Revolutionizing Free-Space Optics: A Survey of Enabling Technologies, Challenges, Trends, and Prospects of Beyond 5G Free-Space Optical (FSO) Communication Systems
Abstract
:1. Introduction
1.1. Background and Motivation
1.2. Objectives and Scope of the Paper
- (i)
- Analysis of Current Challenges: examination of the major challenges faced by FSO systems, including atmospheric turbulence (AT), weather-induced signal degradation, and alignment issues.
- (ii)
- Review of Enabling Technologies: exploration of critical technologies such as adaptive optics (AO), advanced modulation schemes, aperture averaging, spatial diversity, cooperative relaying, hybrid FSO system, and error correction codes (ECCs) that are instrumental in overcoming the challenges associated with FSO communication.
- (iii)
- Exploration of Emerging Trends: discussion of emerging trends, such as the integration of FSO with RF, millimeter-wave (mmWave), and Terahertz (THz) technologies, as well as the use of artificial intelligence (AI) and machine learning (ML) to optimize FSO performance.
- (iv)
- Prospects for 5G and Beyond: assessment of the potential of FSO communication to meet the demands of next-generation networks, including its scalability, reliability, and deployment strategies.
- (v)
- Future Research Directions: identification of open challenges and future research directions necessary to realize the full potential of FSO in the evolving landscape of communication technologies.
1.3. Contributions
- (i)
- Comprehensive Survey: The paper provides an extensive review of the enabling technologies critical to advancing FSO communication systems, including AO, modulation schemes, and error correction codes. This thorough examination aids in understanding how these technologies address the unique challenges of FSO links.
- (ii)
- Identification of Challenges: It identifies and discusses significant challenges that hinder the deployment of FSO systems, such as atmospheric turbulence, weather-induced signal degradation, and alignment issues. This highlights the need for targeted solutions and informs future research directions.
- (iii)
- Integration of Hybrid Solutions: The paper explores the integration of FSO with radio frequency, millimeter-wave, and Terahertz technologies, emphasizing how hybrid approaches can enhance reliability and coverage in next-generation networks.
- (iv)
- Emerging Trends: The research highlights emerging trends in FSO communication, particularly the integration of artificial intelligence and machine learning techniques. This focus on AI-driven optimization provides insights into how these technologies can enhance the performance of FSO systems in dynamic environments.
- (v)
- Assessment of Future Prospects: The paper evaluates the potential of FSO to meet the increasing demands for high-speed, low-latency communication in the context of 5G and beyond. It provides a forward-looking perspective on scalability, reliability, and deployment strategies that can support the evolution of FSO communication systems.
- (vi)
- Research Directions: Finally, the paper identifies open challenges and outlines future research directions critical to maximizing the effectiveness of FSO technology. This contributes to the broader understanding of the role FSO can play in the future of wireless communication systems.
1.4. Article Structure
2. FSO Communication System
2.1. Transmitter Side
2.1.1. Transmission Wavelength
2.1.2. Transmission Safety
2.2. Channel
2.3. Receiver Side
2.3.1. Non-Coherent FSO Systems
2.3.2. Coherent FSO Systems
2.3.3. Self-Coherent FSO Systems
3. Challenges in FSO Communication
3.1. Atmospheric Channel Effects Phenomena
3.1.1. Atmospheric Interference
3.1.2. Atmospheric Turbulence
3.1.3. Alignment and Pointing Accuracy
3.1.4. Reliability and Security Concerns
Eavesdropping
Jamming
3.2. FSO System and Channel Models
3.2.1. FSO System Model
Noise Model
3.2.2. FSO Channel Models
Atmospheric Attenuation
Pointing Error or Misalignment Fading
Atmospheric Turbulence
3.2.3. FSO System Model Considering Jammer Interference
4. Enabling Technologies for FSO Communication
4.1. Robust Beam and Multi-Modulation Compatible System Design
4.1.1. Robust Beam Design
4.1.2. Multi-Modulation Compatible Miniaturization System
4.2. Mode Diversity Reception
4.3. Modulation Schemes
Modulation Scheme | Metrics | Comments | Ref. |
---|---|---|---|
Numerical simulation | |||
PPM-MSK-SIM | BER | The BER performance of PPM-MSK-SIM surpasses that of both PPM and BPSK-SIM. | [146] |
DOSM-PAM | ASER, APEP | A DOSM scheme that eliminates the need for CSIR results in a slight performance degradation compared to the conventional scheme with perfect CSIR. | [147] |
Q-ary PPM | BER | The suggested Q-ary PPM FEC-based approach offers outstanding coding gain. | [148] |
OOK, DPSK, DQPSK | BER | DPSK offers modulation gains of 3.2 dB over the OOK format in strong turbulence and 4.5 dB in weak turbulence. In moderate and strong turbulence, DPSK and DQPSK formats exhibit nearly identical BER performance. | [149] |
MPAM | BER | The adaptive LDPC-coded modulation scheme can tolerate deep fades of 30 dB and higher in strong turbulence conditions. | [150] |
MPPM | BER | Simulative evidence indicates that RL-MLC MPPM, when used with standard LDPC codes, can surpass the performance of any PPM scheme under identical transmission constraints. | [151] |
OSM | ABEP | OSM can provide performance on par with conventional coherent FSO systems using spatial diversity, while also surpassing them in spectral efficiency and hardware simplicity. | [152] |
SIM/SM | BER | The SIM/SM scheme can surpass the performance of conventional SIM in both AWGN and outdoor channels across different spectral efficiencies. | [153] |
SCPPM/SCMPPM | BER | In comparison to the SCPPM, the SCMPPM offers improved BER performance under a peak power constraint and is capable of achieving higher data rates. | [154] |
CPolSK | BER | The CPolSK system requires ≈ 3 dB less SNR compared to the OOK system. | [155] |
OOK, M-QAM-OFDM | BER | System utilizing hybrid WDM-PON-FSO technology has the potential to achieve high data rates. | [156] |
OSSK | BER, EC | AT and PE have an insignificant impact on the performance of the OSSK-based system. | [157] |
COIQSM | BER | COIQSM provides an efficient way to improve the reliability and resilience of FSO systems against atmospheric turbulence. | [158] |
Experimental demonstration | |||
CAP | BER | The proposed CAP and STBC scheme is minimally affected by air turbulence. It can be scaled up for higher speeds and extended for a greater interconnection range. | [159] |
PAM-4-PolM-DD | BER | The PolM-DD system offers greater reliability compared to the conventional IM-DD FSO system. | [160] |
OOK, BPSK, PPM | SER, Q-factor | PPM delivers superior performance in weak turbulence environments compared to OOK and BPSK. | [161] |
SCOM, PM | BER | SCOM reduces RF power fading and interference. PM scheme with remotely injection-locked DFB LD has high resilience to noise and distortion. | [162] |
M-QAM-OFDM, WDM | BE, BER | HH, PTS, and AC algorithms provide more than a 21% improvement in capacity. WDM can further enhance this capacity. | [163] |
M-QAM-DMT | factor, BER | In under weak turbulence conditions, the factor of the M-QAM DMT signals with FEC encoding schemes maintains its maximum value and is improved compared to the regular scheme. | [164] |
4.3.1. Traditional Modulation Techniques
4.3.2. Advanced Modulation Techniques
4.3.3. Advanced Optical Spatial Modulation Techniques
Modulation | Spectral Efficiency (SE) [bpcu] | Optical Chain | References |
---|---|---|---|
SM | 1 | [158,199] | |
OESM | 2 | [158,199,203,205,206] | |
QSM | 4 | [158,199,210] | |
OIQSM | |||
OGSM | [158,199,210] |
4.4. Adaptive Transmission
4.4.1. Overview
4.4.2. Adaptive Transmission Techniques
4.5. Aperture Averaging
4.5.1. Overview
4.5.2. Advantages of Aperture Averaging
4.5.3. Impact of Aperture Averaging
4.6. Spatial Diversity
4.6.1. Overview
4.6.2. MISO, SIMO, and MIMO Free-Space Optical Systems
Transmit Diversity FSO Systems
Receive Diversity FSO Systems
MIMO FSO Systems
4.7. Error Correction Codes and Modulated Signal Optimization
4.7.1. Requirements for Channel Capacity-Approaching Transceivers
4.7.2. Coded Modulation and Error Correction Codes
4.7.3. Probabilistic Shaping
Hybrid Constellation Shaping
Bitrate Adaptation Using PCS
4.8. Cooperative Relaying
4.8.1. Relay-Assisted Transmission
Link | Channel Model | ||||||
---|---|---|---|---|---|---|---|
1stHop | 2ndHop | 1stHop | 2ndHop | Relaying Mode | Detection Technique/Modulation | Metrics | Reference |
FSO | RF | DGG | EGK | AF, DF | IM/DD, HD | ABER, OP, EC | [13] |
RF | FSO | SR | GG | AF | QPSK | SER | [341] |
FSO | FSO | NE | NE | AF | IM/DD OOK | ABER, OP | [88] |
RF | FSO | Rayleigh | GG | DF | IM/DD, HD | ABER, OP | [342] |
RF | FSO | N-m | GG | DF | IM/DD OOK | OP | [343] |
RF | FSO | Rayleigh | GG | DF | SIM | IC | [344] |
RF | FSO | SR | GG | DF, AF | IM/DD OOK | SOP, ASC | [345] |
FSO | FSO | GG | DF | IM/DD | EC | [346] | |
FSO | FSO | GG | GG | DF | SIM DBPSK | BER | [347] |
RF | FSO | Rayleigh | GG | DF | IM/DD, HD | ABER, OP, EC | [348] |
FSO | RF | GG | GN-m | AF | IM/DD, HD | ABER, OP, EC | [67] |
FSO | RF | GG | GK | AF | SIM | OP | [349] |
FSO | RF | EW | N-m | DF | IM/DD | OP, ABER | [350] |
FSO | RF | AF | IM/DD | OP, EC | [351] | ||
RF | FSO | Rayleigh | GG | AF | IM/DD | BER, EC | [352] |
FSO | RF | GG | FTR | AF, DF | SIM, IM/DD, HD | OP, BER, EC | [353] |
RF | FSO | N-m | GG | AF | IM/DD, HD | OP, BER, EC | [354] |
RF | FSO | Rayleigh | GG | AF | SIM | OP, BER | [355] |
RF | FSO | BX | DF | IM/DD, HD | OP, BER, EC | [356] | |
RF | FSO | Rayleigh | GG | AF | IM/DD | OP, BER, EC | [6] |
RF | FSO | GG | AF | IM/DD | OP, BER | [357] | |
RF | FSO | DGG | AF | IM/DD | OP, BER, EC | [358] | |
FSO | RF | GG | DF | IM/DD | OP, BER, EC | [359] |
4.8.2. Cooperative FSO Transmission Schemes
Synchronous Transmission Scheme
Asynchronous Transmission Scheme
4.8.3. Cooperative FSO System Model
Synchronous Transmission Scheme
Asynchronous Transmission Scheme
4.8.4. Hybrid Satellite–Terrestrial FSO Cooperative System
4.9. Adaptive Optics
4.9.1. Principles of Adaptive Optics
- (i)
- Wavefront Sensing:
- Shack–Hartmann Wavefront Sensor: One of the most common devices used in AO systems is the Shack–Hartmann wavefront sensor. It comprises a series of lenslets that focus portions of the incoming wavefront onto a detector. The displacements of the focal spots on the detector are used to reconstruct the wavefront distortions [387,388,389].
- Other Sensors: There are various other wavefront sensors, including curvature sensors and pyramid sensors, each with specific advantages depending on the application [390].
- (ii)
- Wavefront Correction:
- (iii)
- Real-Time Feedback:
4.9.2. Implementation in FSO Systems
4.9.3. Pointing, Acquisition, and Tracking
4.10. Adaptive Detection Thresholds
4.10.1. Background
4.10.2. Mechanism of ADTs
- (i)
- (ii)
- Threshold Adjustment Algorithms: Algorithms such as the Kalman filter, maximum likelihood estimation, and adaptive filtering techniques dynamically adjust the detection thresholds. These algorithms analyze the statistical properties of the received signal and make predictive adjustments [413].
- (iii)
- Diversity Techniques: Implementing spatial or temporal diversity techniques can also aid in adaptive threshold adjustment. By combining multiple received signals, the system can better estimate the optimal threshold [423].
4.10.3. Benefits of ADTs
- (i)
- (ii)
- Enhanced System Reliability: Adaptive thresholds help maintain consistent communication quality even under adverse weather conditions and AT, thereby increasing the system’s reliability [413].
- (iii)
4.10.4. Implementation Challenges
- (i)
- Complexity: The algorithms required for real-time threshold adjustment can be complex and computationally intensive, necessitating advanced processing capabilities.
- (ii)
- Latency: Real-time adjustments must be swift to be effective. Any latency in the feedback loop or threshold adjustment process can degrade performance.
- (iii)
- Calibration: Adaptive systems require initial calibration and ongoing tuning to ensure they respond appropriately to changing conditions.
4.11. Hybrid FSO Systems
4.11.1. Overview
4.11.2. Architecture of Hybrid FSO Systems
Hard-Switching Configurations
Soft-Switching Configurations
5. Emerging Trends in FSO Communication
5.1. Incorporation of Emerging Technologies
5.1.1. Hybrid FSO/RF System
5.1.2. Hybrid FSO/mmWave System
5.1.3. Hybrid FSO/THz System
5.2. Enhanced FSO Transceiver Design
5.3. Quantum Cryptography
5.4. Orbital Angular Momentum-Aided FSO Systems
5.5. Artificial Intelligence-Driven FSO Systems
6. Open Challenges, Future Prospects and Research Directions
6.1. FSO Scalability and Reliability for 5G and Beyond Networks
6.1.1. Network Architecture
6.1.2. Deployment Strategies
6.1.3. Resource Management
6.1.4. System Integration
6.2. Standardization and Regulatory Challenges
6.2.1. Current State of FSO Standardization Efforts
IEEE Standards
ITU Recommendations
6.2.2. Regulatory Issues
Spectrum Allocation
Safety Regulations
Deployment Permits and Zoning Laws
Cross-Border Coordination
Environmental Regulations
6.3. Open Challenges
6.3.1. Mitigation Techniques for Atmospheric Turbulence
6.3.2. Integration with Emerging Technologies
6.3.3. New Materials and Devices
6.3.4. Security Enhancements
6.3.5. Network Architecture and Protocols
6.4. Future Directions
6.4.1. Modulation Schemes
Adaptive Modulation
Advanced Modulation Schemes in Conjunction with Sophisticated Error Correction
Optimizing Spatial Modulation with AI and ML
6.4.2. Adaptive Transmission
Dynamic Real-Time Adjustments
Adaptive Modulation and Coding
ML-Driven Predictive Adaptation
ML-Aided Optimization and Resource Allocation
6.4.3. Aperture Averaging
Optimized Aperture Designs
Adaptive Aperture Configurations
Integrating Machine Learning Algorithms
Exploring Hybrid Systems
Addressing the Service Demand
6.4.4. Spatial Diversity
Development of Advanced Adaptive Algorithms
Integration of Machine Learning Techniques
Advancements in Photonic Technologies
Extensive Field Trials and Standardized Protocols
6.4.5. Error Correction Codes and Modulated Signal Optimization
Error Correction Codes
Coded Modulation
Capacity-Approaching Probabilistic Amplitude Shaping
6.4.6. Cooperative Relaying
Intelligent Relay Selection Algorithms
Integration with Emerging Technologies
Energy-Efficient Relay Designs
Cooperative Relaying Strategies
Supporting Demanding Applications
6.4.7. Adaptive Optics
Advanced Wavefront Sensors and Deformable Mirrors
Integration of Machine Learning Algorithms
Miniaturization of AO Components
Hybrid Adaptive Optics Techniques
6.4.8. Adaptive Detection Thresholds
Integration of Machine Learning Techniques
Development of Sophisticated Algorithms
Exploration of Hybrid ADT Schemes
Broadening the Application of ADT Schemes
6.4.9. Hybrid FSO Systems
Exploring Seamless Communication Solutions
Optimizing Technology Integration
Innovations in Adaptive Modulation and Beam Steering
Intelligent Network Management
Development of Compact and Cost-Effective Transceivers
Supporting Emerging Applications
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
2D | Two-Dimensional |
3D | Three-Dimensional |
5G | Fifth Generation |
6G | Sixth Generation |
ABER | Average BER |
ADC | Analog-to-Digital Converter |
ADT | Adaptive Detection Threshold |
AF | Amplify-and-Forward |
AGC | Automatic Gain Control |
AI | Artificial Intelligence |
AMC | Adaptive Modulation and Coding |
ANN | Artificial Neural Network |
AO | Adaptive Optics |
APDs | Avalanche PDs |
APSK | Amplitude PSK |
ASC | Average Secrecy Capacity |
ASK | Amplitude Shift Keying |
AT | Atmospheric Turbulence |
AWGN | Additive White Gaussian Noise |
BA | Buffer-Aided |
BER | Bit-Error Rate |
BF | Buffer-Free |
BICM | Bit-Interleaved CM |
BPOLSK | Binary POLSK |
BPSK | Binary PSK |
BSI | Buffer State Information |
CNNs | Convolutional Neural Networks |
CPAT | Coarse PAT |
CSI | Channel State Information |
CSPR | Carrier-to-Signal Power Ratio |
DAC | Digital-to-Analog Converter |
DD | Direct Detection |
DF | Decode-and-Forward |
DFB | Distributed Feedback |
DL | Deep Learning |
DM | Deformable Mirror |
DMT | Discrete Multi-Tone |
DNN | Deep Neural Network |
DoF | Degrees of Freedom |
DPSK | Differential PSK |
DQPSK | Differential Quadrature PSK |
DRE | Digital Resolution Enhancer |
DRL | Deep Reinforcement Learning |
DSP | Digital Signal Processing |
e2e | End-to-End |
ECC | Error Correction Code |
EGC | Equal Gain Combining |
EW | Exponentiated Weibull |
FDT | Fixed Detection Threshold |
FEC | Forward Error Correction |
FER | Frame Error Rate |
FFT | Fast Fourier Transform |
FoV | Field-of-View |
FP | Fabry–Pérot |
FSK | Frequency Shift Keying |
FSM | Fast Steering Mirror |
FSO | Free-Space Optical |
Ge | Germanium |
GNN | Graph Neural Network |
GRU | Gated Recurrent Unit |
GS | Geometric Shaping |
HARQ | Hybrid Automatic Repeat Request |
HCS | Hybrid Constellation Shaping |
