Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (131)

Search Parameters:
Keywords = temperature abuse

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2887 KiB  
Article
Development and Biochemical Characterization of Quorum Quenching Enzyme from Deep-Sea Bacillus velezensis DH82
by Xiaohui Sun, Jia Liu, Ying Yan, Suping Yang, Guangya Zhang and Hala F. Mohamed
Microorganisms 2025, 13(8), 1717; https://doi.org/10.3390/microorganisms13081717 - 22 Jul 2025
Viewed by 215
Abstract
Quorum quenching (QQ) is of interest for potential application as a sustainable strategy for bacterial disease control via communication interruption. The QQ enzyme can be used as a good alternative antagonist to combat antibiotic abuse and bacterial resistance. Here, genomic DNA sequencing was [...] Read more.
Quorum quenching (QQ) is of interest for potential application as a sustainable strategy for bacterial disease control via communication interruption. The QQ enzyme can be used as a good alternative antagonist to combat antibiotic abuse and bacterial resistance. Here, genomic DNA sequencing was performed on N-acyl homoserine lactonase from the deep-sea strain Bacillus velezensis DH82 with Cluster of Orthologous Groups of proteins (COGs) annotation. The homologous sequences with β-lactamase domain-containing protein were predicted to be potential QQ enzymes and were cloned and expressed to study their quorum quenching properties by comparing them with the reported enzyme AiiA3DHB. The experimental results of enzyme activity analysis and steady-state kinetics, as well as enzyme structure and substrate docking simulations and predictions, all consistently demonstrated that YtnPDH82 presented superior enzyme structural stability and higher degradation efficiency of N-acyl homoserine lactones than AiiADH82 under the effects of pH, and temperature, and performed better on short -chain and 3-O-substituted AHSLs. The findings revealed the structural and biochemical characterization of YtnPDH82 from the deep sea, which provide the capacity for further application in sustainable aquaculture as an alternative to antibiotics. Full article
(This article belongs to the Special Issue Microbes in Aquaculture)
Show Figures

Figure 1

21 pages, 3369 KiB  
Article
Thermal Runaway Critical Threshold and Gas Release Safety Boundary of 18,650 Lithium-Ion Battery in State of Charge
by Jingyu Zhao, Kexin Xing, Xinrong Jiang, Chi-Min Shu and Xiangrong Sun
Processes 2025, 13(7), 2175; https://doi.org/10.3390/pr13072175 - 8 Jul 2025
Viewed by 698
Abstract
In this study, we systematically investigated the characteristic parameter evolution laws of thermal runaway with respect to 18,650 lithium-ion batteries (LIBs) under thermal abuse conditions at five state-of-charge (SOC) levels: 0%, 25%, 50%, 75%, and 100%. In our experiments, we combined infrared thermography, [...] Read more.
In this study, we systematically investigated the characteristic parameter evolution laws of thermal runaway with respect to 18,650 lithium-ion batteries (LIBs) under thermal abuse conditions at five state-of-charge (SOC) levels: 0%, 25%, 50%, 75%, and 100%. In our experiments, we combined infrared thermography, mass loss analysis, temperature monitoring, and gas composition detection to reveal the mechanisms by which SOC affects the trigger time, critical temperature, maximum temperature, mass loss, and gas release characteristics of thermal runaway. The results showed that as the SOC increases, the critical and maximum temperatures of thermal runaway increase notably. At a 100% SOC, the highest temperature on the positive electrode side reached 1082.1 °C, and the mass loss increased from 6.90 g at 0% SOC to 25.75 g at 100% SOC, demonstrating a salient positive correlation. Gas analysis indicated that under high-SOC conditions (75% and 100%), the proportion of flammable gases such as CO and CH4 produced during thermal runaway significantly increases, with the CO/CO2 ratio exceeding 1, indicating intensified incomplete combustion and a significant increase in fire risk. In addition, flammability limit analysis revealed that the lower explosive limit for gases is lower (17–21%) at a low SOC (0%) and a high SOC (100%), indicating greater explosion risks. We also found that the composition of gases released during thermal runaway varies substantially at different SOC levels, with CO, CO2, and CH4 accounting for over 90% of the total gas volume, while toxic gases, such as HF, although present in smaller proportions, pose noteworthy hazards. Unlike prior studies that relied on post hoc analysis, this work integrates real-time multi-parameter monitoring (temperature, gas composition, and mass loss) and quantitative explosion risk modeling (flammability limits via the L-C formula). This approach reveals the unique dynamic SOC-dependent mechanisms of thermal runaway initiation and gas hazards. This study provides theoretical support for the source tracing of thermal runaway fires and the development of preventive LIB safety technology and emphasizes the critical influence of the charge state on the thermal safety of batteries. Full article
(This article belongs to the Special Issue Machine Learning Optimization of Chemical Processes)
Show Figures

