; Bogdanov, A.A. Temperature-tunable semiconductor metamaterial. Phys. Rev. B 2015, 92, 085305. [Google Scholar] [CrossRef]
- Driscoll, T.; Palit, S.; Qazilbash, M.M.; Brehm, M.; Keilmann, F.; Chae, B.G.; Yun, S.J.; Kim, H.T.; Cho, S.Y.; Jokerst, N.M.; et al. Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide. Appl. Phys. Lett. 2008, 93, 024101. [Google Scholar] [CrossRef]
- Liu, M.K.; Hwang, H.Y.; Tao, H.; Strikwerda, A.C.; Fan, K.B.; Keiser, G.R.; Sternbach, A.J.; West, K.G.; Kittiwatanakul, S.; Lu, J.W.; et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 2012, 487, 345–348. [Google Scholar] [CrossRef]
- Peng, Z.; Zheng, Z.; Yu, Z.; Lan, H.; Zhang, M.; Wang, S.; Li, L.; Liang, H.; Su, H. Broadband absorption and polarization conversion switchable terahertz metamaterial device based on vanadium dioxide. Opt. Laser Technol. 2023, 157, 108723. [Google Scholar] [CrossRef]
- Qiu, Y.; Yan, D.X.; Feng, Q.Y.; Li, X.J.; Zhang, L.; Qiu, G.H.; Li, J.N. Vanadium dioxide-assisted switchable multifunctional metamaterial structure. Opt. Express 2022, 30, 26544–26556. [Google Scholar] [CrossRef]
- Song, S.C.; Ma, X.L.; Pu, M.B.; Li, X.; Guo, Y.H.; Gao, P.; Luo, X.G. Tailoring active color rendering and multiband photodetection in a vanadium-dioxide-based metamaterial absorber. Photonics Res. 2018, 6, 492–497. [Google Scholar] [CrossRef]
- Tang, B.; Ren, Y. Tunable and switchable multi-functional terahertz metamaterials based on a hybrid vanadium dioxide–graphene integrated configuration. Phys. Chem. Chem. Phys. 2022, 24, 8408–8414. [Google Scholar] [CrossRef]
- Wei, H.R.; Ge, H.H.; Zhao, T.T.; Sharma, S.; Petru, M.; Dwivedi, S.P.; Kumar, A.; Abbas, M. Vanadium dioxide thin films-assisted terahertz surface for simultaneous absorption, polarization conversion bi-functional switching, and wavefront operation. Results Phys. 2023, 53, 106970. [Google Scholar] [CrossRef]
- Zhou, Q.G.; Li, Y.Z.; Wu, T.T.; Qiu, Q.X.; Duan, J.X.; Jiang, L.; Mao, W.C.; Yao, N.J.; Huang, Z.M. Terahertz Metasurface Modulators Based on Photosensitive Silicon. Laser Photonics Rev. 2023, 17, 2200808. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, X.S.; Ren, B.; Jiang, H.; Jiang, Y.Y. High-efficiency and tunable circular polarization selectivity in photosensitive silicon-based zigzag array metasurface. Opt. Laser Technol. 2022, 156, 108453. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, G.; Liu, J.; Zuo, S.; Li, M.; Yang, S.; Jia, Y.; Gao, Y. Switchable and Tunable Terahertz Metamaterial Based on Vanadium Dioxide and Photosensitive Silicon. Nanomaterials 2023, 13, 2144. [Google Scholar] [CrossRef]
- Wu, J.W.; Yuan, T.T.; Liu, J.J.; Qin, J.Y.; Hong, Z.; Li, J.S.; Du, Y. Terahertz Metamaterial Sensor With Ultra-High Sensitivity and Tunability Based on Photosensitive Semiconductor GaAs. IEEE Sens. J. 2022, 22, 15961–15966. [Google Scholar] [CrossRef]
- Naftaly, M.; Miles, R.E. Terahertz time-domain spectroscopy of silicate glasses and the relationship to material properties. J. Appl. Phys. 2007, 102, 043517. [Google Scholar] [CrossRef]