HQAM | Hexagonal QAM |
i.i.d. | Independent and Identically Distributed |
IAS | Inter-Antenna Synchronization |
ICI | Inter-Channel Interference |
IEC | International Electrotechnical Commission |
IEEE | Institute of Electrical and Electronics Engineers |
IFFT | Inverse Fast Fourier Transform |
IM | Intensity Modulation |
IM/DD | Intensity Modulation with Direct Detection |
InGaAs | Indium Gallium Arsenide |
IR | Infrared |
ITU | International Telecommunication Union |
KK | Kramers–Kronig |
LD | Laser Diode |
LDPC | Low-Density Parity Check |
LED | Light-Emitting Diode |
LG | Laguerre–Gaussian |
Li-Fi | Light Fidelity |
LN | Log-Normal |
LO | Local Oscillator |
LoS | Line-of-Sight |
m.g.f. | Moment Generating Function |
MAC | Medium Access Control |
MDPSK | Multilevel DPSK |
MEMS | Micro-Electro-Mechanical Systems |
MIMO | Multiple-Input Multiple-Output |
MISO | Multiple-Input Single-Output |
ML | Machine Learning |
MLSD | Maximum-Likelihood Sequence Detection |
mMTC | Massive Machine-Type Communications |
mmWave | Millimeter-Wave |
M-PAM | M-ary PAM |
MPOLSK | Multilevel POLSK |
MPSK | Multilevel PSK |
M-QAM | M-ary QAM |
MRC | Maximum Ratio Combining |
MSM | Multiple-Subcarrier Modulation |
MTBF | Mean Time Between Failures |
NBA | Non-Buffer-Aided |
NE | Negative Exponential |
NGMI | Normalized Generalized Mutual Information |
NLoS | Non-LoS |
OAM | Orbital Angular Momentum |
OBFSK | Orthogonal Binary FSK |
OE | Optical-to-Electrical |
OESM | Optically Enhanced SM |
OFDM | Orthogonal Frequency-Division Multiplexing |
OGSM | Optical Generalized SM |
OIQSM | Optically Improved Quadrature SM |
OOK | On–Off Keying |
OP | Outage Probability |
Op-Amp | Operational Amplifier |
OSM | Optical Spatial Modulation |
OSSK | Optical Space Shift Keying |
OSTBCs | Orthogonal Space–Time Block Codes |
OWC | Optical Wireless Communication |
p2p | Point-to-Point |
PAM | Pulse-Amplitude Modulation |
PAPR | Peak-to-Average-Power Ratio |
PAS | Probabilistic Amplitude Shaping |
PAT | Pointing, Acquisition, and Tracking |
PD | Photodiode |
Probability Density Function | |
PDM | Polarization Division Multiplexing |
PE | Pointing Errors |
PHY | Physical |
PICs | Photonic Integrated Circuits |
PIN | Positive–Intrinsic–Negative |
PLL | Phase-Locked Loop |
PLS | PHY Layer Security |
PolM | Polarization Modulation |
POLSK | Polarization Shift Keying |
PPM | Pulse-Position Modulation |
PS | Probabilistic Shaping |
PSAM | Pilot-Symbol Assisted Modulation |
PSF | Point Spread Function |
PSK | Phase-Shift Keying |
PSP | Per-Survivor Processing |
QAM | Quadrature Amplitude Modulation |
QCDs | Quantum Cascade Detectors |
QCLs | Quantum Cascade Lasers |
QKD | Quantum Key Distribution |
QoS | Quality of Service |
RC | Repetition Coding |
RF | Radio Frequency |
RoFSO | Radio over FSO |
RQAM | Rectangular QAM |
RS | Reed–Solomon |
Rx | Receiver |
SC | Selection Combining |
SDM | Space Division Multiplexing |
SDT | Sparse–Dense Transmission |
SE | Spectral Efficiency |
SER | Symbol Error Rate |
Si | Silicon |
SIM | Subcarrier Intensity Modulation |
SIMO | Single-Input Multiple-Output |
SINR | Signal-To-Interference-Plus-Noise Ratio |
SISO | Single-Input Single-Output |
SLMs | Spatial Light Modulators |
SM | Spatial Modulation |
SNR | Signal-to-Noise Ratio |
SOP | Secrecy Outage Probability |
SPSC | Strictly Positive Secrecy Capacity |
S-PSK | Subcarrier PSK |
SQAM | Squared QAM |
SSB | Single-Sideband |
SSBI | Signal–Signal Beat Interference |
SSBN | Signal-to-Signal Beating Noise |
STC | Space–Time Coding |
STD | Selection Transmit Diversity |
STTC | Space–Time Trellis Coding |
SVM | Support Vector Machines |
SWIPT | Simultaneous Wireless Information and Power Transfer |
TCM | Trellis-Coded Modulation |
THz | Terahertz |
TIA | Trans-Impedance Amplifier |
TLS | Transmit Laser Selection |
Tx | Transmitter |
UAVs | Unmanned Aerial Vehicles |
UOWC | Underwater OWC |
uRLLC | Ultra-Reliable Low-Latency Communication |
UV | Ultraviolet |
VCSELs | Vertical-Cavity Surface-Emitting Lasers |
VLC | Visible-Light Communication |
WDM | Wavelength Division Multiplexing |
XQAM | Cross QAM |
References
- Khalighi, M.A.; Uysal, M. Survey on Free Space Optical Communication: A Communication Theory Perspective. IEEE Commun. Surv. Tutor. 2014, 16, 2231–2258. [Google Scholar] [CrossRef]
- Alimi, I.A.; Monteiro, P.P. Free-Space Optical Communication for Future Broadband Access Networks. In Handbook of Radio and Optical Networks Convergence; Kawanishi, T., Ed.; Springer Nature: Singapore, 2023; pp. 1–28. [Google Scholar] [CrossRef]
- Alimi, I.; Shahpari, A.; Sousa, A.; Ferreira, R.; Monteiro, P.; Teixeira, A. Challenges and Opportunities of Optical Wireless Communication Technologies. In Optical Communication Technology; Pinho, P., Ed.; IntechOpen: Rijeka, Croatia, 2017; Chapter 2. [Google Scholar] [CrossRef]
- Fernandes, M.A.; Fernandes, G.M.; Monteiro, P.P.; Guiomar, F.P. High-Capacity Coherent FSO. In Handbook of Radio and Optical Networks Convergence; Kawanishi, T., Ed.; Springer Nature: Singapore, 2023; pp. 1–31. [Google Scholar] [CrossRef]
- Fernandes, M.A.; Fernandes, G.M.; Brandão, B.T.; Freitas, M.M.; Kaai, N.; van Der Wielen, B.; Reid, J.; Raiteri, D.; Monteiro, P.P.; Guiomar, F.P. Unraveling “Fiber in the Sky”: Terabit Capacity Enabled by Coherent Optical Wireless. IEEE Commun. Mag. 2024, 62, 40–46. [Google Scholar] [CrossRef]
- Alimi, I.A.; Monteiro, P.P.; Teixeira, A.L. Analysis of multiuser mixed RF/FSO relay networks for performance improvements in Cloud Computing-Based Radio Access Networks (CC-RANs). Opt. Commun. 2017, 402, 653–661. [Google Scholar] [CrossRef]
- Kaymak, Y.; Rojas-Cessa, R.; Feng, J.; Ansari, N.; Zhou, M.; Zhang, T. A Survey on Acquisition, Tracking, and Pointing Mechanisms for Mobile Free-Space Optical Communications. IEEE Commun. Surv. Tutor. 2018, 20, 1104–1123. [Google Scholar] [CrossRef]
- Ata, Y.; Alouini, M.S. HAPS Based FSO Links Performance Analysis and Improvement with Adaptive Optics Correction. IEEE Trans. Wirel. Commun. 2023, 22, 4916–4929. [Google Scholar] [CrossRef]
- Harada, R.; Shibata, N.; Kaneko, S.; Imai, T.; Kani, J.I.; Yoshida, T. Adaptive Beam Divergence for Expanding Range of Link Distance in FSO with Moving Nodes Toward 6G. IEEE Photonics Technol. Lett. 2022, 34, 1061–1064. [Google Scholar] [CrossRef]
- Uysal, M.; Li, J.; Yu, M. Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels. IEEE Trans. Wirel. Commun. 2006, 5, 1229–1233. [Google Scholar] [CrossRef]
- Alsaedi, W.K.; Ahmadi, H.; Khan, Z.; Grace, D. Spectrum Options and Allocations for 6G: A Regulatory and Standardization Review. IEEE Open J. Commun. Soc. 2023, 4, 1787–1812. [Google Scholar] [CrossRef]
- Alimi, I.A.; Patel, R.K.; Zaouga, A.; Muga, N.J.; Pinto, A.N.; Teixeira, A.L.; Monteiro, P.P. 6G CloudNet: Towards a Distributed, Autonomous, and Federated AI-Enabled Cloud and Edge Computing. In 6G Mobile Wireless Networks; Wu, Y., Singh, S., Taleb, T., Roy, A., Dhillon, H.S., Kanagarathinam, M.R., De, A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 251–283. [Google Scholar] [CrossRef]
- Ashrafzadeh, B.; Soleimani-Nasab, E.; Kamandar, M.; Uysal, M. A Framework on the Performance Analysis of Dual-Hop Mixed FSO-RF Cooperative Systems. IEEE Trans. Commun. 2019, 67, 4939–4954. [Google Scholar] [CrossRef]
- Karimi, M.; Uysal, M. Novel Adaptive Transmission Algorithms for Free-Space Optical Links. IEEE Trans. Commun. 2012, 60, 3808–3815. [Google Scholar] [CrossRef]
- Alimi, I.A.; Muga, N.J. Simple and robust transmit diversity based free-space optical communications for 5G and beyond networks. Opt. Commun. 2020, 476, 126306. [Google Scholar] [CrossRef]
- Alimi, I.A.; Patel, R.K.; Muga, N.J.; Pinto, A.N.; Teixeira, A.L.; Monteiro, P.P. Towards Enhanced Mobile Broadband Communications: A Tutorial on Enabling Technologies, Design Considerations, and Prospects of 5G and beyond Fixed Wireless Access Networks. Appl. Sci. 2021, 11, 427. [Google Scholar] [CrossRef]
- Korevaar, C.W. Optical Satellite Communications: Design Considerations and Research Outlook. In Handbook of Radio and Optical Networks Convergence; Kawanishi, T., Ed.; Springer Nature: Singapore, 2024; pp. 945–961. [Google Scholar] [CrossRef]
- Bloom, S.; Korevaar, E.; Schuster, J.; Willebrand, H. Understanding the performance of free-space optics [Invited]. J. Opt. Netw. 2003, 2, 178–200. [Google Scholar] [CrossRef]
- Naimullah, B.; Othman, M.; Rahman, A.K.; Sulaiman, S.; Ishak, S.; Hitam, S.; Aljunid, S. Comparison of wavelength propagation for Free Space Optical Communications. In Proceedings of the 2008 International Conference on Electronic Design, Penang, Malaysia, 1–3 December 2008; pp. 1–5. [Google Scholar] [CrossRef]
- Salah, M.S.; Cowley, W.G.; Nguyen, K.D. Adaptive transmission schemes for free-space optical channel. In Proceedings of the 2014 8th International Conference on Signal Processing and Communication Systems (ICSPCS), Gold Coast, QLD, Australia, 15–17 December 2014; pp. 1–7. [Google Scholar] [CrossRef]
- Manor, H.; Arnon, S. Performance of an optical wireless communication system as a function of wavelength. Appl. Opt. 2003, 42, 4285–4294. [Google Scholar] [CrossRef]
- Xu, Z.; Sadler, B.M. Ultraviolet Communications: Potential and State-Of-The-Art. IEEE Commun. Mag. 2008, 46, 67–73. [Google Scholar] [CrossRef]
- Alkholidi, A.G.; Altowij, K.S. Free Space Optical Communications—Theory and Practices. In Contemporary Issues in Wireless Communications; Khatib, M., Ed.; IntechOpen: Rijeka, Croatia, 2014; Chapter 5. [Google Scholar] [CrossRef]
- Deep Verma, G.; Mathur, A.; Bhatnagar, M.R. Differential Chaos Shift Keying for FSO Systems: A Novel Approach Under Turbulence and Boresight Pointing Errors. IEEE Open J. Commun. Soc. 2024, 5, 3263–3276. [Google Scholar] [CrossRef]
- Mecozzi, A.; Antonelli, C.; Shtaif, M. Kramers–Kronig coherent receiver. Optica 2016, 3, 1220–1227. [Google Scholar] [CrossRef]
- Muga, N.J.; Patel, R.K.; Alimi, I.A.; Silva, N.A.; Pinto, A.N. Self-coherent optical detection for access and metro networks. In Proceedings of the 2019 21st International Conference on Transparent Optical Networks (ICTON), Angers, France, 9–13 July 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Alimi, I.; Patel, R.; Silva, N.; Sun, C.; Ji, H.; Shieh, W.; Pinto, A.; Muga, N. A Review of Self-Coherent Optical Transceivers: Fundamental Issues, Recent Advances, and Research Directions. Appl. Sci. 2021, 11, 7554. [Google Scholar] [CrossRef]
- Chou, E.S.; Srinivas, H.; Kahn, J.M. Phase Retrieval-Based Coherent Receivers: Signal Design and Degrees of Freedom. J. Light. Technol. 2022, 40, 1296–1307. [Google Scholar] [CrossRef]
- Tabares, J.; Polo, V.; Cano, I.; Prat, J. Automatic λ-Control with Offset Compensation in DFB Intradyne Receiver for udWDM-PON. IEEE Photonics Technol. Lett. 2015, 27, 443–446. [Google Scholar] [CrossRef]
- Nelson, L.E.; Woodward, S.L.; Foo, S.; Moyer, M.; Beckett, D.J.S.; O’Sullivan, M.; Magill, P.D. Detection of a Single 40 Gb/s Polarization-Multiplexed QPSK Channel with a Real-Time Intradyne Receiver in the Presence of Multiple Coincident WDM Channels. J. Light. Technol. 2010, 28, 2933–2943. [Google Scholar] [CrossRef]
- Schaefer, S.; Rosenkranz, W.; Gregory, M. Comparison of homodyne and intradyne detection for high-order modulation schemes in optical intersatellite communication systems. In Proceedings of the 2015 IEEE International Conference on Space Optical Systems and Applications (ICSOS), New Orleans, LA, USA, 26–28 October 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Leven, A.; Kaneda, N.; Koc, U.V.; Chen, Y.K. Frequency Estimation in Intradyne Reception. IEEE Photonics Technol. Lett. 2007, 19, 366–368. [Google Scholar] [CrossRef]
- Patel, R.K.; Domingues, G.A.; Muga, N.J.; Pinto, A.N.; Fernandes, M.A.; Fernandes, G.M.; Monteiro, P.P.; Guiomar, F.P. Simplified Self-Coherent FSO Transmission Boosted by Digital Resolution Enhancer. J. Light. Technol. 2023, 41, 5958–5965. [Google Scholar] [CrossRef]
- Eiselt, N.; Griesser, H.; Wei, J.; Dochhan, A.; Eiselt, M.; Elbers, J.P.; Olmos, J.J.V.; Monroy, I.T. Real-time evaluation of 26-GBaud PAM-4 intensity modulation and direct detection systems for data-center interconnects. In Proceedings of the 2016 Optical Fiber Communications Conference and Exhibition (OFC), Anaheim, CA, USA, 20–24 March 2016; pp. 1–3. [Google Scholar]
- Li, Q.; Yang, H.; Xiang, M.; Cheng, W.; Wu, R.; Zhang, L.; Fu, S.; Qin, Y. Optical Amplifier-Free 100 Gbaud PAM-4 Transmission Over 10 Km SSMF Based on O-Band SiP Transceiver. J. Light. Technol. 2024, 42, 5175–5181. [Google Scholar] [CrossRef]
- Lee, B.Y.; Cheng, C.H.; Tsai, C.T.; Lin, H.S.; Kao, S.C.; Chiang, P.; Lee, H.C.; Shih, T.T.; Kuo, H.C.; Lin, G.R. Si Mach-Zehnder Modulator for PAM-4, QAM-OFDM, and DMT Transmission at C-Band. IEEE J. Sel. Top. Quantum Electron. 2023, 29, 1–12. [Google Scholar] [CrossRef]
- Chen, Z.; Liang, Z.; Wu, J.; Lu, W.; Chang, X.; Dai, X.; Yang, Q.; Liu, C.; Cheng, M.; Deng, L.; et al. Cost-Effective 40-Gbaud THP PS-PAM-4 C-Band IM/DD Transmission for 50-km Inter-DCI Utilizing 2-bit DAC. IEEE Photonics J. 2024, 16, 1–7. [Google Scholar] [CrossRef]
- Maneekut, R.; Elson, D.J.; Wakayama, Y.; Yoshikane, N.; Kaewplung, P. Reach Extension of a 53.12 Gbps PAM-4 IM/DD Signals with Optimized Extinction Ratio in Amplified Multi-Span O-Band Transmission. IEEE Access 2024, 12, 34656–34667. [Google Scholar] [CrossRef]
- Karar, A.S.; Falou, A.R.E.; Barakat, J.M.H.; Gürkan, Z.N.; Zhong, K. Recent Advances in Coherent Optical Communications for Short-Reach: Phase Retrieval Methods. Photonics 2023, 10, 308. [Google Scholar] [CrossRef]
- Morsy-Osman, M.; Chagnon, M.; Plant, D.V. Four-Dimensional Modulation and Stokes Direct Detection of Polarization Division Multiplexed Intensities, Inter Polarization Phase and Inter Polarization Differential Phase. J. Light. Technol. 2016, 34, 1585–1592. [Google Scholar] [CrossRef]
- Wu, Q.; Zhu, Y.; Jiang, H.; Zhuge, Q.; Hu, W. Optical Field Recovery in Jones Space. J. Light. Technol. 2023, 41, 66–74. [Google Scholar] [CrossRef]
- Kwapisz, J.; Roudas, I.; Fink, E. Mode Vector Modulation: Extending Stokes Vector Modulation to Higher Dimensions. J. Light. Technol. 2024, 42, 1966–1990. [Google Scholar] [CrossRef]
- Le, S.T.; Schuh, K.; Chagnon, M.; Buchali, F.; Dischler, R.; Aref, V.; Buelow, H.; Engenhardt, K.M. 1.72-Tb/s Virtual-Carrier-Assisted Direct-Detection Transmission Over 200 km. J. Light. Technol. 2018, 36, 1347–1353. [Google Scholar] [CrossRef]
- Tavakkolnia, I.; Chen, C.; Tan, Y.; Haas, H. Terabit Optical Wireless-Fiber Communication with Kramer-Kronig Receiver—Part II. IEEE Commun. Lett. 2022, 26, 1969–1973. [Google Scholar] [CrossRef]
- Tavakkolnia, I.; Chen, C.; Tan, Y.; Haas, H. Terabit Optical Wireless-Fiber Communication with Kramer-Kronig Receiver—Part I. IEEE Commun. Lett. 2022, 26, 1964–1968. [Google Scholar] [CrossRef]
- Paul, P.; Bhatnagar, M.R.; Nebhen, J. Pulse Jamming in Aperture-Averaged FSO Receiver Over Exponentiated Weibull Fading Channel. IEEE Trans. Wirel. Commun. 2022, 21, 4242–4254. [Google Scholar] [CrossRef]
- Alimi, I.A.; Shahpari, A.; Monteiro, P.P.; Teixeira, A.L. Effects of diversity schemes and correlated channels on OWC systems performance. J. Mod. Opt. 2017, 64, 2298–2305. [Google Scholar] [CrossRef]
- Lopez-Martinez, F.J.; Gomez, G.; Garrido-Balsells, J.M. Physical-Layer Security in Free-Space Optical Communications. IEEE Photonics J. 2015, 7, 1–14. [Google Scholar] [CrossRef]
- Singh, R.; Rawat, M.; Jaiswal, A. On the Physical Layer Security of Mixed FSO-RF SWIPT System with Non-Ideal Power Amplifier. IEEE Photonics J. 2021, 13, 1–17. [Google Scholar] [CrossRef]
- Wang, X.; Song, Y. Encoding and decoding by the states of vector modes for vortex beams propagating in air-core fiber. Opt. Express 2017, 25, 29342–29355. [Google Scholar] [CrossRef]
- Lai, L.; Liang, Y.; Du, W. Cooperative Key Generation in Wireless Networks. IEEE J. Sel. Areas Commun. 2012, 30, 1578–1588. [Google Scholar] [CrossRef]
- Shiu, Y.S.; Chang, S.Y.; Wu, H.C.; Huang, S.C.H.; Chen, H.H. Physical layer security in wireless networks: A tutorial. IEEE Wirel. Commun. 2011, 18, 66–74. [Google Scholar] [CrossRef]
- Poor, H.V. Information and inference in the wireless physical layer. IEEE Wirel. Commun. 2012, 19, 40–47. [Google Scholar] [CrossRef]
- Saber, M.J.; Sadough, S.M.S. On Secure Free-Space Optical Communications Over Málaga Turbulence Channels. IEEE Wirel. Commun. Lett. 2017, 6, 274–277. [Google Scholar] [CrossRef]
- Ai, Y.; Mathur, A.; Verma, G.D.; Kong, L.; Cheffena, M. Comprehensive Physical Layer Security Analysis of FSO Communications Over Málaga Channels. IEEE Photonics J. 2020, 12, 1–17. [Google Scholar] [CrossRef]
- Pattanayak, D.R.; Dwivedi, V.K.; Karwal, V.; Yadav, P.K.; Singh, G. Physical Layer Security Analysis of Multi-Hop Hybrid RF/FSO System in Presence of Multiple Eavesdroppers. IEEE Photonics J. 2022, 14, 1–12. [Google Scholar] [CrossRef]
- Sun, X.; Djordjevic, I.B. Physical-Layer Security in Orbital Angular Momentum Multiplexing Free-Space Optical Communications. IEEE Photonics J. 2016, 8, 1–10. [Google Scholar] [CrossRef]