Figure 1

27 pages, 3179 KiB  
Article
Influence of Overcharge Abuse on the Thermal-Electrochemical Performance of Sodium Ion Cells
by Jiangyun Zhang, Ruli Zhang, Fei Duan, Mingli Niu, Guoqing Zhang, Ting Huang, Xiaoyong Wang, Yuliang Wen, Ning Xu and Xin Liu
Energies 2025, 18(13), 3580; https://doi.org/10.3390/en18133580 - 7 Jul 2025
Viewed by 304
Abstract
Thermal safety issues of sodium-ion batteries have become a major challenge, particularly under abusive conditions where the risk of thermal runaway is heightened. This study investigates the effects of overcharging on the thermal safety of sodium-ion batteries. Discharge capacity and time, internal resistance, [...] Read more.
Thermal safety issues of sodium-ion batteries have become a major challenge, particularly under abusive conditions where the risk of thermal runaway is heightened. This study investigates the effects of overcharging on the thermal safety of sodium-ion batteries. Discharge capacity and time, internal resistance, and electrochemical impedance spectroscopy (EIS) at different states of charge (SOCs) are analyzed. Additionally, heat generation behaviors are evaluated at both normal/elevated temperatures. It is found that the overcharged batteries (OBs) demonstrate a significant increase in internal resistance from 46.72 Ω to 65.99 Ω. The discharge time of OBs at 1 C current (the ratio of the rate at which a battery discharges per unit time to its rated capacity) is reduced by 4.26% compared to normal batteries (NBs). The peak temperature and temperature difference increase by 5.6% and 36.1%, respectively. When discharged at 1 C at 40 °C, OBs have a 5.47% reduction in discharge time compared to NBs. Furthermore, the OBs exhibit an increase in the peak discharge temperature and temperature difference of 0.99 °C and 0.4 °C, respectively. Microscopic analysis of the electrode materials makes clear the irreversible damage to the internal structures of the sodium-ion battery caused by overcharging. This study potentially provides fundamental data support and theoretical insights for sodium-ion battery module thermal safety. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

27 pages, 7013 KiB  
Article
Detailed Characterization of Thermal Runaway Particle Emissions from a Prismatic NMC622 Lithium-Ion Battery
by Felix Elsner, Peter Gerhards, Gaël Berrier, Rémi Vincent, Sébastien Dubourg and Stefan Pischinger
Batteries 2025, 11(6), 225; https://doi.org/10.3390/batteries11060225 - 9 Jun 2025
Viewed by 832
Abstract
Particles ejected during thermal runaway (TR) of lithium-ion batteries carry a significant fraction of the total TR energy and can cause danger to other components in the battery system. The associated safety hazards should be addressed in the battery pack development process, which [...] Read more.
Particles ejected during thermal runaway (TR) of lithium-ion batteries carry a significant fraction of the total TR energy and can cause danger to other components in the battery system. The associated safety hazards should be addressed in the battery pack development process, which requires a deep understanding of TR particle characteristics. In this study, these characteristics are determined by applying several measurement techniques. Among them, dynamic image analysis and large particle image processing are applied to battery abuse particles for the first time, allowing their size and shape to be quantified in detail. Particles are collected from three overheating tests on a prismatic 51 Ah NMC622 cell under vacuum conditions in an autoclave environment. Battery abuse particles cover a wide size range, from micrometers to millimeters, with the largest particle reaching 51.4 mm. They are non-spherical, whereby sphericity, symmetry, and aspect ratio decrease for larger particles. Re-solidified copper droplets and intact separator pieces indicate particle temperatures of ~200–1100 °C at the time of cell ejection. Particles are partially combustible, with an exothermic onset at ~500 °C associated with graphite oxidation. Reactivity is non-linearly size dependent. Implications of these findings for battery system development are discussed. Full article
Show Figures

