sensors-logo

Journal Browser

Journal Browser

Antennas, Metamaterials and Metasurfaces for Advanced Sensing Applications

A special issue of Sensors (ISSN 1424-8220). This special issue belongs to the section "Physical Sensors".

Deadline for manuscript submissions: 27 July 2025 | Viewed by 1543

Special Issue Editor


E-Mail Website
Guest Editor
1. Research Center of Applied Electromagnetics, Nanjing University of Information Science and Technology, Nanjing 210044, China
2. School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
Interests: antenna design; metamaterials; metasurfaces

Special Issue Information

Dear Colleagues,

This Special Issue focuses on the latest developments in antennas, metamaterials, and metasurfaces for advanced sensing applications. The use of these technologies in sensing systems has expanded rapidly due to their unique properties and capabilities. This includes their ability to manipulate electromagnetic waves, enhance sensitivity, and enable miniaturization and multifunctionality. Contributions that explore novel designs, fabrication techniques, and integration strategies for antennas, metamaterials, and metasurfaces, as well as their applications in sensing technologies, are highly encouraged. This Special Issue aims to bring together researchers from academia and industry to share their insights and advances in this exciting and rapidly evolving field.

Dr. Guowen Ding
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • antenna design
  • metamaterials
  • metasurfaces
  • sensing technologies
  • wireless communications
  • environmental monitoring
  • healthcare applications
  • smart city infrastructure
  • signal processing
  • electromagnetic theory

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 4791 KiB  
Article
Photoreconfigurable Metasurface for Independent Full-Space Control of Terahertz Waves
by Zhengxuan Jiang, Guowen Ding, Xinyao Luo and Shenyun Wang
Sensors 2025, 25(1), 119; https://doi.org/10.3390/s25010119 - 27 Dec 2024
Cited by 1 | Viewed by 1089
Abstract
We present a novel photoreconfigurable metasurface designed for independent and efficient control of electromagnetic waves with identical incident polarization and frequency across the entire spatial domain. The proposed metasurface features a three-layer architecture: a top layer incorporating a gold circular split ring resonator [...] Read more.
We present a novel photoreconfigurable metasurface designed for independent and efficient control of electromagnetic waves with identical incident polarization and frequency across the entire spatial domain. The proposed metasurface features a three-layer architecture: a top layer incorporating a gold circular split ring resonator (CSRR) filled with perovskite material and dual C-shaped perovskite resonators; a middle layer of polyimide dielectric; and a bottom layer comprising a perovskite substrate with an oppositely oriented circular split ring resonator filled with gold. By modulating the intensity of a laser beam, we achieve autonomous manipulation of incident circularly polarized terahertz waves in both transmission and reflection modes. Simulation results demonstrate that the metasurface achieves a cross-polarized transmission coefficient of 0.82 without laser illumination and a co-polarization reflection coefficient of 0.8 under laser illumination. Leveraging the geometric phase principle, adjustments to the rotational orientation of the reverse split ring and dual C-shaped perovskite structures enable independent control of transmission and reflection phases. Furthermore, the proposed metasurface induces a +1 order orbital angular momentum in transmission and +2 order in reflection, facilitating beam deflection through metasurface convolution principles. Imaging using metasurface digital imaging technology showcases patterns “NUIST” in reflection and “LOONG” in transmission, illustrating the metasurface design principles via the proposed metasurface. The proposed metasurface’s capability for full-space control and reconfigurability presents promising applications in advanced imaging systems, dynamic beam steering, and tunable terahertz devices, highlighting its potential for future technological advancements. Full article
Show Figures

Figure 1

Back to TopTop