- Zou, D.; Xu, Z. Information Security Risks Outside the Laser Beam in Terrestrial Free-Space Optical Communication. IEEE Photonics J. 2016, 8, 1–9. [Google Scholar] [CrossRef]
- Sun, Q.; Yan, D.; Wang, Y. Research on physical layer security performance of hybrid RF/FSO system based on RIS assistance under FSO eavesdropping environment. IEEE Photonics J. 2024, 16, 1–9. [Google Scholar] [CrossRef]
- Boluda-Ruiz, R.; Tokgoz, S.C.; García-Zambrana, A.; Qaraqe, K. Enhancing Secrecy Capacity in FSO Links via MISO Systems Through Turbulence-Induced Fading Channels with Misalignment Errors. IEEE Photonics J. 2020, 12, 1–13. [Google Scholar] [CrossRef]
- Pan, X.; Ran, H.; Pan, G.; Xie, Y.; Zhang, J. On Secrecy Analysis of DF Based Dual Hop Mixed RF-FSO Systems. IEEE Access 2019, 7, 66725–66730. [Google Scholar] [CrossRef]
- Erdogan, E.; Altunbas, I.; Kurt, G.K.; Yanikomeroglu, H. The Secrecy Comparison of RF and FSO Eavesdropping Attacks in Mixed RF-FSO Relay Networks. IEEE Photonics J. 2022, 14, 1–8. [Google Scholar] [CrossRef]
- Abd El-Malek, A.H.; Salhab, A.M.; Zummo, S.A.; Alouini, M.S. Security-Reliability Trade-Off Analysis for Multiuser SIMO Mixed RF/FSO Relay Networks with Opportunistic User Scheduling. IEEE Trans. Wirel. Commun. 2016, 15, 5904–5918. [Google Scholar] [CrossRef]
- Rahman, M.M.; Badrudduza, A.S.M.; Sarker, N.A.; Ibrahim, M.; Ansari, I.S.; Yu, H. RIS-Aided Mixed RF-FSO Wireless Networks: Secrecy Performance Analysis with Simultaneous Eavesdropping. IEEE Access 2023, 11, 126507–126523. [Google Scholar] [CrossRef]
- Lei, H.; Dai, Z.; Park, K.H.; Lei, W.; Pan, G.; Alouini, M.S. Secrecy Outage Analysis of Mixed RF-FSO Downlink SWIPT Systems. IEEE Trans. Commun. 2018, 66, 6384–6395. [Google Scholar] [CrossRef]
- Saber, M.J.; Keshavarz, A.; Mazloum, J.; Sazdar, A.M.; Piran, M.J. Physical-Layer Security Analysis of Mixed SIMO SWIPT RF and FSO Fixed-Gain Relaying Systems. IEEE Syst. J. 2019, 13, 2851–2858. [Google Scholar] [CrossRef]
- Zedini, E.; Soury, H.; Alouini, M.S. On the Performance Analysis of Dual-Hop Mixed FSO/RF Systems. IEEE Trans. Wirel. Commun. 2016, 15, 3679–3689. [Google Scholar] [CrossRef]
- Saber, M.J.; Mazloum, J.; Sazdar, A.M.; Keshavarz, A.; Piran, M.J. On Secure Mixed RF-FSO Decode-and-Forward Relaying Systems with Energy Harvesting. IEEE Syst. J. 2020, 14, 4402–4405. [Google Scholar] [CrossRef]
- Lei, H.; Dai, Z.; Ansari, I.S.; Park, K.H.; Pan, G.; Alouini, M.S. On Secrecy Performance of Mixed RF-FSO Systems. IEEE Photonics J. 2017, 9, 1–14. [Google Scholar] [CrossRef]
- Yang, L.; Liu, T.; Chen, J.; Alouini, M.S. Physical-Layer Security for Mixed η–μ and M-Distribution Dual-Hop RF/FSO Systems. IEEE Trans. Veh. Technol. 2018, 67, 12427–12431. [Google Scholar] [CrossRef]
- Makki, B.; Svensson, T.; Brandt-Pearce, M.; Alouini, M.S. On the Performance of Millimeter Wave-Based RF-FSO Multi-Hop and Mesh Networks. IEEE Trans. Wirel. Commun. 2017, 16, 7746–7759. [Google Scholar] [CrossRef]
- Balti, E.; Guizani, M.; Hamdaoui, B.; Khalfi, B. Mixed RF/FSO Relaying Systems with Hardware Impairments. In Proceedings of the GLOBECOM 2017—2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Ai, Y.; Mathur, A.; Lei, H.; Cheffena, M.; Ansari, I.S. Secrecy enhancement of RF backhaul system with parallel FSO communication link. Opt. Commun. 2020, 475, 126193. [Google Scholar] [CrossRef]
- Amuru, S.; Dhillon, H.S.; Buehrer, R.M. On Jamming Against Wireless Networks. IEEE Trans. Wirel. Commun. 2017, 16, 412–428. [Google Scholar] [CrossRef]
- Paul, P.; Bhatnagar, M.R.; Jaiswal, A. Jamming in Free Space Optical Systems: Mitigation and Performance Evaluation. IEEE Trans. Commun. 2020, 68, 1631–1647. [Google Scholar] [CrossRef]
- Arkin, E.; Cassuto, Y.; Efrat, A.; Grebla, G.; Mitchell, J.S.B.; Sankararaman, S.; Segal, M. Optimal placement of protective jammers for securing wireless transmissions in a geographic domain. In Proceedings of the 14th International Conference on Information Processing in Sensor Networks (IPSN ’15), New York, NY, USA, 13–16 April 2015; pp. 37–46. [Google Scholar] [CrossRef]
- Grover, K.; Lim, A.; Yang, Q. Jamming and anti-jamming techniques in wireless networks: A survey. Int. J. Ad Hoc Ubiquitous Comput. 2014, 17, 197–215. [Google Scholar] [CrossRef]
- Tague, P.; Slater, D.; Poovendran, R.; Noubir, G. Linear programming models for jamming attacks on network traffic flows. In Proceedings of the 2008 6th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks and Workshops, Berlin, Germany, 1–3 April 2008; pp. 207–216. [Google Scholar] [CrossRef]
- Yan, Q.; Zeng, H.; Jiang, T.; Li, M.; Lou, W.; Hou, Y.T. Jamming Resilient Communication Using MIMO Interference Cancellation. IEEE Trans. Inf. Forensics Secur. 2016, 11, 1486–1499. [Google Scholar] [CrossRef]
- Deng, P.; Yuan, X.; Zhao, M.; Zeng, Y.; Kavehrad, M. Off-axis catadioptric fisheye wide field-of-view optical receiver for free space optical communications. Opt. Eng. 2012, 51, 063002. [Google Scholar] [CrossRef]
- Ho, T.H. Pointing, Acquisition, and Tracking Systems for Free-Space Optical Communication Links; University of Maryland: College Park, MD, USA, 2007. [Google Scholar]
- Dabiri, M.T.; Sadough, S.M.S.; Khalighi, M.A. Channel Modeling and Parameter Optimization for Hovering UAV-Based Free-Space Optical Links. IEEE J. Sel. Areas Commun. 2018, 36, 2104–2113. [Google Scholar] [CrossRef]
- Ghassemlooy, Z.; Popoola, W.; Rajbhandari, S. Optical Wireless Communications: System and Channel Modelling with MATLAB®, 2nd ed.; CRC Press: Boca Raton FL, USA, 2019. [Google Scholar]
- Kaushal, H.; Kaddoum, G. Optical Communication in Space: Challenges and Mitigation Techniques. IEEE Commun. Surv. Tutor. 2017, 19, 57–96. [Google Scholar] [CrossRef]
- Paul, P.; Bhatnagar, M.R. Jamming Threats in Free-Space Optics. IEEE Commun. Mag. 2022, 60, 104–108. [Google Scholar] [CrossRef]
- Paul, P.; Bhatnagar, M.R. Random Relay Jamming in Cooperative Free Space Optical Systems. IEEE Syst. J. 2022, 16, 2413–2424. [Google Scholar] [CrossRef]
- Paul, P.; Bhatnagar, M.R. DF Relaying in Cooperative Free Space Optical Communication System in Presence of Jammer. In Proceedings of the 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Porto, Portugal, 20–22 July 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Shukla, A.K.; Bhatnagar, M.R. Mitigating Jamming in FSO Cooperative Networks: A Buffer-Aided Relaying Approach. IEEE Commun. Lett. 2023, 27, 2078–2082. [Google Scholar] [CrossRef]
- Farid, A.A.; Hranilovic, S. Outage Capacity Optimization for Free-Space Optical Links with Pointing Errors. J. Light. Technol. 2007, 25, 1702–1710. [Google Scholar] [CrossRef]
- Al Naboulsi, M.; Sizun, H.; de Fornel, F. Fog attenuation prediction for optical and infrared waves. Opt. Eng. 2004, 43, 319–329. [Google Scholar] [CrossRef]
- Alimi, I.; Shahpari, A.; Ribeiro, V.; Sousa, A.; Monteiro, P.; Teixeira, A. Channel characterization and empirical model for ergodic capacity of free-space optical communication link. Opt. Commun. 2017, 390, 123–129. [Google Scholar] [CrossRef]
- Luong, D.A.; Thang, T.C.; Pham, A.T. Effect of avalanche photodiode and thermal noises on the performance of binary phase-shift keying-subcarrier-intensity modulation/free-space optical systems over turbulence channels. IET Commun. 2013, 7, 738–744. [Google Scholar] [CrossRef]
- Magidi, S.; Jabeena, A. Free Space Optics, Channel Models and Hybrid Modulation Schemes: A Review. Wirel. Pers. Commun. 2021, 119, 2951–2974. [Google Scholar] [CrossRef]
- Andrews, L.; Phillips, R. Laser Beam Propagation Through Random Media; Press Monographs; SPIE Press: Bellingham, DC, USA, 2005. [Google Scholar]
- Kiasaleh, K. Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence. IEEE Trans. Commun. 2005, 53, 1455–1461. [Google Scholar] [CrossRef]
- Alimi, I.; Shahpari, A.; Ribeiro, V.; Kumar, N.; Monteiro, P.; Teixeira, A. Optical wireless communication for future broadband access networks. In Proceedings of the 2016 21st European Conference on Networks and Optical Communications (NOC), Lisbon, Portugal, 1–3 June 2016; pp. 124–128. [Google Scholar] [CrossRef]
- Ghassemlooy, Z.; Popoola, W.; Rajbhandari, S. Optical Wireless Communications: System and Channel Modelling with MATLAB®; CRC Press: Boca Raton FL, USA, 2012. [Google Scholar]
- Bekkali, A.; Naila, C.B.; Kazaura, K.; Wakamori, K.; Matsumoto, M. Transmission Analysis of OFDM-Based Wireless Services Over Turbulent Radio-on-FSO Links Modeled by Gamma–Gamma Distribution. IEEE Photonics J. 2010, 2, 510–520. [Google Scholar] [CrossRef]
- Jurado-Navas, A.; Garrido-Balsells, J.M.; Paris, J.F.; Puerta-Notario, A. A Unifying Statistical Model for Atmospheric Optical Scintillation; IntechOpen: Rijeka, Croatia, 2011; pp. 181–206. [Google Scholar]
- Yang, L.; Hasna, M.O.; Gao, X. Performance of Mixed RF/FSO with Variable Gain over Generalized Atmospheric Channels. IEEE J. Sel. Areas Comm. 2015, 33, 1913–1924. [Google Scholar] [CrossRef]
- Sandalidis, H.G.; Tsiftsis, T.A.; Karagiannidis, G.K. Optical Wireless Communications with Heterodyne Detection Over Turbulence Channels with Pointing Errors. J. Light. Technol. 2009, 27, 4440–4445. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, B.; Gao, Z.; Zhao, G.; Duan, Z. Evolution behavior of Gaussian Schell-model vortex beams propagating through oceanic turbulence. Opt. Express 2014, 22, 17723–17734. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, L.; Zhao, S. Research on Hypergeometric-Gaussian Vortex Beam Propagating under Oceanic Turbulence by Theoretical Derivation and Numerical Simulation. J. Mar. Sci. Eng. 2021, 9, 442. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Zheng, B.; Yang, Z.; Zhao, S. Effects of Oceanic Turbulence on the Propagation of Hypergeometric-Gaussian Beam Carrying Orbital Angular Momentum. In Proceedings of the 2020 IEEE International Conference on Communications Workshops (ICC Workshops), Dublin, Ireland, 7–11 June 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Kotlyar, V.V.; Kovalev, A.A. Family of hypergeometric laser beams. J. Opt. Soc. Am. A 2008, 25, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Karimi, E.; Zito, G.; Piccirillo, B.; Marrucci, L.; Santamato, E. Hypergeometric-Gaussian modes. Opt. Lett. 2007, 32, 3053–3055. [Google Scholar] [CrossRef]
- Suresh, P.; Rajesh, K.; Pillai, T. Tight focusing of amplitude modulated HyGG type—II beam using high NA lens axicon. In Proceedings of the 2012 International Conference on Fiber Optics and Photonics (PHOTONICS), Chennai, India, 9–12 December 2012; pp. 1–3. [Google Scholar]
- Zhang, Y.; Deng, S.; Yang, H. Transmittance freezing of a random frozen photons beam in a turbulent ocean. OSA Contin. 2020, 3, 1084–1095. [Google Scholar] [CrossRef]
- Li, Y.; Yu, L.; Zhang, Y. Influence of anisotropic turbulence on the orbital angular momentum modes of Hermite-Gaussian vortex beam in the ocean. Opt. Express 2017, 25, 12203–12215. [Google Scholar] [CrossRef]
- Yang, H.; Yan, Q.; Wang, P.; Hu, L.; Zhang, Y. Bit-error rate and average capacity of an absorbent and turbulent underwater wireless communication link with perfect Laguerre-Gauss beam. Opt. Express 2022, 30, 9053–9064. [Google Scholar] [CrossRef]
- Cheng, M.; Guo, L.; Li, J.; Zhang, Y. Channel Capacity of the OAM-Based Free-Space Optical Communication Links with Bessel-Gauss Beams in Turbulent Ocean. IEEE Photonics J. 2016, 8, 1–11. [Google Scholar] [CrossRef]
- Xu, Y.; Shi, H.; Zhang, Y. Effects of anisotropic oceanic turbulence on the power of the bandwidth-limited OAM mode of partially coherent modified Bessel correlated vortex beams. J. Opt. Soc. Am. A 2018, 35, 1839–1845. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, Y. Analysis of modal crosstalk for communication in turbulent ocean using Lommel-Gaussian beam. Opt. Express 2017, 25, 22565–22574. [Google Scholar] [CrossRef]
- Li, H.; Liu, H.; Chen, X. Nonlinear generation of Airy vortex beam. Opt. Express 2018, 26, 21204–21209. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, Z.; Zhao, S. Influence of oceanic turbulence on propagation of Airy vortex beam carrying orbital angular momentum. Optik 2019, 176, 49–55. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, Z.; Wang, X. Generation and characteristics of an Airy vortex beam from the anomalous vortex beam. Results Phys. 2022, 35, 105389. [Google Scholar] [CrossRef]
- Khonina, S.N.; Kazanskiy, N.L.; Karpeev, S.V.; Butt, M.A. Bessel Beam: Significance and Applications—A Progressive Review. Micromachines 2020, 11, 997. [Google Scholar] [CrossRef]
- Paković, S.; Zhou, S.; González-Ovejero, D.; Pavone, S.C.; Grbic, A.; Ettorre, M. Bessel–Gauss Beam Launchers for Wireless Power Transfer. IEEE Open J. Antennas Propag. 2021, 2, 654–663. [Google Scholar] [CrossRef]
- Zhu, K.; Zhou, G.; Li, X.; Zheng, X.; Tang, H. Propagation of Bessel-Gaussian beams with optical vortices in turbulent atmosphere. Opt. Express 2008, 16, 21315–21320. [Google Scholar] [CrossRef]
- Droulias, S.; Loulakis, M.; Papazoglou, D.G.; Tzortzakis, S.; Chen, Z.; Efremidis, N.K. Inverted pin beams for robust long-range propagation through atmospheric turbulence. Opt. Lett. 2023, 48, 5467–5470. [Google Scholar] [CrossRef]
- Droulias, S.; Loulakis, M.; Papazoglou, D.G.; Tzortzakis, S.; Chen, Z.; Efremidis, N.K. Inverted Pin Beams for Robust Propagation Through Atmospheric Turbulence. In Proceedings of the 2024 Conference on Lasers and Electro-Optics (CLEO), Charlotte, NC, USA, 5–10 May 2024; pp. 1–2. [Google Scholar]
- Droulias, S.; Loulakis, M.; Papazoglou, D.G.; Tzortzakis, S.; Chen, Z.; Efremidis, N.K. Vortex inverted pin beams: Mitigation of scintillations in strong atmospheric turbulence. Opt. Lett. 2024, 49, 4811–4814. [Google Scholar] [CrossRef]
- Li, J.; Chen, Y.; Cao, Q. Analytical vectorial structure of truncated modified Laguerre–Gaussian beam in the far field. Opt. Laser Technol. 2012, 44, 1247–1255. [Google Scholar] [CrossRef]
- Willner, A.E.; Liu, C. Perspective on using multiple orbital-angular-momentum beams for enhanced capacity in free-space optical communication links. Nanophotonics 2021, 10, 225–233. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.; Tang, X.; Chen, H.; Chen, X. Performance analysis of a spatial diversity coherent free-space optical communication system based on optimal branch block phase correction. Opt. Express 2022, 30, 7854–7869. [Google Scholar] [CrossRef] [PubMed]
- Geng, C.; Li, F.; Zuo, J.; Liu, J.; Yang, X.; Yu, T.; Jiang, J.; Li, X. Fiber laser transceiving and wavefront aberration mitigation with adaptive distributed aperture array for free-space optical communications. Opt. Lett. 2020, 45, 1906–1909. [Google Scholar] [CrossRef]
- Hong, Y.Q.; Han, S.K. Polarization-dependent SOA-based PolSK modulation for turbulence-robust FSO communication. Opt. Express 2021, 29, 15587–15594. [Google Scholar] [CrossRef]
- Toyoshima, M. Recent Trends in Space Laser Communications for Small Satellites and Constellations. J. Light. Technol. 2021, 39, 693–699. [Google Scholar] [CrossRef]
- Amin, R.; Maiti, R.; Gui, Y.; Suer, C.; Miscuglio, M.; Heidari, E.K.; Khurgin, J.B.; Chen, R.T.; Dalir, H.; Sorger, V.J. Heterogeneously integrated ITO plasmonic Mach–Zehnder interferometric modulator on SOI. Sci. Rep. 2021, 11, 1287. [Google Scholar] [CrossRef]
- Daulay, O.; Liu, G.; Marpaung, D. Microwave photonic notch filter with integrated phase-to-intensity modulation transformation and optical carrier suppression. Opt. Lett. 2021, 46, 488–491. [Google Scholar] [CrossRef]
- Alam, M.S.; Maram, R.; Shahriar, K.A.; Ricciardi, P.; Plant, D.V. Chirped Managed Laser for Multilevel Modulation Formats: A Semi-Analytical Approach for Efficient Filter Design. J. Light. Technol. 2024, 42, 2351–2361. [Google Scholar] [CrossRef]
- Franklin, J.; Kil, L.; Mooney, D.; Mahgerefteh, D.; Zheng, X.; Matsui, Y.; McCallion, K.; Fan, F.; Tayebati, P. Generation of RZ-DPSK using a Chirp-Managed Laser (CML). In Proceedings of the OFC/NFOEC 2008—2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference, San Diego, CA, USA, 24–28 February 2008; pp. 1–3. [Google Scholar] [CrossRef]
- Gao, D.; Li, T.; Bai, Z.; Ma, R.; Xie, Z.; Jia, S.; Wang, W.; Xie, X. Multi-modulation compatible miniaturization system for FSO communication assisted by chirp-managed laser. Opt. Express 2022, 30, 32306–32316. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, Z.; Li, Y.; Benton, D.M.; Ali, A.A.I.; Patel, M.; Lavery, M.P.; Ellis, A.D. Adaptive Transceiver Design for High-Capacity Multi-Modal Free-Space Optical Communications with Commercial Devices and Atmospheric Turbulence. J. Light. Technol. 2023, 41, 3397–3406. [Google Scholar] [CrossRef]
- Kaur, S.; Sachdeva, S.; Sindhwani, M. 400 Gb/s free space optical communication (FSOC) system using OAM multiplexing and PDM-QPSK with DSP. J. Opt. Commun. 2024, 45, 917–923. [Google Scholar] [CrossRef]
- Khan, A.N.; Saeed, S.; Naeem, Y.; Zubair, M.; Massoud, Y.; Younis, U. Atmospheric Turbulence and Fog Attenuation Effects in Controlled Environment FSO Communication Links. IEEE Photonics Technol. Lett. 2022, 34, 1341–1344. [Google Scholar] [CrossRef]