Figure 1

17 pages, 1977 KiB  
Article
Biochemical and Functional Characterization of E. coli Aminopeptidase N: A New Role as a 6-Monoacetylmorphine Hydrolase
by Xiabin Chen, Yishuang Li, Jianzhuang Yao, Xiaoxuan Li, Hualing Li, Zelin Wu, Qi Hu, Nuo Xu, Tingjun Hou, Jiye Wang and Shurong Hou
Biomolecules 2025, 15(6), 822; https://doi.org/10.3390/biom15060822 - 5 Jun 2025
Viewed by 550
Abstract
6-monoacetylmorphine (6-MAM), a primary active metabolite of heroin that reaches the human brain, plays a crucial role in producing heroin-associated physiological and lethal effects. Therefore, 6-MAM has emerged as a key target for alleviating the adverse consequences of heroin abuse. In this study, [...] Read more.
6-monoacetylmorphine (6-MAM), a primary active metabolite of heroin that reaches the human brain, plays a crucial role in producing heroin-associated physiological and lethal effects. Therefore, 6-MAM has emerged as a key target for alleviating the adverse consequences of heroin abuse. In this study, the proposed 6-MAM hydrolase E. coli aminopeptidase N (eAPN) was recombinantly produced, and its biochemical and functional profiles were investigated. eAPN’s biochemical properties, with respect to pH, metal ions, and temperature, and catalytic functions toward peptidase substrates and 6-MAM were thoroughly examined. Extensive experiments reveal that incorporation of an N-terminal His-tag notably affects eAPN’s aminopeptidase activity. This cost-effective recombinant eAPN exhibits favorable thermostability and optimal activity at pH 7.5. Kinetic analysis toward peptidase substrates reveals that eAPN preferentially cleaves peptides following amino acid residues in the order of Ala > Arg >> Met, Gly > Leu > Pro, indicating a preference for small or basic amino acid residues as substrates. Computational and experimental studies have, for the first time, discovered that eAPN is capable of catalyzing the hydrolysis of heroin and 6-MAM, which has shed light on its functional versatility and potential applications. This work elucidates the biochemical properties of eAPN and expands its catalytic functions, thereby laying the groundwork for a deep understanding and further reengineering of eAPN to enhance its activity toward 6-MAM for heroin detoxification. Full article
(This article belongs to the Section Enzymology)
Show Figures

Figure 1

28 pages, 5473 KiB  
Review
Advances in the Battery Thermal Management Systems of Electric Vehicles for Thermal Runaway Prevention and Suppression
by Le Duc Tai and Moo-Yeon Lee
Batteries 2025, 11(6), 216; https://doi.org/10.3390/batteries11060216 - 1 Jun 2025
Viewed by 2127
Abstract
In response to the global imperative to reduce greenhouse gas emissions and fossil fuel dependency, electric vehicles (EVs) have emerged as a sustainable transportation alternative, primarily utilizing lithium-ion batteries (LIBs) due to their high energy density and efficiency. However, LIBs are highly sensitive [...] Read more.
In response to the global imperative to reduce greenhouse gas emissions and fossil fuel dependency, electric vehicles (EVs) have emerged as a sustainable transportation alternative, primarily utilizing lithium-ion batteries (LIBs) due to their high energy density and efficiency. However, LIBs are highly sensitive to temperature fluctuations, significantly affecting their performance, lifespan, and safety. One of the most critical threats to the safe operation of LIBs is thermal runaway (TR), an uncontrollable exothermic process that can lead to catastrophic failure under abusive conditions. Moreover, thermal runaway propagation (TRP) can rapidly spread failures across battery cells, intensifying safety threats. To address these challenges, developing advanced battery thermal management systems (BTMS) is essential to ensure optimal temperature control and suppress TR and TRP within LIB modules. This review systematically evaluates advanced cooling strategies, including indirect liquid cooling, water mist cooling, immersion cooling, phase change material (PCM) cooling, and hybrid cooling based on the latest studies published between 2020 and 2025. The review highlights their mechanisms, effectiveness, and practical considerations for preventing TR initiation and suppressing TRP in battery modules. Finally, key findings and future directions for designing next-generation BTMS are proposed, contributing valuable insights for enhancing the safety and reliability of LIB applications. Full article
Show Figures