- Menzel, C.; Helgert, C.; Rockstuhl, C.; Kley, E.B.; Tünnermann, A.; Pertsch, T.; Lederer, F. Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials. Phys. Rev. Lett. 2010, 104, 253902. [Google Scholar] [CrossRef]
- Huang, J.; Li, J.; Yang, Y.; Li, J.; Li, J.; Zhang, Y.; Yao, J. Active controllable dual broadband terahertz absorber based on hybrid metamaterials with vanadium dioxide. Opt. Express 2020, 28, 7018–7027. [Google Scholar] [CrossRef]
- Zhang, Y.; Xue, W.; Du, Y.; Liang, L. Multifunctional Metamaterial for Asymmetric Transmission and Perfect Absorption in Terahertz Region. J. Electron. Mater. 2024, 53, 8190–8201. [Google Scholar] [CrossRef]
- Jalal, A.; Li, N.; Chen, Y.; Li, H. Terahertz hybrid metamaterial switcher between asymmetric transmission and linear dichroism. Results Phys. 2025, 72, 108229. [Google Scholar] [CrossRef]
- Zhuang, L.; Zhang, W.; Chao, M.; Liu, Q.; Cheng, B.; Song, G.; Liu, J. Terahertz broadband tunable multifunctional metasurface based on VO2. Opt. Mater. Express 2024, 14, 483–493. [Google Scholar] [CrossRef]
Refs. | Operating Frequency Range | Functionality | Active Material |
---|---|---|---|
[20] | 5.2–7.1 THz | Absorption ~0.95, AT effect ~0.72 and polarization conversion ~0.95 | VO2 |
[21] | 1.25–2.5 THz | Single-band selective absorption ~0.99, polarization conversion and AT ~0.9 | VO2 |
[29] | 3.0–6.5 THz | Switch between single-band AT ~0.58 and dual-band AT ~0.86, polarization conversion ~0.99 | VO2 |
[39] | 7.5–10.7 THz | AT ~0.34, linear to linear and linear to circular polarization conversion ~0.99 | Graphene and VO2 |
[48] | 1.15–1.88 THz | AT ~0.73, polarization conversion ~0.8, Absorption ~0.9 | VO2 |
[49] | 0.6–1.0 THz | Single-band AT ~0.95, polarization conversion ~0.99 and linear dichroism ~0.9 | VO2 |
[50] | 3.56–7.2 THz | AT effect ~0.75, polarization conversion ~0.95 and absorption ~0.95 | VO2 |
This work | 0.5–4.5 THz | Single-band selective absorption ~0.99, broadband polarization conversion ~0.99 and dual-band AT ~0.98 | VO2 and photosensitive silicon |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, G.; Zhu, Y.; Yang, H.; Tang, B. Switchable Tri-Functional Terahertz Metamaterial Integrated with Vanadium Dioxide and Photosensitive Silicon. Nanomaterials 2025, 15, 835. https://doi.org/10.3390/nano15110835
Jin G, Zhu Y, Yang H, Tang B. Switchable Tri-Functional Terahertz Metamaterial Integrated with Vanadium Dioxide and Photosensitive Silicon. Nanomaterials. 2025; 15(11):835. https://doi.org/10.3390/nano15110835
Chicago/Turabian StyleJin, Gui, Ying Zhu, Haorui Yang, and Bin Tang. 2025. "Switchable Tri-Functional Terahertz Metamaterial Integrated with Vanadium Dioxide and Photosensitive Silicon" Nanomaterials 15, no. 11: 835. https://doi.org/10.3390/nano15110835
APA StyleJin, G., Zhu, Y., Yang, H., & Tang, B. (2025). Switchable Tri-Functional Terahertz Metamaterial Integrated with Vanadium Dioxide and Photosensitive Silicon. Nanomaterials, 15(11), 835. https://doi.org/10.3390/nano15110835