- Chen, M.; Liu, C.; Xian, H. Experimental demonstration of single-mode fiber coupling over relatively strong turbulence with adaptive optics. Appl. Opt. 2015, 54, 8722–8726. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, J. Compensation of a distorted N-fold orbital angular momentum multicasting link using adaptive optics. Opt. Lett. 2016, 41, 1482–1485. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Li, Y.; Zhou, H.; Bian, Y.; Yang, C.; Li, W.; Qiu, J.; Guo, H.; Hong, X.; Zuo, Y.; et al. Performance enhancement of free-space optical communications under atmospheric turbulence using modes diversity coherent receipt. Opt. Express 2018, 26, 28879–28890. [Google Scholar] [CrossRef]
- Wang, F.; Qiu, C.; Zhang, M.; Hu, G. Free-Space Optical Communication Based on Mode Diversity Reception Using a Nonmode Selective Photonic Lantern and Equal Gain Combining. IEEE Photonics J. 2023, 15, 1–7. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, H.; Chen, H.; Alvarado, J.C.; Fontaine, N.K.; Mazur, M.; Zhang, Q.; Ryf, R.; Amezcua-Correa, R.; Song, Y.; et al. Free-Space Optics Communications Employing Elliptical-Aperture Multimode Diversity Reception Under Anisotropic Turbulence. J. Light. Technol. 2022, 40, 1502–1508. [Google Scholar] [CrossRef]
- Ozdur, I.; Toliver, P.; Woodward, T.K. Photonic-lantern-based coherent LIDAR system. Opt. Express 2015, 23, 5312–5316. [Google Scholar] [CrossRef]
- Guo, W.; Li, Y.; Chen, J.; Jin, T.; Jiao, S.; Wu, J.; Qiu, J.; Guo, H. Satellite-to-ground optical downlink model using mode mismatching multi-mode photonic lanterns. Opt. Express 2023, 31, 35041–35053. [Google Scholar] [CrossRef]
- Fontaine, N.K.; Carpenter, J.; Gross, S.; Leon-Saval, S.; Jung, Y.; Richardson, D.J.; Amezcua-Correa, R. Photonic Lanterns, 3-D Waveguides, Multiplane Light Conversion, and Other Components That Enable Space-Division Multiplexing. Proc. IEEE 2022, 110, 1821–1834. [Google Scholar] [CrossRef]
- Wang, F.; Qiu, C.; Chen, Y.; Hu, G. Performance of improved mode diversity reception for free-space optical communication under atmospheric turbulence. J. Opt. Commun. Netw. 2022, 14, 725–732. [Google Scholar] [CrossRef]
- Liu, H.; Liao, R.; Wei, Z.; Hou, Z.; Qiao, Y. BER Analysis of a Hybrid Modulation Scheme Based on PPM and MSK Subcarrier Intensity Modulation. IEEE Photonics J. 2015, 7, 1–10. [Google Scholar] [CrossRef]
- Jaiswal, A.; Bhatnagar, M.R.; Soni, P.; Jain, V.K. Differential Optical Spatial Modulation Over Atmospheric Turbulence. IEEE J. Sel. Top. Signal Process. 2019, 13, 1417–1432. [Google Scholar] [CrossRef]
- Djordjevic, I.; Vasic, B.; Neifeld, M. Multilevel coding in free-space optical MIMO transmission with Q-ary PPM over the atmospheric turbulence channel. IEEE Photonics Technol. Lett. 2006, 18, 1491–1493. [Google Scholar] [CrossRef]
- Wang, Z.; Zhong, W.D.; Fu, S.; Lin, C. Performance comparison of different modulation formats over free-space optical (FSO) turbulence links with space diversity reception technique. IEEE Photonics J. 2009, 1, 277–285. [Google Scholar] [CrossRef]
- Djordjevic, I.B. Adaptive Modulation and Coding for Free-Space Optical Channels. J. Opt. Commun. Netw. 2010, 2, 221–229. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Lampe, L. Coded multipulse pulse-position modulation for free-space optical communications. IEEE Trans. Commun. 2010, 58, 1036–1041. [Google Scholar] [CrossRef]
- Peppas, K.P.; Mathiopoulos, P.T. Free-Space Optical Communication with Spatial Modulation and Coherent Detection Over H-K Atmospheric Turbulence Channels. J. Light. Technol. 2015, 33, 4221–4232. [Google Scholar] [CrossRef]
- Hwang, S.H.; Cheng, Y. SIM/SM-Aided Free-Space Optical Communication with Receiver Diversity. J. Light. Technol. 2014, 32, 2443–2450. [Google Scholar] [CrossRef]
- Tan, Y.; Liu, W.; Guo, J.; Ai, Y. Iterative Coded Multipulse Pulse Position Modulation for High Data Rate Optical Space Communication. Chin. J. Electron. 2011, 20, 121–124. [Google Scholar]
- Zhao, X.; Yao, Y.; Sun, Y.; Liu, C. Circle Polarization Shift Keying with Direct Detection for Free-Space Optical Communication. J. Opt. Commun. Netw. 2009, 1, 307–312. [Google Scholar] [CrossRef]
- El-Nahal, F.; Xu, T.; AlQahtani, D.; Leeson, M. A Bidirectional WDM-PON Free Space Optical (FSO) System for Fronthaul 5 G C-RAN Networks. IEEE Photonics J. 2023, 15, 1–10. [Google Scholar] [CrossRef]
- Vishwakarma, N.; Swaminathan, R.; Diamantoulakis, P.D.; Karagiannidis, G.K. Performance Analysis of Optical Reflecting Surface-Assisted Optical Space Shift Keying-Based MIMO-FSO System. IEEE Trans. Commun. 2023, 71, 4751–4763. [Google Scholar] [CrossRef]
- Matarneh, A.M. Coded-Optical Improved Quadrature Spatial Modulation Over Gamma–Gamma Atmospheric Strong Turbulence Channels with Pointing Errors. IEEE Access 2024, 12, 83513–83524. [Google Scholar] [CrossRef]
- Wang, K.; Lim, C.; Wong, E.; Alameh, K.; Kandeepan, S.; Skafidas, E. High-Speed Reconfigurable Free-Space Optical Interconnects with Carrierless-Amplitude-Phase Modulation and Space-Time-Block Code. J. Light. Technol. 2019, 37, 627–633. [Google Scholar] [CrossRef]
- Zhang, R.; Peng, P.C.; Li, X.; Liu, S.; Zhou, Q.; He, J.; Chen, Y.W.; Shen, S.; Yao, S.; Chang, G.K. 4 × 100-Gb/s PAM-4 FSO Transmission Based on Polarization Modulation and Direct Detection. IEEE Photonics Technol. Lett. 2019, 31, 755–758. [Google Scholar] [CrossRef]
- Rajbhandari, S.; Ghassemlooy, Z.; Haigh, P.A.; Kanesan, T.; Tang, X. Experimental Error Performance of Modulation Schemes Under a Controlled Laboratory Turbulence FSO Channel. J. Light. Technol. 2015, 33, 244–250. [Google Scholar] [CrossRef]
- Lu, H.H.; Li, C.Y.; Tsai, W.S.; Peng, Y.E.; Fan, W.C.; Lin, C.J.; Tang, Y.S.; Chen, Y.X.; Lin, Y.S. Two-Way 5G NR Fiber-Wireless Systems Using Single-Carrier Optical Modulation for Downstream and Phase Modulation Scheme for Upstream. J. Light. Technol. 2023, 41, 1749–1758. [Google Scholar] [CrossRef]
- Jian, Y.H.; Chen, J.W.; Wang, C.C.; Wei, T.C.; Chow, C.W. High Spectral Efficient Free-Space Optical Communication Using Multi-Stage Noise Shaping Delta-Sigma Modulation with Partial Transmit Sequence Algorithm and Arithmetic Coding. J. Light. Technol. 2024, 42, 6767–6773. [Google Scholar] [CrossRef]
- Liu, X.; Yang, W.; Liu, Z.; Xiao, S. Performance Enhancement of FEC-Coded 32QAM DMT Signals with Rate-Flexible HCS in FSO Systems. IEEE Photonics Technol. Lett. 2024, 36, 1081–1084. [Google Scholar] [CrossRef]
- Zhu, X.; Kahn, J. Performance bounds for coded free-space optical communications through atmospheric turbulence channels. IEEE Trans. Commun. 2003, 51, 1233–1239. [Google Scholar] [CrossRef]
- Kahn, J.M. Modulation and Detection Techniques for Optical Communication Systems. In Proceedings of the Optical Amplifiers and Their Applications/Coherent Optical Technologies and Applications, Whistler, BC, Canada, 25–30 June 2006; p. CThC1. [Google Scholar] [CrossRef]
- Özbilgin, T.; Koca, M. Polarization Diversity in MIMO Communication Over Atmospheric Turbulence Channels. J. Light. Technol. 2016, 34, 3981–3992. [Google Scholar] [CrossRef]
- Yang, L.; Gao, X.; Alouini, M.S. Performance Analysis of Free-Space Optical Communication Systems with Multiuser Diversity Over Atmospheric Turbulence Channels. IEEE Photonics J. 2014, 6, 1–17. [Google Scholar] [CrossRef]
- Sangeetha, R.; Hemanth, C.; Jaiswal, I. Performance of different modulation scheme in free space optical transmission—A review. Optik 2022, 254, 168675. [Google Scholar] [CrossRef]
- Liao, R.; Liu, H.; Qiao, Y. New hybrid reverse differential pulse position width modulation scheme for wireless optical communication. Opt. Eng. 2014, 53, 056112. [Google Scholar] [CrossRef]
- Ma, J.; Jiang, Y.; Yu, S.; Tan, L.; Du, W. Packet error rate analysis of OOK, DPIM and PPM modulation schemes for ground-to-satellite optical communications. Opt. Commun. 2010, 283, 237–242. [Google Scholar] [CrossRef]
- Karbassian, M.M.; Ghafouri-Shiraz, H. Transceiver Architecture for Incoherent Optical CDMA Networks Based on Polarization Modulation. J. Light. Technol. 2008, 26, 3820–3828. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Pham, T.V.; Dang, N.T.; Pham, A.T. Performance of Generalized QAM/FSO Systems with Pointing Misalignment and Phase Error Over Atmospheric Turbulence Channels. IEEE Access 2020, 8, 203631–203644. [Google Scholar] [CrossRef]
- Singya, P.K.; Kumar, N.; Bhatia, V.; Alouini, M.S. On the Performance Analysis of Higher Order QAM Schemes Over Mixed RF/FSO Systems. IEEE Trans. Veh. Technol. 2020, 69, 7366–7378. [Google Scholar] [CrossRef]
- Singya, P.K.; Kumar, N.; Bhatia, V. Impact of Imperfect CSI on ASER of Hexagonal and Rectangular QAM for AF Relaying Network. IEEE Commun. Lett. 2018, 22, 428–431. [Google Scholar] [CrossRef]
- Singya, P.K.; Kumar, N.; Bhatia, V.; Alouini, M.S. On Performance of Hexagonal, Cross, and Rectangular QAM for Multi-Relay Systems. IEEE Access 2019, 7, 60602–60616. [Google Scholar] [CrossRef]
- Kumar, N.; Singya, P.K.; Bhatia, V. ASER Analysis of Hexagonal and Rectangular QAM Schemes in Multiple-Relay Networks. IEEE Trans. Veh. Technol. 2018, 67, 1815–1819. [Google Scholar] [CrossRef]
- Ghassemlooy, Z. Experimental investigation of polarisation modulated free space optical communication with direct detection in a turbulence channel. IET Commun. 2012, 6, 1489–1494. [Google Scholar] [CrossRef]
- Trisno, S.; Davis, C.C. Performance of free space optical communication systems using polarization shift keying modulation. In Proceedings of the Free-Space Laser Communications VI; Majumdar, A.K., Davis, C.C., Eds.; International Society for Optics and Photonics, SPIE: San Diego, CA, USA, 2006; Volume 6304, p. 63040V. [Google Scholar] [CrossRef]
- Su, Y.; Sato, T. Analysis of CPolSK-based FSO system working in space-to-ground channel. Opt. Commun. 2018, 410, 660–667. [Google Scholar] [CrossRef]
- Prabu, K.; Kumar, D.S. MIMO free-space optical communication employing coherent BPOLSK modulation in atmospheric optical turbulence channel with pointing errors. Opt. Commun. 2015, 343, 188–194. [Google Scholar] [CrossRef]
- Tang, X.; Xu, Z.; Ghassemlooy, Z. Coherent Polarization Modulated Transmission through MIMO Atmospheric Optical Turbulence Channel. J. Light. Technol. 2013, 31, 3221–3228. [Google Scholar] [CrossRef]
- Tang, X.; Ghassemlooy, Z.; Rajbhandari, S.; Popoola, W.O.; Lee, C.G. Coherent Heterodyne Multilevel Polarization Shift Keying with Spatial Diversity in a Free-Space Optical Turbulence Channel. J. Light. Technol. 2012, 30, 2689–2695. [Google Scholar] [CrossRef]
- Özbilgin, T.; Koca, M. Optical Spatial Modulation Over Atmospheric Turbulence Channels. J. Light. Technol. 2015, 33, 2313–2323. [Google Scholar] [CrossRef]
- Alimi, I.A.; Popoola, J.J.; Akingbade, K.F.; Kolawole, M.O. Interference Management in MIMO-OFDM-Based Emerging Wireless Systems. Am. J. Inf. Sci. Comput. Eng. 2015, 1, 9193027. [Google Scholar]
- Djordjevic, I.B. LDPC-coded MIMO optical communication over the atmospheric turbulence channel using Q-ary pulse-position modulation. Opt. Express 2007, 15, 10026–10032. [Google Scholar] [CrossRef]
- Alimi, I.A. Demonstration of Effectiveness of OFDM for Mobile Communication Systems. Am. J. Mob. Syst. Appl. Serv. 2015, 1, 35–45. [Google Scholar]
- Chen, C.; Zhong, W.D.; Li, X.; Wu, D. MDPSK-Based Nonequalization OFDM for Coherent Free-Space Optical Communication. IEEE Photonics Technol. Lett. 2014, 26, 1617–1620. [Google Scholar] [CrossRef]
- Wang, Z.; Zhong, W.D.; Yu, C. Performance Improvement of OOK Free-Space Optical Communication Systems by Coherent Detection and Dynamic Decision Threshold in Atmospheric Turbulence Conditions. IEEE Photonics Technol. Lett. 2012, 24, 2035–2037. [Google Scholar] [CrossRef]
- Zhong, K.; Tjhung, T.T.; Adachi, F. A general SER formula for an OFDM system with MDPSK in frequency domain over Rayleigh fading channels. IEEE Trans. Commun. 2004, 52, 584–594. [Google Scholar] [CrossRef]
- Popoola, W. Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel. IET Optoelectron. 2008, 2, 16–23. [Google Scholar] [CrossRef]
- Prabu, K.; Bose, S.; Sriram Kumar, D. BPSK based subcarrier intensity modulated free space optical system in combined strong atmospheric turbulence. Opt. Commun. 2013, 305, 185–189. [Google Scholar] [CrossRef]
- Song, X.; Cheng, J. Subcarrier Intensity Modulated Optical Wireless Communications Using Noncoherent and Differentially Coherent Modulations. J. Light. Technol. 2013, 31, 1906–1913. [Google Scholar] [CrossRef]
- Li, J.; Liu, J.Q.; Taylor, D.P. Optical Communication Using Subcarrier PSK Intensity Modulation Through Atmospheric Turbulence Channels. IEEE Trans. Commun. 2007, 55, 1598–1606. [Google Scholar] [CrossRef]
- Popoola, W.O.; Ghassemlooy, Z. BPSK Subcarrier Intensity Modulated Free-Space Optical Communications in Atmospheric Turbulence. J. Light. Technol. 2009, 27, 967–973. [Google Scholar] [CrossRef]
- Strickland, B.R.; Lavan, M.J.; Woodbridge, E.; Chan, V. Effects of fog on the bit-error rate of a free-space laser communication system. Appl. Opt. 1999, 38, 424–431. [Google Scholar] [CrossRef]
- Jeganathan, J.; Ghrayeb, A.; Szczecinski, L. Spatial modulation: Optimal detection and performance analysis. IEEE Commun. Lett. 2008, 12, 545–547. [Google Scholar] [CrossRef]
- Mesleh, R.Y.; Haas, H.; Sinanovic, S.; Ahn, C.W.; Yun, S. Spatial Modulation. IEEE Trans. Veh. Technol. 2008, 57, 2228–2241. [Google Scholar] [CrossRef]
- Bhowal, A.; Kshetrimayum, R.S. Advanced Optical Spatial Modulation Techniques for FSO Communication. IEEE Trans. Commun. 2021, 69, 1163–1174. [Google Scholar] [CrossRef]
- Mesleh, R.; Elgala, H.; Haas, H. Optical Spatial Modulation. J. Opt. Commun. Netw. 2011, 3, 234–244. [Google Scholar] [CrossRef]
- Alimi, I.A.; Abdalla, A.M.; Rodriguez, J.; Pereira Monteiro, P.; Teixeira, A.L.; Zvánovec, S.; Ghassemlooy, Z. Enabling VLC and WiFi Network Technologies and Architectures Toward 5G. In Optical and Wireless Convergence for 5G Networks; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019. [Google Scholar] [CrossRef]
- Cheng, C.C.; Sari, H.; Sezginer, S.; Su, Y.T. Enhanced Spatial Modulation with Multiple Signal Constellations. IEEE Trans. Commun. 2015, 63, 2237–2248. [Google Scholar] [CrossRef]
- Wang, K.; Kandeepan, S. Filter-Enhanced Spatial Modulation and Multiplexing in Indoor Optical Wireless Systems. IEEE Photonics Technol. Lett. 2021, 33, 1479–1482. [Google Scholar] [CrossRef]
- Zhan, Y.; Huang, F. Generalized Spatial Modulation with Multi-Index Modulation. IEEE Commun. Lett. 2020, 24, 585–588. [Google Scholar] [CrossRef]
- Qasem, Z.A.H.; Esmaiel, H.; Sun, H.; Wang, J.; Miao, Y.; Anwar, S. Enhanced Fully Generalized Spatial Modulation for the Internet of Underwater Things. Sensors 2019, 19, 1519. [Google Scholar] [CrossRef]
- Castillo-Soria, F.; Cortez, J.; Gutiérrez, C.; Luna-Rivera, M.; Garcia-Barrientos, A. Extended quadrature spatial modulation for MIMO wireless communications. Phys. Commun. 2019, 32, 88–95. [Google Scholar] [CrossRef]
- Datta, T.; Chockalingam, A. On generalized spatial modulation. In Proceedings of the 2013 IEEE Wireless Communications and Networking Conference (WCNC), Shanghai, China, 7–10 April 2013; pp. 2716–2721. [Google Scholar] [CrossRef]
- Celik, Y. Fully Improved Quadrature Spatial Modulation. Arab. J. Sci. Eng. 2021, 46, 9639–9647. [Google Scholar] [CrossRef]
- Celik, Y.; Aldirmaz-Colak, S. Extended fully improved quadrature spatial shift keying modulation. Signal Image Video Process. 2022, 16, 783–788. [Google Scholar] [CrossRef]
- Vo, B.; Nguyen, H.H. Improved Quadrature Spatial Modulation. In Proceedings of the 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, ON, Canada, 24–27 September 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Zhu, X.; Kahn, J. Free-space optical communication through atmospheric turbulence channels. IEEE Trans. Commun. 2002, 50, 1293–1300. [Google Scholar] [CrossRef]
- Zhu, X.; Kahn, J. Markov chain model in maximum-likelihood sequence detection for free-space optical communication through atmospheric turbulence channels. IEEE Trans. Commun. 2003, 51, 509–516. [Google Scholar] [CrossRef]
- Djordjevic, I.B.; Denic, S.; Anguita, J.; Vasic, B.; Neifeld, M.A. LDPC-Coded MIMO Optical Communication Over the Atmospheric Turbulence Channel. In Proceedings of the IEEE GLOBECOM 2007—IEEE Global Telecommunications Conference, Washington, DC, USA, 26–30 November 2007; pp. 2220–2225. [Google Scholar] [CrossRef]
- Anguita, J.A.; Neifeld, M.A.; Hildner, B.; Vasic, B. Rateless Coding on Experimental Temporally Correlated FSO Channels. J. Light. Technol. 2010, 28, 990–1002. [Google Scholar] [CrossRef]
- Castura, J.; Mao, Y. Rateless coding over fading channels. IEEE Commun. Lett. 2006, 10, 46–48. [Google Scholar] [CrossRef]
- Denic, S.Z.; Djordjevic, I.; Anguita, J.; Vasic, B.; Neifeld, M.A. Information Theoretic Limits for Free-Space Optical Channels with and without Memory. J. Light. Technol. 2008, 26, 3376–3384. [Google Scholar] [CrossRef]