Figure 1

19 pages, 627 KiB  
Article
Survival of Listeria monocytogenes in Light and Full-Fat, Modified Atmosphere-Packaged, Sliced Greek Cheese over Shelf Life: Implications for Ready-to-Eat Food Safety
by Ntina Vasileiadi, Theofania Tsironi and Georgia D. Mandilara
Appl. Sci. 2025, 15(11), 6109; https://doi.org/10.3390/app15116109 - 29 May 2025
Viewed by 777
Abstract
Listeria monocytogenes (Lm) represents a considerable hazard in ready-to-eat (RTE) foods, particularly for susceptible individuals. This study investigated the survival of Lm in modified atmosphere-packaged (MAP) semi-hard sliced Greek cheese, comparing full-fat and light varieties. Challenge testing was conducted, and key [...] Read more.
Listeria monocytogenes (Lm) represents a considerable hazard in ready-to-eat (RTE) foods, particularly for susceptible individuals. This study investigated the survival of Lm in modified atmosphere-packaged (MAP) semi-hard sliced Greek cheese, comparing full-fat and light varieties. Challenge testing was conducted, and key product characteristics, including MAP gas composition, background microbiota, sodium chloride concentration, fat content, water activity, and pH, were determined. While the tested sliced cheeses, under specific MAP and storage conditions, met EU regulatory criteria for RTE foods unable to support Lm growth, the pathogen persisted at low levels throughout the 6-month shelf life. This finding underscores a potential risk associated with temperature abuse or compromised packaging integrity, which could facilitate Lm proliferation. The observed survival highlights the importance of growth potential assessment, even in food matrices seemingly non-supportive of Lm. Given that post-pasteurization processing steps like slicing and MAP packaging can introduce contamination risks for vulnerable consumers, this study emphasizes the necessity of stringent hygienic practices to prevent Lm contamination. Food business operators (FBOs) must rigorously implement food safety protocols, including controlled storage temperatures, robust hygiene measures, and effective cross-contamination prevention strategies between raw and RTE products, to safeguard public health, protect brand integrity, and mitigate economic losses. Full article
Show Figures

Figure 1

22 pages, 3179 KiB  
Article
Lithium-Ion Battery Thermal Runaway Suppression Using Water Spray Cooling
by Eric Huhn, Nicole Braxtan, Shen-En Chen, Anthony Bombik, Tiefu Zhao, Lin Ma, John Sherman and Soroush Roghani
Energies 2025, 18(11), 2709; https://doi.org/10.3390/en18112709 - 23 May 2025
Cited by 1 | Viewed by 1087
Abstract
Despite the commercial success of lithium-ion batteries (LIBs), the risk of thermal runaway, which can lead to dangerous fires, has become more concerning as LIB usage increases. Research has focused on understanding the causes of thermal runaway and how to prevent or detect [...] Read more.
Despite the commercial success of lithium-ion batteries (LIBs), the risk of thermal runaway, which can lead to dangerous fires, has become more concerning as LIB usage increases. Research has focused on understanding the causes of thermal runaway and how to prevent or detect it. Additionally, novel thermal runaway-resistant materials are being researched, as are different methods of constructing LIBs that better isolate thermal runaway and prevent it from propagating. However, field firefighters are using hundreds of thousands of liters of water to control large runaway thermal emergencies, highlighting the need to merge research with practical observations. To study battery fire, this study utilized a temperature abuse method to increase LIB temperature and investigated whether thermal runaway can be suppressed by applying external cooling during heating. The batteries used were pouch-type ones and subjected to high states of charge (SOC), which primed the thermal runaway during battery temperature increase. A water spray method was then devised and tested to reduce battery temperature. Results showed that, without cooling, a thermal runaway fire occurred every time during the thermal abuse. However, external cooling successfully prevented thermal runaway. This observation shows that using water as a temperature reducer is more effective than using it as a fire suppressant, which can substantially improve battery performance and increase public safety. Full article
Show Figures