- Goldsmith, A.; Chua, S.G. Adaptive coded modulation for fading channels. IEEE Trans. Commun. 1998, 46, 595–602. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, B.; Chen, G.; Zhan, S.; Li, Z.; Zhang, J.; Jiang, N.; Cao, B.; Li, Z. An Improved Adaptive Coding and Modulation Scheme with Hybrid Switching Standard for UAV-to-Ground Free Space Optical Communication. IEEE Photonics J. 2024, 16, 1–8. [Google Scholar] [CrossRef]
- Li, R.; Chen, T.; Fan, L.; Dang, A. Performance Analysis of a Multiuser Dual-Hop Amplify-and-Forward Relay System with FSO/RF Links. J. Opt. Commun. Netw. 2019, 11, 362–370. [Google Scholar] [CrossRef]
- Zhou, H.; Mao, S.; Agrawal, P. Optical power allocation for adaptive transmissions in wavelength-division multiplexing free space optical networks. Digit. Commun. Networks 2015, 1, 171–180. [Google Scholar] [CrossRef]
- Safi, H.; Sharifi, A.A.; Dabiri, M.T.; Ansari, I.S.; Cheng, J. Adaptive Channel Coding and Power Control for Practical FSO Communication Systems Under Channel Estimation Error. IEEE Trans. Veh. Technol. 2019, 68, 7566–7577. [Google Scholar] [CrossRef]
- Hariq, S.H.; Odabasioglu, N.; Uysal, M. An adaptive modulation scheme for coded free-space optical systems. In Proceedings of the 2014 19th European Conference on Networks and Optical Communications—(NOC), Milan, Italy, 4–6 June 2014; pp. 132–135. [Google Scholar] [CrossRef]
- Jurado-Navas, A.; Garrido-Balsells, J.M.; Castillo-Vázquez, M.; Puerta-Notario, A. An efficient rate-adaptive transmission technique using shortened pulses for atmospheric optical communications. Opt. Express 2010, 18, 17346–17363. [Google Scholar] [CrossRef] [PubMed]
- Hassan, Z.; Hossain, J.; Cheng, J.; Leung, V.C. Delay-QoS-aware adaptive modulation and power allocation for dual-channel coherent OWC. J. Opt. Commun. Netw. 2018, 10, 138–151. [Google Scholar] [CrossRef]
- Hassan, M.Z.; Hossain, M.J.; Cheng, J.; Leung, V.C.M. Statistical Delay-QoS Aware Joint Power Allocation and Relaying Link Selection for Free Space Optics Based Fronthaul Networks. IEEE Trans. Commun. 2018, 66, 1124–1138. [Google Scholar] [CrossRef]
- Liu, L.; Safari, M.; Hranilovic, S. Rate-adaptive FSO communication via rate-compatible punctured LDPC codes. In Proceedings of the 2013 IEEE International Conference on Communications (ICC), Budapest, Hungary, 9–13 June 2013; pp. 3948–3952. [Google Scholar] [CrossRef]
- Chatzidiamantis, N.D.; Lioumpas, A.S.; Karagiannidis, G.K.; Arnon, S. Adaptive Subcarrier PSK Intensity Modulation in Free Space Optical Systems. IEEE Trans. Commun. 2011, 59, 1368–1377. [Google Scholar] [CrossRef]
- Alshaer, N.; Ismail, T.; Nasr, M.E. Enhancing earth-to-satellite FSO system spectrum efficiency with adaptive M-ary PSK and SIMO in presence of scintillation and beam wander. AEU—Int. J. Electron. Commun. 2020, 125, 153366. [Google Scholar] [CrossRef]
- Zhou, H.; Mao, S.; Agrawal, P. Optical power allocation for adaptive WDM transmissions in free space optical networks. In Proceedings of the 2014 IEEE Wireless Communications and Networking Conference (WCNC), Istanbul, Turkey, 6–9 April 2014; pp. 2677–2682. [Google Scholar] [CrossRef]
- Giggenbach, D.; Cowley, W.; Grant, K.; Perlot, N. Experimental verification of the limits of optical channel intensity reciprocity. Appl. Opt. 2012, 51, 3145–3152. [Google Scholar] [CrossRef]
- Shapiro, J.H. Reciprocity of the Turbulent Atmosphere. J. Opt. Soc. Am. 1971, 61, 492–495. [Google Scholar] [CrossRef]
- Churnside, J.H. Aperture averaging of optical scintillations in the turbulent atmosphere. Appl. Opt. 1991, 30, 1982–1994. [Google Scholar] [CrossRef]
- Khalighi, M.A.; Schwartz, N.; Aitamer, N.; Bourennane, S. Fading Reduction by Aperture Averaging and Spatial Diversity in Optical Wireless Systems. J. Opt. Commun. Netw. 2009, 1, 580–593. [Google Scholar] [CrossRef]
- Vetelino, F.S.; Young, C.; Andrews, L. Fade statistics and aperture averaging for Gaussian beam waves in moderate-to-strong turbulence. Appl. Opt. 2007, 46, 3780–3789. [Google Scholar] [CrossRef]
- Yuksel, H.; Davis, C. Aperture averaging experiment for optimizing receiver design and analyzing turbulence on free space optical communication links. In Proceedings of the Conference on Lasers and Electro-Optics (CLEO), Baltimore, MD, USA, 22–27 May 2005; Volume 1, pp. 743–745. [Google Scholar] [CrossRef]
- Wayne, D.T.; Phillips, R.L.; Andrews, L.C.; Leclerc, T.; Sauer, P.; Stryjewski, J. Comparing the Log-Normal and Gamma-Gamma model to experimental probability density functions of aperture averaging data. In Proceedings of the Free-Space Laser Communications X; Majumdar, A.K., Davis, C.C., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, Wash, 2010; Volume 7814, p. 78140K. [Google Scholar] [CrossRef]
- Wayne, D.T.; Phillips, R.L.; Andrews, L.C.; Leclerc, T.T.; Sauer, P.; Stryjewski, J.S. Comparing the Log-Normal and Gamma-Gamma model to experimental probability density functions of aperture averaging data. In Proceedings of the Optical Engineering + Applications, San Diego, CA, USA, 1–5 August 2010. [Google Scholar]
- Barrios, R.; Dios, F. Exponentiated Weibull distribution family under aperture averaging for Gaussian beam waves. Opt. Express 2012, 20, 13055–13064. [Google Scholar] [CrossRef] [PubMed]
- Epple, B. Simplified Channel Model for Simulation of Free-Space Optical Communications. J. Opt. Commun. Netw. 2010, 2, 293–304. [Google Scholar] [CrossRef]
- Khalighi, M.; Aitamer, N.; Schwartz, N.; Bourennane, S. Turbulence mitigation by aperture averaging in wireless optical systems. In Proceedings of the 2009 10th International Conference on Telecommunications, Zagreb, Croatia, 8–10 June 2009; pp. 59–66. [Google Scholar]
- Abou-Rjeily, C. Performance Analysis of FSO Communications with Diversity Methods: Add More Relays or More Apertures? IEEE J. Sel. Areas Commun. 2015, 33, 1890–1902. [Google Scholar] [CrossRef]
- Agarwal, D.; Bansal, A. Unified error performance of a multihop DF-FSO network with aperture averaging. J. Opt. Commun. Netw. 2019, 11, 95–106. [Google Scholar] [CrossRef]
- Andrews, L.C. Aperture-averaging factor for optical scintillations of plane and spherical waves in the atmosphere. J. Opt. Soc. Am. A 1992, 9, 597–600. [Google Scholar] [CrossRef]
- Wilson, S.; Brandt-Pearce, M.; Cao, Q.; Baedke, M. Optical repetition MIMO transmission with multipulse PPM. IEEE J. Sel. Areas Commun. 2005, 23, 1901–1910. [Google Scholar] [CrossRef]
- Lee, E.; Chan, V. Part 1: Optical communication over the clear turbulent atmospheric channel using diversity. IEEE J. Sel. Areas Commun. 2004, 22, 1896–1906. [Google Scholar] [CrossRef]
- Barrios, R. Exponentiated weibull fading channel model in free-space optical communications under atmospheric turbulence. Ph.D. Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2013. [Google Scholar]
- Xu, G.; Zhang, Q. Mixed RF/FSO Deep Space Communication System Under Solar Scintillation Effect. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 3237–3251. [Google Scholar] [CrossRef]
- Bashir, M.S.; Alouini, M.S. Optimal Power Allocation Between Beam Tracking and Symbol Detection Channels in a Free-Space Optical Communications Receiver. IEEE Trans. Commun. 2021, 69, 7631–7646. [Google Scholar] [CrossRef]
- Pang, W.; Wang, P.; Han, M.; Li, S.; Yang, P.; Li, G.; Guo, L. Optical Intelligent Reflecting Surface for Mixed Dual-Hop FSO and Beamforming-Based RF System in C-RAN. IEEE Trans. Wirel. Commun. 2022, 21, 8489–8506. [Google Scholar] [CrossRef]
- Yahia, O.B.; Erdogan, E.; Kurt, G.K.; Altunbas, I.; Yanikomeroglu, H. HAPS Selection for Hybrid RF/FSO Satellite Networks. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 2855–2867. [Google Scholar] [CrossRef]
- Yang, L.; Zhu, Q.; Yan, X.; Li, S.; Jiang, H. Performance Analysis of Mixed PLC-FSO Dual-Hop Communication Systems. IEEE Internet Things J. 2022, 9, 19307–19317. [Google Scholar] [CrossRef]
- Tsiftsis, T.A.; Sandalidis, H.G.; Karagiannidis, G.K.; Uysal, M. Optical wireless links with spatial diversity over strong atmospheric turbulence channels. IEEE Trans. Wirel. Commun. 2009, 8, 951–957. [Google Scholar] [CrossRef]
- Uysal, M.; Navidpour, S.; Li, J. Error rate performance of coded free-space optical links over strong turbulence channels. IEEE Commun. Lett. 2004, 8, 635–637. [Google Scholar] [CrossRef]
- Chan, V.W.S. Free-Space Optical Communications. J. Light. Technol. 2006, 24, 4750–4762. [Google Scholar] [CrossRef]
- Shin, E.; Chan, V. Optical communication over the turbulent atmospheric channel using spatial diversity. In Proceedings of the Global Telecommunications Conference (GLOBECOM ’02), Taipei, Taiwan, 17–21 November 2002; Volume 3, pp. 2055–2060. [Google Scholar] [CrossRef]
- Lee, E.J.; Chan, V.W.S. Diversity Coherent Receivers for Optical Communication over the Clear Turbulent Atmosphere. In Proceedings of the 2007 IEEE International Conference on Communications, Glasgow, UK, 24–28 June 2007; pp. 2485–2492. [Google Scholar] [CrossRef]
- Polynkin, P.; Peleg, A.; Klein, L.; Rhoadarmer, T.; Moloney, J. Optimized multiemitter beams for free-space optical communications through turbulent atmosphere. Opt. Lett. 2007, 32, 885–887. [Google Scholar] [CrossRef]
- Anguita, J.A.; Neifeld, M.A.; Vasic, B.V. Spatial correlation and irradiance statistics in a multiple-beam terrestrial free-space optical communication link. Appl. Opt. 2007, 46, 6561–6571. [Google Scholar] [CrossRef]
- Razavi, M.; Shapiro, J. Wireless optical communications via diversity reception and optical preamplification. IEEE Trans. Wirel. Commun. 2005, 4, 975–983. [Google Scholar] [CrossRef]
- O’Brien, D.C.; Quasem, S.; Zikic, S.; Faulkner, G.E. Multiple input multiple output systems for optical wireless: Challenges and possibilities. In Proceedings of the Free-Space Laser Communications VI; Majumdar, A.K., Davis, C.C., Eds.; International Society for Optics and Photonics, SPIE: San Diego, CA, USA, 2006; Volume 6304, p. 630416. [Google Scholar] [CrossRef]
- Bushuev, D.; Arnon, S. Analysis of the performance of a wireless optical multi-input to multi-output communication system. J. Opt. Soc. Am. A 2006, 23, 1722–1730. [Google Scholar] [CrossRef]
- Priyadarshani, R.; Bhatnagar, M.R.; Ghassemlooy, Z.; Zvanovec, S. Outage Analysis of a SIMO FSO System Over an Arbitrarily Correlated M -Distributed Channel. IEEE Photonics Technol. Lett. 2018, 30, 141–144. [Google Scholar] [CrossRef]
- Navidpour, S.M.; Uysal, M.; Kavehrad, M. BER Performance of Free-Space Optical Transmission with Spatial Diversity. IEEE Trans. Wirel. Commun. 2007, 6, 2813–2819. [Google Scholar] [CrossRef]
- Garcia-Zambrana, A.; Castillo-Vazquez, C.; Castillo-Vazquez, B.; Hiniesta-Gomez, A. Selection Transmit Diversity for FSO Links Over Strong Atmospheric Turbulence Channels. IEEE Photonics Technol. Lett. 2009, 21, 1017–1019. [Google Scholar] [CrossRef]
- Wilson, S.; Brandt-Pearce, M.; Cao, Q.; Leveque, J. Free-space optical MIMO transmission with Q-ary PPM. IEEE Trans. Commun. 2005, 53, 1402–1412. [Google Scholar] [CrossRef]
- Bayaki, E.; Schober, R. On space-time coding for free-space optical systems. IEEE Trans. Commun. 2010, 58, 58–62. [Google Scholar] [CrossRef]
- Simon, M.; Vilnrotter, V. Alamouti-type space-time coding for free-space optical communication with direct detection. IEEE Trans. Wirel. Commun. 2005, 4, 35–39. [Google Scholar] [CrossRef]
- Safari, M.; Uysal, M. Do We Really Need OSTBCs for Free-Space Optical Communication with Direct Detection? IEEE Trans. Wirel. Commun. 2008, 7, 4445–4448. [Google Scholar] [CrossRef]
- Song, X.; Cheng, J. Subcarrier intensity modulated MIMO optical communications in atmospheric turbulence. J. Opt. Commun. Netw. 2013, 5, 1001–1009. [Google Scholar] [CrossRef]
- Bhatnagar, M.R.; Anees, S. On the Performance of Alamouti Scheme in Gamma-Gamma Fading FSO Links with Pointing Errors. IEEE Wirel. Commun. Lett. 2015, 4, 94–97. [Google Scholar] [CrossRef]
- Priyadarshani, R.; Bhatnagar, M.R.; Ghassemlooy, Z.; Zvanovec, S. Effect of Correlation on BER Performance of the FSO-MISO System with Repetition Coding Over Gamma–Gamma Turbulence. IEEE Photonics J. 2017, 9, 1–15. [Google Scholar] [CrossRef]
- Abou-Rjeily, C. On the Optimality of the Selection Transmit Diversity for MIMO-FSO Links with Feedback. IEEE Commun. Lett. 2011, 15, 641–643. [Google Scholar] [CrossRef]
- Bhatnagar, M.R. A One Bit Feedback Based Beamforming Scheme for FSO MISO System Over Gamma-Gamma Fading. IEEE Trans. Commun. 2015, 63, 1306–1318. [Google Scholar] [CrossRef]
- García-Zambrana, A.; Castillo-Vázquez, C.; Castillo-Vázquez, B. Space-time trellis coding with transmit laser selection for FSO links over strong atmospheric turbulence channels. Opt. Express 2010, 18, 5356–5366. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.; Bhatnagar, M.R.; Berder, O.; Vrigneau, B. Imperfect-quantized-feedback-based beamforming for an FSO MISO system over Gamma-Gamma fading with pointing errors. J. Opt. Commun. Netw. 2017, 9, 1005–1018. [Google Scholar] [CrossRef]
- Boluda-Ruiz, R.; García-Zambrana, A.; Castillo-Vázquez, B.; Castillo-Vázquez, C. MISO Relay-Assisted FSO Systems Over Gamma–Gamma Fading Channels with Pointing Errors. IEEE Photonics Technol. Lett. 2016, 28, 229–232. [Google Scholar] [CrossRef]
- Jahid, A.; Alsharif, M.H.; Hall, T.J. A contemporary survey on free space optical communication: Potentials, technical challenges, recent advances and research direction. J. Netw. Comput. Appl. 2022, 200, 103311. [Google Scholar] [CrossRef]
- Shakir, W.M.R.; Mahdi, A.S.; Hamdan, H.; Charafeddine, J.; Satai, H.A.; Akrache, R.; Haddad, S.; Sayah, J. Novel Approximate Distribution of the Generalized Turbulence Channels for MIMO FSO Communications. IEEE Photonics J. 2024, 16, 1–15. [Google Scholar] [CrossRef]
- Narang, G.; Aggarwal, M.; Kaushal, H.; Kumar, A.; Ahuja, S. Performance Analysis of Differential Chaos Shift Keying in Free Space Optical Communication with Diversity Techniques. IEEE Access 2023, 11, 54438–54447. [Google Scholar] [CrossRef]
- Anandkumar, D.; Sangeetha, R.G. Performance Evaluation of LDPC-Coded Power Series Based Málaga (M) Distributed MIMO/FSO Link with M-QAM and Pointing Error. IEEE Access 2022, 10, 62037–62055. [Google Scholar] [CrossRef]
- Alimi, I.A.; Abdalla, A.M.; Rodriguez, J.; Monteiro, P.P.; Teixeira, A.L. Spatial Interpolated Lookup Tables (LUTs) Models for Ergodic Capacity of MIMO FSO Systems. IEEE Photonics Technol. Lett. 2017, 29, 583–586. [Google Scholar] [CrossRef]
- Qin, M.; Chen, L.; Wang, W. Generalized Selection Multiuser Scheduling for the MIMO FSO Communication System and Its Performance Analysis. IEEE Photonics J. 2016, 8, 1–9. [Google Scholar] [CrossRef]
- Bhatnagar, M.R. Differential Decoding of SIM DPSK over FSO MIMO Links. IEEE Commun. Lett. 2013, 17, 79–82. [Google Scholar] [CrossRef]
- Liu, Y.; He, Y.; Chen, K.; Guo, L. Asynchronous Transmission for Cooperative Free-Space Optical Communication System. IEEE Wirel. Commun. Lett. 2022, 11, 766–770. [Google Scholar] [CrossRef]
- Fang, J.; Bi, M.; Xiao, S.; Yang, G.; Liu, L.; Zhang, Y.; Hu, W. Polar-coded MIMO FSO communication system over gamma-gamma turbulence channel with spatially correlated fading. J. Opt. Commun. Netw. 2018, 10, 915–923. [Google Scholar] [CrossRef]
- Chatzidiamantis, N.D.; Karagiannidis, G.K.; Michalopoulos, D.S. On the Distribution of the Sum of Gamma-Gamma Variates and Application in MIMO Optical Wireless Systems. In Proceedings of the GLOBECOM 2009—2009 IEEE Global Telecommunications Conference, Honolulu, HI, USA, 30 Novembe–4 December 2009; pp. 1–6. [Google Scholar] [CrossRef]
- Bayaki, E.; Schober, R.; Mallik, R.K. Performance analysis of MIMO free-space optical systems in gamma-gamma fading. IEEE Trans. Commun. 2009, 57, 3415–3424. [Google Scholar] [CrossRef]
- Peppas, K.P. A Simple, Accurate Approximation to the Sum of Gamma–Gamma Variates and Applications in MIMO Free-Space Optical Systems. IEEE Photonics Technol. Lett. 2011, 23, 839–841. [Google Scholar] [CrossRef]
- Peppas, K. Multivariate gamma–gamma distribution with exponential correlation and its applications in radio frequency and optical wireless communications. IET Microwaves, Antennas Propag. 2011, 5, 364–371. [Google Scholar] [CrossRef]
- Yang, G.; Khalighi, M.A.; Ghassemlooy, Z.; Bourennane, S. Performance evaluation of receive-diversity free-space optical communications over correlated Gamma–Gamma fading channels. Appl. Opt. 2013, 52, 5903–5911. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, S.; Wang, T.; Wu, G.; Wang, S.; Gu, W. Channel correlation in aperture receiver diversity systems for free-space optical communication. J. Opt. 2012, 14, 125710. [Google Scholar] [CrossRef]
- Pham, T.V.; Thang, T.C.; Pham, A.T. Average achievable rate of spatial diversity MIMO-FSO over correlated Gamma–Gamma fading channels. J. Opt. Commun. Netw. 2018, 10, 662–674. [Google Scholar] [CrossRef]
- Haas, S.; Shapiro, J. Capacity of wireless optical communications. IEEE J. Sel. Areas Commun. 2003, 21, 1346–1357. [Google Scholar] [CrossRef]
- Chakraborty, K. Capacity of the MIMO optical fading channel. In Proceedings of the International Symposium on Information Theory (ISIT 2005), Adelaide, SA, Australia, 4–9 September 2005; pp. 530–534. [Google Scholar] [CrossRef]
- Dabiri, M.T.; Saber, M.J.; Sadough, S.M.S. On the performance of multiplexing FSO MIMO links in log-normal fading with pointing errors. J. Opt. Commun. Netw. 2017, 9, 974–983. [Google Scholar] [CrossRef]
- Böcherer, G.; Steiner, F.; Schulte, P. Bandwidth Efficient and Rate-Matched Low-Density Parity-Check Coded Modulation. IEEE Trans. Commun. 2015, 63, 4651–4665. [Google Scholar] [CrossRef]
- Elzanaty, A.; Alouini, M.S. Adaptive Coded Modulation for IM/DD Free-Space Optical Backhauling: A Probabilistic Shaping Approach. IEEE Trans. Commun. 2020, 68, 6388–6402. [Google Scholar] [CrossRef]
- Forney, G.; Gallager, R.; Lang, G.; Longstaff, F.; Qureshi, S. Efficient Modulation for Band-Limited Channels. IEEE J. Sel. Areas Commun. 1984, 2, 632–647. [Google Scholar] [CrossRef]
- Böcherer, G.; Schulte, P.; Steiner, F. Probabilistic Shaping and Forward Error Correction for Fiber-Optic Communication Systems. J. Light. Technol. 2019, 37, 230–244. [Google Scholar] [CrossRef]
- Liu, X.; Fang, J.; Xiao, S.; Zheng, L.; Fu, X.; Hu, W. Probabilistically shaped polar-coded MIMO-FSO communication systems with spatially correlated fading. Opt. Express 2022, 30, 30980–30990. [Google Scholar] [CrossRef]
- Hranilovic, S.; Kschischang, F. Optical intensity-modulated direct detection channels: Signal space and lattice codes. IEEE Trans. Inf. Theory 2003, 49, 1385–1399. [Google Scholar] [CrossRef]
- Muhammad, S.; Leitgeb, E.; Koudelka, O. Multilevel Modulation and Channel Codes for Terrestrial FSO links. In Proceedings of the 2005 2nd International Symposium on Wireless Communication Systems, Siena, Italy, 5 December 2005; pp. 795–799. [Google Scholar] [CrossRef]
- Letzepis, N.; Holland, I.; Cowley, W. The Gaussian free space optical MIMO channel with Q-ary pulse position modulation. IEEE Trans. Wirel. Commun. 2008, 7, 1744–1753. [Google Scholar] [CrossRef]
- Park, H.; Barry, J. Trellis-coded multiple-pulse-position modulation for wireless infrared communications. IEEE Trans. Commun. 2004, 52, 643–651. [Google Scholar] [CrossRef]
- McEliece, R. Practical codes for photon communication. IEEE Trans. Inf. Theory 1981, 27, 393–398. [Google Scholar] [CrossRef]
- Fares, D.A. Performance of convolutional codes with multipulse signaling in optical channels. Microw. Opt. Technol. Lett. 1990, 3, 406–410. [Google Scholar] [CrossRef]
- Anguita, J.; Djordjevic, I.; Neifeld, M.; Vasic, B. Shannon capacities and error-correction codes for optical atmospheric turbulentchannels. J. Opt. Netw. 2005, 4, 586–601. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Z.; Xiao, S.; Fu, X.; Yang, W.; Hu, W. Performance of polar coded probabilistic shaped PAM8 with systematic interleaver and identically distributed pilot in weak turbulence. Opt. Express 2023, 31, 28900–28911. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Fang, J.; Xiao, S.; Zheng, L.; Hu, W. Adaptive Probabilistic Shaping Using Polar Codes for FSO Communication. IEEE Photonics J. 2022, 14, 1–6. [Google Scholar] [CrossRef]
- Arikan, E. Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels. IEEE Trans. Inf. Theory 2009, 55, 3051–3073. [Google Scholar] [CrossRef]
- Farid, A.A.; Hranilovic, S. Channel capacity and non-uniform signalling for free-space optical intensity channels. IEEE J. Sel. Areas Commun. 2009, 27, 1553–1563. [Google Scholar] [CrossRef]
- Fang, J.; Bi, M.; Xiao, S.; Yang, H.; Chen, Z.; Liu, Z.; Yang, F.; Hu, W. Polar coded probabilistic amplitude shaping for the free space optical atmospheric turbulence channel. Opt. Express 2020, 28, 33208–33219. [Google Scholar] [CrossRef]
- Sandalidis, H.G. Coded Free-Space Optical Links over Strong Turbulence and Misalignment Fading Channels. IEEE Trans. Commun. 2011, 59, 669–674. [Google Scholar] [CrossRef]
- Zhang, R.; Hsu, C.W.; Tang, X.; Zhou, Q.; Chang, G.K. LDPC Coded PAM-4/8 Transmission in Fiber-FSO Link Using Unipolar Probability Distribution and Pre-distortion. In Proceedings of the 2021 Optical Fiber Communications Conference and Exhibition (OFC), San Francisco, CA, USA, 6–10 June 2021; pp. 1–3. [Google Scholar]
- Zhang, S.; Qu, Z.; Yaman, F.; Mateo, E.; Inoue, T.; Nakamura, K.; Inada, Y.; Djordjevic, I.B. Flex-Rate Transmission using Hybrid Probabilistic and Geometric Shaped 32QAM. In Proceedings of the 2018 Optical Fiber Communications Conference and Exposition (OFC), San Diego, CA, USA, 11–15 March 2018; pp. 1–3. [Google Scholar]
- Brandão, B.T.; Fernandes, M.A.; Loureiro, P.A.; Guiomar, F.P.; Monteiro, P.P. Cooperative FSO and mmWave System for Reliable 200G Wireless Transmission. IEEE Photonics Technol. Lett. 2022, 34, 1333–1336. [Google Scholar] [CrossRef]
- Guiomar, F.P.; Lorences-Riesgo, A.; Ranzal, D.; Rocco, F.; Sousa, A.N.; Fernandes, M.A.; Brandão, B.T.; Carena, A.; Teixeira, A.L.; Medeiros, M.C.R.; et al. Adaptive Probabilistic Shaped Modulation for High-Capacity Free-Space Optical Links. J. Light. Technol. 2020, 38, 6529–6541. [Google Scholar] [CrossRef]
- Sun, L.; Du, J.; Wang, C.; Li, Z.; Xu, K.; He, Z. Frequency-resolved adaptive probabilistic shaping for DMT-modulated IM-DD optical interconnects. Opt. Express 2019, 27, 12241–12254. [Google Scholar] [CrossRef] [PubMed]
- Che, D.; Shieh, W. Approaching the Capacity of Colored-SNR Optical Channels by Multicarrier Entropy Loading. J. Light. Technol. 2018, 36, 68–78. [Google Scholar] [CrossRef]
- Li, Y.; Chang, H.; Gao, R.; Zhang, Q.; Tian, F.; Yao, H.; Tian, Q.; Wang, Y.; Xin, X.; Wang, F.; et al. End-to-End Deep Learning of Joint Geometric Probabilistic Shaping Using a Channel-Sensitive Autoencoder. Electronics 2023, 12, 4234. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Z.; Xiao, S.; Yang, W.; Hu, W. Rate-flexible hybrid constellation shaping for polar-coded 32QAM in FSO systems. In Proceedings of the 2024 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 24–28 March 2024; pp. 1–3. [Google Scholar]
- Kschischang, F.; Pasupathy, S. Optimal nonuniform signaling for Gaussian channels. IEEE Trans. Inf. Theory 1993, 39, 913–929. [Google Scholar] [CrossRef]
- Abou-Rjeily, C.; Fawaz, W. Buffer-Aided Relaying Protocols for Cooperative FSO Communications. IEEE Trans. Wirel. Commun. 2017, 16, 8205–8219. [Google Scholar] [CrossRef]
- Abou-Rjeily, C. A Distance-Aware Buffer-Aided Relaying Protocol for Cooperative FSO Communications. IEEE Wirel. Commun. Lett. 2024, 13, 2275–2279. [Google Scholar] [CrossRef]
- Laneman, J.; Tse, D.; Wornell, G. Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Trans. Inf. Theory 2004, 50, 3062–3080. [Google Scholar] [CrossRef]
- Sendonaris, A.; Erkip, E.; Aazhang, B. User cooperation diversity. Part I. System description. IEEE Trans. Commun. 2003, 51, 1927–1938. [Google Scholar] [CrossRef]
- Francis, F.; Manivasakan, R. A Performance Limit Estimation Framework for Multihop Repeated/Regenerated Optical Links. IEEE Access 2022, 10, 70016–70031. [Google Scholar] [CrossRef]
- Hasna, M.; Alouini, M.S. Outage probability of multihop transmission over Nakagami fading channels. IEEE Commun. Lett. 2003, 7, 216–218. [Google Scholar] [CrossRef]
- Karagiannidis, G.; Tsiftsis, T.; Mallik, R. Bounds for multihop relayed communications in nakagami-m fading. IEEE Trans. Commun. 2006, 54, 18–22. [Google Scholar] [CrossRef]
- Soleimani-Nasab, E.; Ghassemlooy, Z. Multihop radio and optical wireless relaying systems over EGK, DGG, and CU fading channels. J. Opt. Commun. Netw. 2022, 14, 426–438. [Google Scholar] [CrossRef]
- Peppas, K.P.; Stassinakis, A.N.; Nistazakis, H.E.; Tombras, G.S. Capacity analysis of dual amplify-and-forward relayed free-space optical communication systems over turbulence channels with pointing errors. J. Opt. Commun. Netw. 2013, 5, 1032–1042. [Google Scholar] [CrossRef]
- Safari, M.; Uysal, M. Relay-assisted free-space optical communication. IEEE Trans. Wirel. Commun. 2008, 7, 5441–5449. [Google Scholar] [CrossRef]
- Zhu, B.; Cheng, J.; Alouini, M.S.; Wu, L. Relay Placement for FSO Multihop DF Systems with Link Obstacles and Infeasible Regions. IEEE Trans. Wirel. Commun. 2015, 14, 5240–5250. [Google Scholar] [CrossRef]
- Karimi, M.; Nasiri-Kenari, M. Free Space Optical Communications via Optical Amplify-and-Forward Relaying. J. Light. Technol. 2011, 29, 242–248. [Google Scholar] [CrossRef]
- Yang, L.; Gao, X.; Alouini, M.S. Performance Analysis of Relay-Assisted All-Optical FSO Networks Over Strong Atmospheric Turbulence Channels with Pointing Errors. J. Light. Technol. 2014, 32, 4613–4620. [Google Scholar] [CrossRef]
- Chatzidiamantis, N.D.; Michalopoulos, D.S.; Kriezis, E.E.; Karagiannidis, G.K.; Schober, R. Relay selection protocols for relay-assisted free-space optical systems. J. Opt. Commun. Netw. 2013, 5, 92–103. [Google Scholar] [CrossRef]
- Abou-Rjeily, C.; Haddad, S. Cooperative FSO Systems: Performance Analysis and Optimal Power Allocation. J. Light. Technol. 2011, 29, 1058–1065. [Google Scholar] [CrossRef]
- Varshney, N.; Jagannatham, A.K.; Hanzo, L. Asymptotic SER Analysis and Optimal Power Sharing for Dual-Phase and Multi-Phase Multiple-Relay Cooperative Systems. IEEE Access 2018, 6, 50404–50423. [Google Scholar] [CrossRef]
- Abou-Rjeily, C. Performance Analysis of Selective Relaying in Cooperative Free-Space Optical Systems. J. Light. Technol. 2013, 31, 2965–2973. [Google Scholar] [CrossRef]
- Abou-Rjeily, C.; Noun, Z. Impact of Inter-Relay Co-Operation on the Performance of FSO Systems with Any Number of Relays. IEEE Trans. Wirel. Commun. 2016, 15, 3796–3809. [Google Scholar] [CrossRef]
- Bhatnagar, M.R.; Arti, M.K. Performance Analysis of Hybrid Satellite-Terrestrial FSO Cooperative System. IEEE Photonics Technol. Lett. 2013, 25, 2197–2200. [Google Scholar] [CrossRef]
- Varshney, N.; Jagannatham, A.K.; Varshney, P.K. Cognitive MIMO-RF/FSO Cooperative Relay Communication with Mobile Nodes and Imperfect Channel State Information. IEEE Trans. Cogn. Commun. Netw. 2018, 4, 544–555. [Google Scholar] [CrossRef]
- Varshney, N.; Jagannatham, A.K. Cognitive Decode-and-Forward MIMO-RF/FSO Cooperative Relay Networks. IEEE Commun. Lett. 2017, 21, 893–896. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, C.; Zhang, Z.; Zhang, H. Secure Cooperative Transmission for Mixed RF/FSO Spectrum Sharing Networks. IEEE Trans. Commun. 2020, 68, 3010–3023. [Google Scholar] [CrossRef]
- Ai, Y.; Mathur, A.; Cheffena, M.; Bhatnagar, M.R.; Lei, H. Physical Layer Security of Hybrid Satellite-FSO Cooperative Systems. IEEE Photonics J. 2019, 11, 1–14. [Google Scholar] [CrossRef]
- Boluda-Ruiz, R.; García-Zambrana, A.; Castillo-Vázquez, B.; Castillo-Vázquez, C. Ergodic Capacity Analysis of Decode-and-Forward Relay-Assisted FSO Systems Over Alpha–Mu Fading Channels Considering Pointing Errors. IEEE Photonics J. 2016, 8, 1–11. [Google Scholar] [CrossRef]
- Bhatnagar, M.R. Average BER Analysis of Differential Modulation in DF Cooperative Communication System over Gamma-Gamma Fading FSO Links. IEEE Commun. Lett. 2012, 16, 1228–1231. [Google Scholar] [CrossRef]
- Varshney, N.; Puri, P. Performance Analysis of Decode-and-Forward-Based Mixed MIMO-RF/FSO Cooperative Systems with Source Mobility and Imperfect CSI. J. Light. Technol. 2017, 35, 2070–2077. [Google Scholar] [CrossRef]
- Zdravković, N.; Petkovic, M.I.; Djordjevic, G.T.; Kansanen, K. Outage Analysis of Mixed FSO/WiMAX Link. IEEE Photonics J. 2016, 8, 1–14. [Google Scholar] [CrossRef]
- Jing, Z.; Shang-hong, Z.; Wei-hu, Z.; Ke-fan, C. Performance analysis for mixed FSO/RF Nakagami-m and Exponentiated Weibull dual-hop airborne systems. Opt. Commun. 2017, 392, 294–299. [Google Scholar] [CrossRef]
- Trigui, I.; Cherif, N.; Affes, S. Relay-Assisted Mixed FSO/RF Systems Over Málaga- M and κ – μ Shadowed Fading Channels. IEEE Wirel. Commun. Lett. 2017, 6, 682–685. [Google Scholar] [CrossRef]
- Ansari, I.S.; Yilmaz, F.; Alouini, M.S. Impact of Pointing Errors on the Performance of Mixed RF/FSO Dual-Hop Transmission Systems. IEEE Wirel. Commun. Lett. 2013, 2, 351–354. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Yang, L.; Ai, B.; Alouini, M.S. On the Performance of Dual-Hop Systems Over Mixed FSO/mmWave Fading Channels. IEEE Open J. Commun. Soc. 2020, 1, 477–489. [Google Scholar] [CrossRef]
- Zedini, E.; Ansari, I.S.; Alouini, M.S. Performance Analysis of Mixed Nakagami- m and Gamma–Gamma Dual-Hop FSO Transmission Systems. IEEE Photonics J. 2015, 7, 1–20. [Google Scholar] [CrossRef]
- Djordjevic, G.T.; Petkovic, M.I.; Cvetkovic, A.M.; Karagiannidis, G.K. Mixed RF/FSO Relaying with Outdated Channel State Information. IEEE J. Sel. Areas Commun. 2015, 33, 1935–1948. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, Z.; Dang, J.; Wu, L.; Zhu, G. Performance of Decode-and-Forward Relaying in Mixed Beaulieu-Xie and M Dual-Hop Transmission Systems with Digital Coherent Detection. IEEE Access 2019, 7, 138757–138770. [Google Scholar] [CrossRef]
- Li, S.; Yang, L.; Hu, Y. Performance Analysis of Mixed THz/FSO Relaying Systems. In Proceedings of the 2021 13th International Conference on Wireless Communications and Signal Processing (WCSP), Changsha, China, 20–22 October 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Li, S.; Yang, L.; Zhang, J.; Bithas, P.S.; Tsiftsis, T.A.; Alouini, M.S. Mixed THz/FSO Relaying Systems: Statistical Analysis and Performance Evaluation. IEEE Trans. Wirel. Commun. 2022, 21, 10996–11010. [Google Scholar] [CrossRef]
- Singya, P.K.; Makki, B.; D’Errico, A.; Alouini, M.S. Hybrid FSO/THz-Based Backhaul Network for mmWave Terrestrial Communication. IEEE Trans. Wirel. Commun. 2023, 22, 4342–4359. [Google Scholar] [CrossRef]
- Abou-Rjeily, C.; Kaddoum, G. Free Space Optical Cooperative Communications via an Energy Harvesting Harvest-Store-Use Relay. IEEE Trans. Wirel. Commun. 2020, 19, 6564–6577. [Google Scholar] [CrossRef]
- Anees, S.; Bhatnagar, M.R. Performance of an amplify-and-forward dual-hop asymmetric RF–FSO communication system. J. Opt. Commun. Netw. 2015, 7, 124–135. [Google Scholar] [CrossRef]
- Alimi, I.A.; Monteiro, P.P. RF/FSO and THz/FSO Relaying Systems. In Handbook of Radio and Optical Networks Convergence; Kawanishi, T., Ed.; Springer Nature: Singapore, 2023; pp. 1–26. [Google Scholar] [CrossRef]
- Ji, J.; Zhang, J.; Wang, K.; Xu, M.; Song, Y. Design and Experimental Investigation of Decode-and-Forward and Amplify-and-Forward Relaying FSO-CDMA. IEEE Photonics J. 2022, 14, 1–6. [Google Scholar] [CrossRef]
- Datsikas, C.K.; Peppas, K.P.; Sagias, N.C.; Tombras, G.S. Serial Free-Space Optical Relaying Communications Over Gamma-Gamma Atmospheric Turbulence Channels. J. Opt. Commun. Netw. 2010, 2, 576–586. [Google Scholar] [CrossRef]
- Alimi, I.A.; Monteiro, P.P. Performance analysis of 5G and beyond mixed THz/FSO relaying communication systems. Opt. Laser Technol. 2024, 176, 110917. [Google Scholar] [CrossRef]
- Kazemlou, S.; Hranilovic, S.; Kumar, S. All-Optical Multihop Free-Space Optical Communication Systems. J. Light. Technol. 2011, 29, 2663–2669. [Google Scholar] [CrossRef]
- Sun, Q.; Hu, Q.; Wu, Y.; Chen, X.; Zhang, J.; López-Benítez, M. Performance Analysis of Mixed FSO/RF System for Satellite-Terrestrial Relay Network. IEEE Trans. Veh. Technol. 2024, 73, 11378–11393. [Google Scholar] [CrossRef]
- Bashir, M.S.; Alouini, M.S. Energy Optimization of a Laser-Powered Hovering-UAV Relay in Optical Wireless Backhaul. IEEE Trans. Wirel. Commun. 2023, 22, 3216–3230. [Google Scholar] [CrossRef]
- Narang, G.; Aggarwal, M.; Kaushal, H.; Kumar, A.; Ahuja, S.; Shukla, N.K. Performance Evaluation of Dual Hop Mixed FSO RF System Using Differential Chaos Shift Keying with Secrecy Analysis. IEEE Trans. Veh. Technol. 2024, 73, 17347–17358. [Google Scholar] [CrossRef]
- Hasna, M.; Alouini, M.S. A performance study of dual-hop transmissions with fixed gain relays. IEEE Trans. Wirel. Commun. 2004, 3, 1963–1968. [Google Scholar] [CrossRef]
- Park, J.; Lee, E.; Chae, C.B.; Yoon, G. Outage Probability Analysis of a Coherent FSO Amplify-and-Forward Relaying System. IEEE Photonics Technol. Lett. 2015, 27, 1204–1207. [Google Scholar] [CrossRef]
- Karimi, M.; Nasiri-Kenari, M. BER Analysis of Cooperative Systems in Free-Space Optical Networks. J. Light. Technol. 2009, 27, 5639–5647. [Google Scholar] [CrossRef]
- Krikidis, I.; Charalambous, T.; Thompson, J.S. Buffer-Aided Relay Selection for Cooperative Diversity Systems without Delay Constraints. IEEE Trans. Wirel. Commun. 2012, 11, 1957–1967. [Google Scholar] [CrossRef]
- Abou-Rjeily, C. Relay-Grouping: A New Paradigm for Enhancing the Performance of Buffer-Aided Relaying Networks. IEEE Wirel. Commun. Lett. 2024, 13, 153–157. [Google Scholar] [CrossRef]
- Huang, C.; Chen, G.; Gong, Y. Delay-Constrained Buffer-Aided Relay Selection in the Internet of Things with Decision-Assisted Reinforcement Learning. IEEE Internet Things J. 2021, 8, 10198–10208. [Google Scholar] [CrossRef]
- Jamali, V.; Michalopoulos, D.S.; Uysal, M.; Schober, R. Link Allocation for Multiuser Systems with Hybrid RF/FSO Backhaul: Delay-Limited and Delay-Tolerant Designs. IEEE Trans. Wirel. Commun. 2016, 15, 3281–3295. [Google Scholar] [CrossRef]
- Xu, P.; Ding, Z.; Krikidis, I.; Dai, X. Achieving Optimal Diversity Gain in Buffer-Aided Relay Networks with Small Buffer Size. IEEE Trans. Veh. Technol. 2016, 65, 8788–8794. [Google Scholar] [CrossRef]