Figure 1

13 pages, 2022 KiB  
Article
Evaluating the Biocontrol Potential of Bacillus subtilis Spores Against Listeria monocytogenes in Tryptic Soy Broth and Hummus
by Abisha Dhital, Xin Mei Teng, Jessie Payne and Ravi Jadeja
Appl. Microbiol. 2025, 5(2), 47; https://doi.org/10.3390/applmicrobiol5020047 - 15 May 2025
Viewed by 887
Abstract
This study evaluated the antimicrobial potential of a Bacillus subtilis spore-based probiotic cocktail to reduce foodborne pathogens in both nutrient-rich laboratory media and a complex food matrix (hummus). Three common foodborne pathogens—Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella Typhimurium—were cultured individually [...] Read more.
This study evaluated the antimicrobial potential of a Bacillus subtilis spore-based probiotic cocktail to reduce foodborne pathogens in both nutrient-rich laboratory media and a complex food matrix (hummus). Three common foodborne pathogens—Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella Typhimurium—were cultured individually in full-strength, half-strength, and quarter-strength tryptic soy broth (TSB) with or without the probiotic spores (~7 log CFU/mL). Additionally, a commercial hummus formulation was inoculated with L. monocytogenes (~3 log CFU/g) and B. subtilis spores (~7 log CFU/g) and stored at 30 °C to simulate temperature abuse. In TSB, E. coli and Salmonella grew to ~8.2 log CFU/mL in full-strength media, with no significant inhibition by the probiotics. However, L. monocytogenes showed substantial suppression: in nutrient-limited TSB, viable counts dropped below the detection limit of 1.48 log CFU/mL by 24 h in the presence of probiotics. In hummus, L. monocytogenes grew to an average of 8.22 log CFU/g in the absence of probiotics but remained significantly lower at an average of 5.03 log CFU/g when co-inoculated with B. subtilis (p < 0.05). Germination of probiotic spores was confirmed within 6 h under all conditions. These findings suggest that B. subtilis spores selectively inhibit Listeria, particularly under nutrient stress or abuse conditions. While the probiotic had limited impact on Gram-negative pathogens, its application may serve as a clean-label strategy for suppressing L. monocytogenes in ready-to-eat (RTE) foods. This dual-model approach provides insights into both mechanistic activity and practical limitations of spore probiotics in complex food matrices. Full article
Show Figures