- Leitgeb, E.; Birnbacher, U.; Muhammad, S.S.; Koudelka, O.; Kandus, G.; Gebhart, M.; Schrotter, P.; Chlestil, C.; Merdonig, A. Hybrid Wireless Networks combining WLAN, FSO and Satellite Technology for Disaster Recovery. In Proceedings of the Proceedings 15th IST Mobile Wireless Commun. Summit, Dresden, Germany, 19 June 2005; pp. 1–5. [Google Scholar]
- Ata, Y. Angle-of-Arrival Fluctuations and Adaptive Optics Correction in Non-Kolmogorov Turbulent Atmosphere. IEEE Trans. Antennas Propag. 2022, 70, 12061–12070. [Google Scholar] [CrossRef]
- Fried, D.L. Statistics of a Geometric Representation of Wavefront Distortion. J. Opt. Soc. Am. 1965, 55, 1427–1435. [Google Scholar] [CrossRef]
- Noll, R.J. Zernike polynomials and atmospheric turbulence. J. Opt. Soc. Am. 1976, 66, 207–211. [Google Scholar] [CrossRef]
- Tyson, R.K. Adaptive optics system performance approximations for atmospheric turbulence correction. Opt. Eng. 1990, 29, 1165–1173. [Google Scholar] [CrossRef]
- Tyson, R.K. Using the deformable mirror as a spatial filter: Application to circular beams. Appl. Opt. 1982, 21, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Voitsekhovich, V.V.; Cuevas, S. Adaptive optics and the outer scale of turbulence. J. Opt. Soc. Am. A 1995, 12, 2523–2531. [Google Scholar] [CrossRef]
- Toselli, I.; Gladysz, S. Efficiency of adaptive optics correction for Gaussian beams propagating through non-Kolmogorov turbulence. In Proceedings of the Imaging and Applied Optics, Seattle, DC, USA, 13–17 July 2014; p. PM3E.6. [Google Scholar] [CrossRef]
- Tyson, R.K. Bit-error rate for free-space adaptive optics laser communications. J. Opt. Soc. Am. A 2002, 19, 753–758. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, Y. Performance Characterization of Deep-Phase-Retrieval Shack-Hartmann Wavefront Sensors. IEEE Photonics J. 2023, 15, 1–11. [Google Scholar] [CrossRef]
- Li, C.; Hall, G.; Zhu, D.; Li, H.; Eliceiri, K.W.; Jiang, H. Three-Dimensional Surface Profile Measurement of Microlenses Using the Shack–Hartmann Wavefront Sensor. J. Microelectromechanical Syst. 2012, 21, 530–540. [Google Scholar] [CrossRef]
- Zhao, M.; Zhao, W.; Wang, S.; Yang, P.; Yang, K.; Lin, H.; Kong, L. Centroid-Predicted Deep Neural Network in Shack-Hartmann Sensors. IEEE Photonics J. 2022, 14, 1–10. [Google Scholar] [CrossRef]
- Rodríguez-Ramos, L.F.; Montilla, I.; Trujillo, J.M.; Rodríguez-Ramos, J.M. Phase structure function measurement with a plenoptic camera used as wavefront sensor. In Proceedings of the 2013 12th Workshop on Information Optics (WIO), Tenerife, Spain, 15–19 July 2013; pp. 1–3. [Google Scholar] [CrossRef]
- Jung, I.W.; Peter, Y.A.; Carr, E.; Wang, J.S.; Solgaard, O. Single-Crystal-Silicon Continuous Membrane Deformable Mirror Array for Adaptive Optics in Space-Based Telescopes. IEEE J. Sel. Top. Quantum Electron. 2007, 13, 162–167. [Google Scholar] [CrossRef]
- Dagel, D.; Cowan, W.; Spahn, O.; Grossetete, G.; Grine, A.; Shaw, M.; Resnick, P.; Jokiel, B. Large-stroke MEMS deformable mirrors for adaptive optics. J. Microelectromechanical Syst. 2006, 15, 572–583. [Google Scholar] [CrossRef]
- Kanno, I.; Kunisawa, T.; Suzuki, T.; Kotera, H. Development of Deformable Mirror Composed of Piezoelectric Thin Films for Adaptive Optics. IEEE J. Sel. Top. Quantum Electron. 2007, 13, 155–161. [Google Scholar] [CrossRef]
- Jian, Y.H.; Yang, K.J.; Wei, T.C.; Wang, C.C.; Chow, C.W. Hardware and Software Improvements of Spatial Light Modulator (SLM)-Based Optical Wireless Communication Supporting Four Users Using Non-Orthogonal Multiple Access (NOMA). J. Light. Technol. 2024, 42, 5839–5845. [Google Scholar] [CrossRef]
- Cox, M.A.; Mphuthi, N.; Nape, I.; Mashaba, N.; Cheng, L.; Forbes, A. Structured Light in Turbulence. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 1–21. [Google Scholar] [CrossRef]
- Pinho, C.; Alimi, I.; Lima, M.; Monteiro, P.; Teixeira, A. Spatial Light Modulation as a Flexible Platform for Optical Systems. In Telecommunication Systems; Alimi, I.A., Monteiro, P.P., Teixeira, A.L., Eds.; IntechOpen: Rijeka, Croatia, 2019; Chapter 7. [Google Scholar] [CrossRef]
- Quintana, C.; Wang, Q.; Jakonis, D.; Oberg, O.; Erry, G.; Platt, D.; Thueux, Y.; Faulkner, G.; Chun, H.; Gomez, A.; et al. A High Speed Retro-Reflective Free Space Optics Links with UAV. J. Light. Technol. 2021, 39, 5699–5705. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Z.; Hu, Z.; Benton, D.M.; Ali, A.A.I.; Patel, M.; Lavery, M.P.J.; Ellis, A.D. Enhanced Atmospheric Turbulence Resiliency with Successive Interference Cancellation DSP in Mode Division Multiplexing Free-Space Optical Links. J. Light. Technol. 2022, 40, 7769–7778. [Google Scholar] [CrossRef]
- Pinho, C.; Shahpari, A.; Alimi, I.; Lima, M.; Teixeira, A. Optical transforms and CGH for SDM systems. In Proceedings of the 2016 18th International Conference on Transparent Optical Networks (ICTON), Trento, Italy, 10–14 July 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Alimi, I.A.; Patel, R.K.; Zaouga, A.; Muga, N.J.; Xin, Q.; Pinto, A.N.; Monteiro, P.P. Trends in Cloud Computing Paradigms: Fundamental Issues, Recent Advances, and Research Directions toward 6G Fog Networks. In Moving Broadband Mobile Communications Forward; Haidine, A., Ed.; IntechOpen: Rijeka, Croatia, 2021. [Google Scholar] [CrossRef]
- Mai, V.; Kim, H. Beam Steering and Divergence Control Using Variable Focus Liquid Lenses for WDM FSO Communications. IEEE Photonics Technol. Lett. 2022, 34, 1226–1229. [Google Scholar] [CrossRef]
- Dong, Q.; Liu, Y.; Zhang, Y.; Gao, S.; Chen, T. Improved ADRC with ILC Control of a CCD-Based Tracking Loop for Fast Steering Mirror System. IEEE Photonics J. 2018, 10, 1–14. [Google Scholar] [CrossRef]
- Peng, J.; Qi, B.; Zhang, Y.; Li, Z.; Mao, Y. ESPGD Algorithm to Improve the Convergence Speed for Adaptive Single-Mode Fiber Coupling. IEEE Photonics J. 2024, 16, 1–7. [Google Scholar] [CrossRef]
- Bekkali, A.; Fujita, H.; Hattori, M. New Generation Free-Space Optical Communication Systems with Advanced Optical Beam Stabilizer. J. Light. Technol. 2022, 40, 1509–1518. [Google Scholar] [CrossRef]
- Tsai, J.; Wu, M. Gimbal-less MEMS two-axis optical scanner array with high fill-factor. J. Microelectromechanical Syst. 2005, 14, 1323–1328. [Google Scholar] [CrossRef]
- LoPresti, P.; Refai, H.; Sluss, J.; Varela-Cuadrado, I. Adaptive divergence and power for improving connectivity in free-space optical mobile networks. Appl. Opt. 2006, 45, 6591–6597. [Google Scholar] [CrossRef]
- Arnon, S.; Rotman, S.; Kopeika, N.S. Beam width and transmitter power adaptive to tracking system performance for free-space optical communication. Appl. Opt. 1997, 36, 6095–6101. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Norwood, R.A.; Brandt-Pearce, M.; Djordjevic, I.B.; Cvijetic, M.; Subramaniam, S.; Himmelhuber, R.; Reynolds, C.; Blanche, P.; Lynn, B.; et al. A survey on recent advances in optical communications. Comput. Electr. Eng. 2014, 40, 216–240. [Google Scholar] [CrossRef]
- Killinger, D. Free Space Optics for Laser Communication Through the Air. Opt. Photon. News 2002, 13, 36–42. [Google Scholar] [CrossRef]
- Kaymak, Y.; Rojas-Cessa, R.; Feng, J.; Ansari, N.; Zhou, M. On Divergence-Angle Efficiency of a Laser Beam in Free-Space Optical Communications for High-Speed Trains. IEEE Trans. Veh. Technol. 2017, 66, 7677–7687. [Google Scholar] [CrossRef]
- Tian, J.; Guo, T.; He, N.; Du, J.; Huang, Q.; Hong, X.; Fei, C.; Wang, Y.; Zhang, T.; Zhang, J.; et al. Wide-Field-of-View Modulating Retro-Reflector System Based on a Telecentric Lens for High-Speed Free-Space Optical Communication. IEEE Photonics J. 2023, 15, 1–8. [Google Scholar] [CrossRef]
- He, N.; Guo, T.; Tian, J.; Du, J.; Hu, Z.; Xing, Y.; Jin, Y.; Zhang, J.; He, S. High-Speed Duplex Free Space Optical Communication System Assisted by a Wide-Field-of-View Metalens. ACS Photonics 2023, 10, 3052–3059. [Google Scholar] [CrossRef]
- Burris, H.; Reed, A.; Namazi, N.; Scharpf, W.; Vicheck, M.; Stell, M.; Suite, M. Adaptive thresholding for free-space optical communication receivers with multiplicative noise. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 9–16 March 2002; Volume 3, p. 3. [Google Scholar] [CrossRef]
- Yang, L.; Zhu, B.; Cheng, J.; Holzman, J.F. Free-Space Optical Communications Using on–off Keying and Source Information Transformation. J. Light. Technol. 2016, 34, 2601–2609. [Google Scholar] [CrossRef]
- Shapiro, J.H.; Harney, R.C. Burst-mode atmospheric optical communication. In Proceedings of the NTC 1980; National Telecommunications Conference, Houston, TX, USA, 30 November–4 December 1980; Volume 2, pp. 27.5.1–27.5.7. [Google Scholar]
- Tycz, M.; Fitzmaurice, M.; Premo, D. Optical Communication System Performance with Tracking Error Induced Signal Fading. IEEE Trans. Commun. 1973, 21, 1069–1072. [Google Scholar] [CrossRef]
- Choi, J.Y.; Lee, J.W.; Han, S.K. Stochastic Approximation Aided Adaptive Thresholding for Optical Detection in PAM4 Based FSO Transmission. IEEE Access 2021, 9, 106451–106458. [Google Scholar] [CrossRef]
- Li, L.; Geng, T.; Wang, Y.; Li, X.; Wu, J.; Li, Y.; Ma, S.; Gao, S.; Wu, Z. Free-Space Optical Communication Using Coherent Detection and Double Adaptive Detection Thresholds. IEEE Photonics J. 2019, 11, 1–17. [Google Scholar] [CrossRef]
- Shrivastava, A.K.; Das, D.; Mahapatra, R. Adaptive Threshold Detection and ISI Mitigation in Mobile Molecular Communication. In Proceedings of the 2020 IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Republic of Korea, 25–28 May 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Sterckx, K.; Elmirghani, J.; Cryan, R. On the use of adaptive threshold detection in optical wireless communication systems. In Proceedings of the Globecom ’00—IEEE. Global Telecommunications Conference. Conference Record (Cat. No.00CH37137), San Francisco, CA, USA, 27 November 2000; Volume 2, pp. 1242–1246. [Google Scholar] [CrossRef]
- Yang, L.; Cheng, J.; Holzman, J.F. Electrical-SNR-optimized detection threshold for OOK IM/DD optical wireless communications. In Proceedings of the 2013 13th Canadian Workshop on Information Theory, Toronto, ON, Canada, 18–21 June 2013; pp. 186–189. [Google Scholar] [CrossRef]
- Fei, L.; Houbing, L. Optimum detection threshold for free-space optical communication with atmospheric scintillation. In Proceedings of the 2015 International Conference on Optoelectronics and Microelectronics (ICOM), Changchun, China, 16–18 July 2015; pp. 191–196. [Google Scholar] [CrossRef]
- Riediger, M.L.; Schober, R.; Lampe, L. Fast multiple-symbol detection for free-space optical communications. IEEE Trans. Commun. 2009, 57, 1119–1128. [Google Scholar] [CrossRef]
- Moradi, H.; Refai, H.H.; LoPresti, P.G. Thresholding-Based Optimal Detection of Wireless Optical Signals. J. Opt. Commun. Netw. 2010, 2, 689–700. [Google Scholar] [CrossRef]
- de Wolf, D.A. Are Strong Irradiance Fluctuations Log Normal or Rayleigh Distributed? J. Opt. Soc. Am. 1969, 59, 1455–1460. [Google Scholar] [CrossRef]
- Zhu, X.; Kahn, J.M. Pilot-symbol assisted modulation for correlated turbulent free-space optical channels. In Proceedings of the Free-Space Laser Communication and Laser Imaging; Voelz, D.G., Ricklin, J.C., Eds.; International Society for Optics and Photonics, SPIE: San Diego, CA, USA, 2001; Volume 4489, pp. 138–145. [Google Scholar] [CrossRef]
- Khalighi, M.; Xu, F.; Jaafar, Y.; Bourennane, S. Double-Laser Differential Signaling for Reducing the Effect of Background Radiation in Free-Space Optical Systems. J. Opt. Commun. Netw. 2011, 3, 145–154. [Google Scholar] [CrossRef]
- Usman, M.; Yang, H.C.; Alouini, M.S. Practical Switching-Based Hybrid FSO/RF Transmission and Its Performance Analysis. IEEE Photonics J. 2014, 6, 1–13. [Google Scholar] [CrossRef]
- Vangala, S.; Pishro-Nik, H. Optimal Hybrid RF-Wireless Optical Communication for Maximum Efficiency and Reliability. In Proceedings of the 2007 41st Annual Conference on Information Sciences and Systems, Baltimore, MD, USA, 14–16 March 2007; pp. 684–689. [Google Scholar] [CrossRef]
- Rakia, T.; Yang, H.C.; Alouini, M.S.; Gebali, F. Outage Analysis of Practical FSO/RF Hybrid System with Adaptive Combining. IEEE Commun. Lett. 2015, 19, 1366–1369. [Google Scholar] [CrossRef]
- He, B.; Schober, R. Bit-interleaved coded modulation for hybrid RF/FSO systems. IEEE Trans. Commun. 2009, 57, 3753–3763. [Google Scholar] [CrossRef]
- Zhang, W.; Hranilovic, S.; Shi, C. Soft-Switching Hybrid FSO/RF Links Using Short-Length Raptor Codes: Design and Implementation. IEEE J. Sel. Areas Commun. 2009, 27, 1698–1708. [Google Scholar] [CrossRef]
- Akbulut, A.; Ilk, H.; Ari, F. Design, availability and reliability analysis on an experimental outdoor FSO/RF communication system. In Proceedings of the 2005 7th International Conference Transparent Optical Networks, Barcelona, Spain, 7 July 2005; Volume 1, pp. 403–406. [Google Scholar] [CrossRef]
- Abdulhussein, A.; Oka, A.; Nguyen, T.T.; Lampe, L. Rateless coding for hybrid free-space optical and radio-frequency communication. IEEE Trans. Wirel. Commun. 2010, 9, 907–913. [Google Scholar] [CrossRef]
- Chatzidiamantis, N.D.; Karagiannidis, G.K.; Kriezis, E.E.; Matthaiou, M. Diversity Combining in Hybrid RF/FSO Systems with PSK Modulation. In Proceedings of the 2011 IEEE International Conference on Communications (ICC), Kyoto, Japan, 5–9 June 2011; pp. 1–6. [Google Scholar] [CrossRef]
- Lu, M.; Liu, L.; Hranilovic, S. Raptor-coded free-space optical communications experiment. J. Opt. Commun. Netw. 2016, 8, 398–407. [Google Scholar] [CrossRef]
- Nguyen, C.T.; Le, H.D.; Nguyen, C.T.; Pham, A.T. Toward Practical HARQ-Based RC-LDPC Design for Optical Satellite-Assisted Vehicular Networks. IEEE Trans. Aerosp. Electron. Syst. 2024, 60, 8619–8634. [Google Scholar] [CrossRef]
- Kim, I.I.; Korevaar, E.J. Availability of free-space optics (FSO) and hybrid FSO/RF systems. In Proceedings of the Optical Wireless Communications IV; Korevaar, E.J., Ed.; International Society for Optics and Photonics, SPIE: Denver, CO, USA, 2001; Volume 4530, pp. 84–95. [Google Scholar] [CrossRef]
- Derenick, J.; Thorne, C.; Spletzer, J. On the deployment of a hybrid free-space optic/radio frequency (FSO/RF) mobile ad-hoc network. In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2–6 August 2005; pp. 3990–3996. [Google Scholar] [CrossRef]
- Trinh, P.V.; Cong Thang, T.; Pham, A.T. Mixed mmWave RF/FSO Relaying Systems Over Generalized Fading Channels with Pointing Errors. IEEE Photonics J. 2017, 9, 1–14. [Google Scholar] [CrossRef]
- Tachikawa, W.; Suetsuna, A.; Wang, M.; Yoshii, K.; Shimamoto, S. Applying PDMA for Ground-HAPS Uplink Network with Hybrid FSO/RF Communication. In Proceedings of the 2023 IEEE Wireless Communications and Networking Conference (WCNC), Glasgow, UK, 26–29 March 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Nafees, M.; Huang, S.; Thompson, J.; Safari, M. Leveraging Hybrid UAV Relays in Adverse Weather for FSO Link Capacity Maximization. In Proceedings of the 2022 IEEE Wireless Communications and Networking Conference (WCNC), Austin, TX, USA, 10–13 April 2022; pp. 178–183. [Google Scholar] [CrossRef]
- Vangala, S.; Pishro-Nik, H. A Highly Reliable FSO/RF Communication System Using Efficient Codes. In Proceedings of the IEEE GLOBECOM 2007—IEEE Global Telecommunications Conference, Washington, DC, USA, 26–30 November 2007; pp. 2232–2236. [Google Scholar] [CrossRef]
- Letzepis, N.; Nguyen, K.D.; Guillen i Fabregas, A.; Cowley, W.G. Outage analysis of the hybrid free-space optical and radio-frequency channel. IEEE J. Sel. Areas Commun. 2009, 27, 1709–1719. [Google Scholar] [CrossRef]
- Kamboj, A.; Mallik, R.K.; Agrawal, M.; Schober, R. Diversity combining in FSO systems in presence of non-Gaussian noise. In Proceedings of the 2012 International Conference on Signal Processing and Communications (SPCOM), Bangalore, India, 22–25 July 2012; pp. 1–5. [Google Scholar] [CrossRef]
- Pang, X.; Schatz, R.; Joharifar, M.; Udalcovs, A.; Bobrovs, V.; Zhang, L.; Yu, X.; Sun, Y.T.; Maisons, G.; Carras, M.; et al. Direct Modulation and Free-Space Transmissions of up to 6 Gbps Multilevel Signals with a 4.65-μm Quantum Cascade Laser at Room Temperature. J. Light. Technol. 2022, 40, 2370–2377. [Google Scholar] [CrossRef]
- Han, M.; Joharifar, M.; Wang, M.; Fan, Y.; Maisons, G.; Abautret, J.; Sun, Y.T.; Teissier, R.; Zhang, L.; Bobrovs, V.; et al. Long-Wave Infrared Discrete Multitone Free-Space Transmission Using a 9.15-μm Quantum Cascade Laser. IEEE Photonics Technol. Lett. 2023, 35, 489–492. [Google Scholar] [CrossRef]
- Delga, A.; Leviandier, L. Free-space optical communications with quantum cascade lasers. In Proceedings of the Quantum Sensing and Nano Electronics and Photonics XVI; Razeghi, M., Lewis, J.S., Tournié, E., Khodaparast, G.A., Eds.; International Society for Optics and Photonics, SPIE: San Francisco, CA, USA, 2019; Volume 10926, p. 1092617. [Google Scholar] [CrossRef]
- Didier, P.; Dely, H.; Bonazzi, T.; Spitz, O.; Awwad, E.; Rodriguez, É.; Vasanelli, A.; Sirtori, C.; Grillot, F. High-capacity free-space optical link in the midinfrared thermal atmospheric windows using unipolar quantum devices. Adv. Photonics 2022, 4, 056004. [Google Scholar] [CrossRef]
- Corrigan, P.; Martini, R.; Whittaker, E.A.; Bethea, C. Quantum cascade lasers and the Kruse model in free space optical communication. Opt. Express 2009, 17, 4355–4359. [Google Scholar] [CrossRef]
- Joharifar, M.; Dely, H.; Pang, X.; Schatz, R.; Gacemi, D.; Salgals, T.; Udalcovs, A.; Sun, Y.T.; Fan, Y.; Zhang, L.; et al. High-Speed 9.6-μm Long-Wave Infrared Free-Space Transmission with a Directly-Modulated QCL and a Fully-Passive QCD. J. Light. Technol. 2023, 41, 1087–1094. [Google Scholar] [CrossRef]
- Han, M.; Joharifar, M.; Wang, M.; Schatz, R.; Puerta, R.; Sun, Y.t.; Fan, Y.; Maisons, G.; Abautret, J.; Teissier, R.; et al. High Spectral Efficiency Long-Wave Infrared Free-Space Optical Transmission with Multilevel Signals. J. Light. Technol. 2023, 41, 6514–6520. [Google Scholar] [CrossRef]
- Trinh, P.V.; Pham, A.T.; Carrasco-Casado, A.; Toyoshima, M. Quantum Key Distribution over FSO: Current Development and Future Perspectives. In Proceedings of the 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama), Toyama, Japan, 1–4 August 2018; pp. 1672–1679. [Google Scholar] [CrossRef]
- Roediger, J.; Perlot, N.; Freund, R. Quantum cryptography over the FSO channel with PPM and FSK modulations. In Proceedings of the Broadband Coverage in Germany. 9th ITG Symposium, Berlin, Germany, 20–21 April 2015; pp. 1–5. [Google Scholar]
- Alshaer, N.; Moawad, A.; Ismail, T. Reliability and Security Analysis of an Entanglement-Based QKD Protocol in a Dynamic Ground-to-UAV FSO Communications System. IEEE Access 2021, 9, 168052–168067. [Google Scholar] [CrossRef]
- Alshaer, N.; Ismail, T. Performance Evaluation and Security Analysis of UAV-Based FSO/CV-QKD System Employing DP-QPSK/CD. IEEE Photonics J. 2022, 14, 1–11. [Google Scholar] [CrossRef]
- Sinha, S.; Kumar, C.; Armghan, A.; Singh, M.; Alsharari, M.; Aliqab, K. Simulative Investigation of the Hybrid, Spatially Multiplexed MIMO-FSO Transmission System Under Atmospheric Turbulence. IEEE Access 2023, 11, 55071–55080. [Google Scholar] [CrossRef]
- Li, J.; Zhang, M.; Wang, D. Adaptive Demodulator Using Machine Learning for Orbital Angular Momentum Shift Keying. IEEE Photonics Technol. Lett. 2017, 29, 1455–1458. [Google Scholar] [CrossRef]
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 1992, 45, 8185–8189. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.Y.; Fazal, I.; Ahmed, N.; Yan, Y.; Huang, H.; Ren, Y.; Yue, Y.; Dolinar, S.; Tur, M.; et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics 2012, 6, 488–496. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, Z.; Liao, P.; Li, L.; Xie, G.; Huang, H.; Zhao, Z.; Yan, Y.; Ahmed, N.; Willner, A.; et al. Experimental characterization of a 400 Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m. Opt. Lett. 2016, 41, 622–625. [Google Scholar] [CrossRef]
- Lei, T.; Zhang, M.; Li, Y.; Jia, P.; Liu, G.N.; Xu, X.; Li, Z.; Min, C.; Lin, J.; Chen, Y.; et al. Massive individual orbital angular momentum channels for multiplexing enabled by dammann gratings. Light Sci. Appl. 2015, 4, e257. [Google Scholar] [CrossRef]
- Trichili, A.; Salem, A.B.; Dudley, A.; Zghal, M.; Forbes, A. Encoding information using Laguerre Gaussian modes over free space turbulence media. Opt. Lett. 2016, 41, 3086–3089. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, J.; Mo, Q.; Du, C.; Wang, J. Encoding/decoding using superpositions of spatial modes for image transfer in km-scale few-mode fiber. Opt. Express 2016, 24, 16934–16944. [Google Scholar] [CrossRef]
- Doster, T.; Watnik, A.T. Machine learning approach to OAM beam demultiplexing via convolutional neural networks. Appl. Opt. 2017, 56, 3386–3396. [Google Scholar] [CrossRef]
- Gao, Z.; Eisen, M.; Ribeiro, A. Resource Allocation via Model-Free Deep Learning in Free Space Optical Communications. IEEE Trans. Commun. 2022, 70, 920–934. [Google Scholar] [CrossRef]
- Li, Z.; Cao, J.; Zhao, X.; Liu, W. Swarm intelligence for atmospheric compensation in free space optical communication—Modified shuffled frog leaping algorithm. Opt. Laser Technol. 2015, 66, 89–97. [Google Scholar] [CrossRef]
- Babatunde, K.S.; Ibikunle, F.A.; Arowolo, M.O.; Alabi, A.J.; Jiya, E.A.; Kehinde, O.P. Machine Learning Model for Classifying Free Space Optics Channel Impairments. In Proceedings of the 2022 5th Information Technology for Education and Development (ITED), Abuja, Nigeria, 1–3 November 2022; pp. 1–8. [Google Scholar] [CrossRef]
- Li, J.; Zhang, M.; Wang, D.; Wu, S.; Zhan, Y. Joint atmospheric turbulence detection and adaptive demodulation technique using the CNN for the OAM-FSO communication. Opt. Express 2018, 26, 10494–10508. [Google Scholar] [CrossRef] [PubMed]
- Maharjan, N.; Kim, B.W. Reduction of Beam Pointing Error on Free Space Optical Communication links using Tree Based Machine Learning Multi-Output Regression Model. In Proceedings of the 2023 Fourteenth International Conference on Ubiquitous and Future Networks (ICUFN), Paris, France, 4–7 July 2023; pp. 664–668. [Google Scholar] [CrossRef]
- Zheng, C.; Yu, S.; Gu, W. A SVM-based processor for free-space optical communication. In Proceedings of the 2015 IEEE 5th International Conference on Electronics Information and Emergency Communication, Beijing, China, 14–16 May 2015; pp. 30–33. [Google Scholar] [CrossRef]
- Rahman, K.F.; Afrin, F.; Taip, F.S.b. Optical Network Performance Analysis through Prediction of Q Factor on Simulated and Validated Dataset. In Proceedings of the 2018 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET), Kota Kinabalu, Malaysia, 8 November 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, X. BP artificial neural network based wave front correction for sensor-less free space optics communication. Opt. Commun. 2017, 385, 219–228. [Google Scholar] [CrossRef]
- Li, Y.; Geng, T.; Tian, R.; Gao, S. Power allocation in a spatial multiplexing free-space optical system with reinforcement learning. Opt. Commun. 2021, 488, 126856. [Google Scholar] [CrossRef]
- Amirabadi, M.A.; Kahaei, M.H.; Nezamalhosseini, S.A.; Vakili, V.T. Deep Learning for channel estimation in FSO communication system. Opt. Commun. 2020, 459, 124989. [Google Scholar] [CrossRef]
- Lohani, S.; Glasser, R.T. Turbulence correction with artificial neural networks. Opt. Lett. 2018, 43, 2611–2614. [Google Scholar] [CrossRef]
- Tian, Q.; Li, Z.; Hu, K.; Zhu, L.; Pan, X.; Zhang, Q.; Wang, Y.; Tian, F.; Yin, X.; Xin, X. Turbo-coded 16-ary OAM shift keying FSO communication system combining the CNN-based adaptive demodulator. Opt. Express 2018, 26, 27849–27864. [Google Scholar] [CrossRef]
- Li, G.; Guo, S.; Yang, Y.; Yang, Y. Traffic Load Minimization in Software Defined Wireless Sensor Networks. IEEE Internet Things J. 2018, 5, 1370–1378. [Google Scholar] [CrossRef]
- Gao, Z.; Eisen, M.; Ribeiro, A. Resource Allocation via Graph Neural Networks in Free Space Optical Fronthaul Networks. In Proceedings of the GLOBECOM 2020 - 2020 IEEE Global Communications Conference, Taipei, Taiwan, 7–11 December 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Dehnaw, A.M.; Manie, Y.C.; Du, L.Y.; Yao, C.K.; Li, Y.L.; Hayle, S.T.; Peng, P.C. Bidirectional Free Space Optics Communication for Long-Distance Sensor System. J. Light. Technol. 2023, 41, 5870–5878. [Google Scholar] [CrossRef]
- Song, S.; Liu, Y.; Xu, T.; Liao, S.; Guo, L. Demonstration of Channel-Predictable Free Space Optical Communication System Using Machine Learning. In Proceedings of the 2021 Optical Fiber Communications Conference and Exhibition (OFC), San Francisco, CA, USA, 6–10 June 2021; pp. 1–3. [Google Scholar]
- Amirabadi, M.A.; Kahaei, M.H.; Nezamalhosseini, S.A. A Deep Learning based Detector for FSO System Considering Imperfect CSI Scenario. In Proceedings of the 2020 3rd West Asian Symposium on Optical and Millimeter-wave Wireless Communication (WASOWC), Tehran, Iran, 24–25 November 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, M.; Li, Z.; Li, J.; Fu, M.; Cui, Y.; Chen, X. Modulation Format Recognition and OSNR Estimation Using CNN-Based Deep Learning. IEEE Photonics Technol. Lett. 2017, 29, 1667–1670. [Google Scholar] [CrossRef]
- Khan, F.N.; Zhong, K.; Zhou, X.; Al-Arashi, W.H.; Yu, C.; Lu, C.; Lau, A.P.T. Joint OSNR monitoring and modulation format identification in digital coherent receivers using deep neural networks. Opt. Express 2017, 25, 17767–17776. [Google Scholar] [CrossRef] [PubMed]
- Giacoumidis, E.; Lin, Y.; Wei, J.; Aldaya, I.; Tsokanos, A.; Barry, L.P. Harnessing machine learning for fiber-induced nonlinearity mitigation in long-haul coherent optical OFDM. Future Internet 2019, 11, 2. [Google Scholar] [CrossRef]
- Huang, Y.; Gutterman, C.L.; Samadi, P.; Cho, P.B.; Samoud, W.; Ware, C.; Lourdiane, M.; Zussman, G.; Bergman, K. Dynamic mitigation of EDFA power excursions with machine learning. Opt. Express 2017, 25, 2245–2258. [Google Scholar] [CrossRef]
- Thrane, J.; Wass, J.; Piels, M.; Diniz, J.C.M.; Jones, R.; Zibar, D. Machine Learning Techniques for Optical Performance Monitoring From Directly Detected PDM-QAM Signals. J. Light. Technol. 2017, 35, 868–875. [Google Scholar] [CrossRef]
- Rottondi, C.; Barletta, L.; Giusti, A.; Tornatore, M. Machine-learning method for quality of transmission prediction of unestablished lightpaths. J. Opt. Commun. Netw. 2018, 10, A286–A297. [Google Scholar] [CrossRef]
- Zhong, Z.; Hua, N.; Yuan, Z.; Li, Y.; Zheng, X. Routing without Routing Algorithms: An AI-Based Routing Paradigm for Multi-Domain Optical Networks. In Proceedings of the Optical Fiber Communication Conference (OFC), San Francisco, CA, USA, 3–7 March 2019; p. 2. [Google Scholar] [CrossRef]
- Darwesh, L.; Kopeika, N.S. Deep Learning for Improving Performance of OOK Modulation Over FSO Turbulent Channels. IEEE Access 2020, 8, 155275–155284. [Google Scholar] [CrossRef]
- Prasad, P.; K, A.M.; Jain, A. An Investigation on the Error Performance of NOMA-aided Hybrid Satellite-Terrestrial FSO System. In Proceedings of the 2023 International Conference on Communication, Circuits, and Systems (IC3S), Bhubaneswar, India, 26–28 May 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Lv, L.; Yang, Z.; Fang, Y.; Guizani, M. Adaptive Interleaver and Rate-Compatible PLDPC Code Design for MIMO FSO-RF Systems. IEEE Trans. Veh. Technol. 2024, 73, 15757–15762. [Google Scholar] [CrossRef]
- Chiti, F.; Picchi, R.; Pierucci, L. Metropolitan Quantum-Drone Networking and Computing: A Software-Defined Perspective. IEEE Access 2022, 10, 126062–126073. [Google Scholar] [CrossRef]
- Nguyen, H.; Krishna Yoga Utama, I.B.; Jang, Y.M. Enabling Technologies and New Challenges in IEEE 802.15.7 Optical Camera Communications Standard. IEEE Commun. Mag. 2024, 62, 90–95. [Google Scholar] [CrossRef]
- IEEE Std 802.15.7-2018 (Revision of IEEE Std 802.15.7-2011); IEEE Standard for Local and Metropolitan Area Networks–Part 15.7: Short-Range Optical Wireless Communications. IEEE: New York, NY, USA, 2019; pp. 1–407. [CrossRef]
- IEEE 802.15.7-2018; IEEE LANMAN—Part 15.7: Short-Range OpticalWireless Communications (PODRL). IEEE: New York, NY, USA, 2018.
- Thieu, M.D.; Pham, T.L.; Nguyen, T.; Jang, Y.M. Optical-RoI-Signaling for Vehicular Communications. IEEE Access 2019, 7, 69873–69891. [Google Scholar] [CrossRef]
- Co-Location Longitudinally Compatible Interfaces for Free Space Optical Systems; Recommendation itu-t-g.640; ITU-T; ITU: Geneva, Switzerland, 2006.
- Fixed Service Applications Using Free-Space Optical Links; Report itu-r f.2106-1; ITU-R; ITU: Geneva, Switzerland, 2010.
- Kouhini, S.M.; Kottke, C.; Ma, Z.; Freund, R.; Jungnickel, V.; Müller, M.; Behnke, D.; Vazquez, M.M.; Linnartz, J.P.M.G. LiFi Positioning for Industry 4.0. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 1–15. [Google Scholar] [CrossRef]
- Kaufmann, M.; Mas-Machuca, C.; Müller, M.; Behnke, D.; Stobbelaar, P.; Linnartz, J.P.; Riegel, M.; Schulz, D.; Jungnickel, V. Techno-Economics of LiFi in IoT Applications. In Proceedings of the 2022 International Conference on Optical Network Design and Modeling (ONDM), Warsaw, Poland, 16–19 May 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Hamza, A.S.; Deogun, J.S.; Alexander, D.R. Classification Framework for Free Space Optical Communication Links and Systems. IEEE Commun. Surv. Tutor. 2019, 21, 1346–1382. [Google Scholar] [CrossRef]
- Propagation Data Required for the Design of Terrestrial Free-Space Optical Links; Recommendation itu-r p.1817-1; ITU-R; ITU: Geneva, Switzerland, 2012.
- Nebuloni, R.; Verdugo, E. FSO Path Loss Model Based on the Visibility. IEEE Photonics J. 2022, 14, 1–9. [Google Scholar] [CrossRef]
- Prediction Methods Required for the Design of Terrestrial Free-Space Optical Links; Recommendation itu-r p.1814; ITU-R; ITU: Geneva, Switzerland, 2007.
- IEC 60825-1:2014; International Standard, Edition 3.0; Safety of Laser Products—Part 1: Equipment Classification and Requirements. International Electrotechnical Commission: Geneva, Switzerland, 2014.
- Al-Gailani, S.A.; Mohd Salleh, M.F.; Salem, A.A.; Shaddad, R.Q.; Sheikh, U.U.; Algeelani, N.A.; Almohamad, T.A. A Survey of Free Space Optics (FSO) Communication Systems, Links, and Networks. IEEE Access 2021, 9, 7353–7373. [Google Scholar] [CrossRef]
- Chiti, F.; Picchi, R.; Pierucci, L. Advanced Control Architectures for Quantum Satellite Temporal-Networking. IEEE Access 2024, 12, 43410–43421. [Google Scholar] [CrossRef]
- Al-Hraishawi, H.; Rehman, J.U.; Razavi, M.; Chatzinotas, S. Characterizing and Utilizing the Interplay Between Quantum Technologies and Non-Terrestrial Networks. IEEE Open J. Commun. Soc. 2024, 5, 1937–1957. [Google Scholar] [CrossRef]
- Alimi, I.A.; Patel, R.K.; Aboderin, O.; Abdalla, A.M.; Gbadamosi, R.A.; Muga, N.J.; Pinto, A.N.; Teixeira, A.L. Network-on-Chip Topologies: Potentials, Technical Challenges, Recent Advances and Research Direction. In Network-on-Chip; Alimi, I.A., Aboderin, O., Muga, N.J., Teixeira, A.L., Eds.; IntechOpen: Rijeka, Croatia, 2021; Chapter 3. [Google Scholar] [CrossRef]
- Alimi, I.A.; Abdalla, A.M.; Olapade Mufutau, A.; Pereira Guiomar, F.; Otung, I.; Rodriguez, J.; Pereira Monteiro, P.; Teixeira, A.L. Energy Efficiency in the Cloud Radio Access Network (C-RAN) for 5G Mobile Networks. In Optical and Wireless Convergence for 5G Networks; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019; Chapter 11; pp. 225–248. [Google Scholar] [CrossRef]
- Alimi, I.A.; Patel, R.K.; Mufutau, A.O.; Muga, N.J.; Pinto, A.N.; Monteiro, P. Towards a Sustainable Green Design for Next-Generation Networks. Wirel. Pers. Commun. 2021, 121, 1123–1138. [Google Scholar] [CrossRef]
Feature | Non-Coherent | Coherent | Self-Coherent |
---|---|---|---|
Modulation Techniques | Intensity modulation | Amplitude, frequency, or phase modulation | Phase modulation |
DSP Complexity | Low | High | Moderate |
Receiver Complexity | Low | High | Moderate |
Detection Mechanism | Direct detection of light intensity | Optical mixing with a locally generated optical field | Optical mixing with a delayed version of the received signal |
Need for polarization control or diversity | No | Yes | Yes |
Need for Local Oscillator | No | Yes | No |
Noise Rejection Performance | Moderate | Superior | High |
Sensitivity to Atmospheric Turbulence | Higher | Lower | Lower |
Receiver Sensitivity | Moderate | High | High |
Spectral efficiency | Lower | Higher | Moderate |
Reach | Lower | Higher | Moderate |
Power consumption | Lower | Higher | Moderate |
Footprint | Lower | Higher | Moderate |
Cost | Lower | Higher | Moderate |
Common Usage | Terrestrial FSO links | Advanced applications requiring high performance | Applications needing a balance of performance and complexity |
Conditions | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Distribution Model | ||||||||||
Rice-Nakagami | 0 | 0 | ||||||||
Gamma | 0 | 0 | ||||||||
Homodyned K | 0 | 0 | ||||||||
1 | 1 | 0 | ||||||||
Shadowed-Rician | 0 | |||||||||
Log-normal | 0 | 0 | ||||||||
K | 0 | 0 | ||||||||
Exponential | 0 | 0 | 0 | |||||||
Gamma-Rician |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alimi, I.A.; Monteiro, P.P. Revolutionizing Free-Space Optics: A Survey of Enabling Technologies, Challenges, Trends, and Prospects of Beyond 5G Free-Space Optical (FSO) Communication Systems. Sensors 2024, 24, 8036. https://doi.org/10.3390/s24248036
Alimi IA, Monteiro PP. Revolutionizing Free-Space Optics: A Survey of Enabling Technologies, Challenges, Trends, and Prospects of Beyond 5G Free-Space Optical (FSO) Communication Systems. Sensors. 2024; 24(24):8036. https://doi.org/10.3390/s24248036
Chicago/Turabian StyleAlimi, Isiaka A., and Paulo P. Monteiro. 2024. "Revolutionizing Free-Space Optics: A Survey of Enabling Technologies, Challenges, Trends, and Prospects of Beyond 5G Free-Space Optical (FSO) Communication Systems" Sensors 24, no. 24: 8036. https://doi.org/10.3390/s24248036
APA StyleAlimi, I. A., & Monteiro, P. P. (2024). Revolutionizing Free-Space Optics: A Survey of Enabling Technologies, Challenges, Trends, and Prospects of Beyond 5G Free-Space Optical (FSO) Communication Systems. Sensors, 24(24), 8036. https://doi.org/10.3390/s24248036