Figure 1

15 pages, 1482 KiB  
Article
Acute Pharmacological Effects of Two Synthetic Cathinones in Humans: An Observational Study of N-Ethylhexedrone and N-Ethyl-nor-pentedrone
by Melani Núñez-Montero, Clara Pérez-Mañá, Olga Hladun, Lourdes Poyatos, Dolly Andrea Caicedo, Georgina De la Rosa, Martha Catalina Argote, Soraya Martín, Mireia Ventura, Nunzia La Maida, Annagiulia Di Trana, Silvia Graziano, Simona Pichini, Magì Farré and Esther Papaseit
Pharmaceuticals 2025, 18(5), 721; https://doi.org/10.3390/ph18050721 - 14 May 2025
Viewed by 2041
Abstract
Background: Synthetic cathinones (SCs) are the second most representative class of New Psychoactive Substances, with more than 100 analogues identified in the illicit drug market up to 2024. According to the United Nations Office on Drugs and Crimes, N-ethylhexedrone (NEH) and N [...] Read more.
Background: Synthetic cathinones (SCs) are the second most representative class of New Psychoactive Substances, with more than 100 analogues identified in the illicit drug market up to 2024. According to the United Nations Office on Drugs and Crimes, N-ethylhexedrone (NEH) and N-ethyl-nor-pentedrone (NEP) were identified among the most frequently seized SCs worldwide. However, still, little is known with regard to their pharmacological effects in humans. Methods: For the first time, we conducted a naturalistic, prospective observational study in 16 participants (7 women and 9 men) with a previous history of psychostimulant recreational use. They intranasally self-administered a single dose of NEP (n = 8, 20–40 mg) or NEH (n = 8, 20–40 mg). The physiological effects (systolic and diastolic blood pressure, heart rate, and temperature) and subjective effects (visual analogue scales, Addiction Research Center Inventory questionnaire and Evaluation of Subjective Effects of Substances with Abuse Potential questionnaire) were assessed up to 4 h after the self-administration at different time points (0, 20 and 40 min and 1, 1.5, 2, 3 and 4 h). Results: Despite several differences, both NEP and NEH produced significant effects within 20 min, with a return to baseline 3–4 h after self-administration. In general, NEP showed a faster onset and a more rapid disappearance of subjective effects than NEH. Moreover, intranasal self-administration of NEH and NEP in experienced recreational drug users, within a non-controlled setting, induces a constellation of psychostimulant-like effects. Conclusion: NEH and NEP showed similar pharmacological properties after insufflation, with typical effects of SCs Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

25 pages, 3739 KiB  
Article
Electrochemical–Thermal Modeling of Lithium-Ion Batteries: An Analysis of Thermal Runaway with Observation on Aging Effects
by Milad Tulabi and Roberto Bubbico
Batteries 2025, 11(5), 178; https://doi.org/10.3390/batteries11050178 - 2 May 2025
Viewed by 2446
Abstract
The increasing demand for energy storage solutions, particularly in electric vehicles and renewable energy systems, has intensified research on lithium-ion (Li-ion) battery safety and performance. A critical challenge is thermal runaway (TR), a highly exothermic sequence of reactions triggered by mechanical, electrical, or [...] Read more.
The increasing demand for energy storage solutions, particularly in electric vehicles and renewable energy systems, has intensified research on lithium-ion (Li-ion) battery safety and performance. A critical challenge is thermal runaway (TR), a highly exothermic sequence of reactions triggered by mechanical, electrical, or thermal abuse, which can lead to catastrophic failures. While most TR models focus on fresh cells, aging significantly impacts battery behavior and safety. This study develops an electrochemical–thermal coupled model that incorporates aging effects to better predict thermal behavior and TR initiation in cylindrical Li-ion batteries. The model is validated against experimental data for fresh NMC and aged NCA cells, and statistical analysis is conducted to identify key factors influencing TR (p < 0.05). A full factorial design evaluates the effects of internal resistance (10, 20, 30, and 40 mΩ), capacity (1, 2, 3, and 5 Ah), and current rate (1C, 3C, 6C, and 8C) on temperature evolution. Additionally, a machine learning algorithm (logistic regression) is employed to identify an internal resistance threshold, beyond which thermal runaway (TR) becomes highly probable, and to predict TR probability based on key battery parameters. The model achieved a high prediction accuracy of 95% on the test dataset. Results indicate that aging affects thermal stability in complex ways. The increased internal resistance exacerbates heating rates, while capacity fade reduces stored energy, mitigating TR risk. These findings provide a validated framework for enhancing battery thermal management and predictive safety mechanisms, which contributed to the development of safer, more reliable Li-ion energy storage systems. Full article
Show Figures

Figure 1

52 pages, 36644 KiB  
Article
Influence of the Layout of Cells in a Traction Battery on the Evolution of a Fire in the Event of a Failure
by Ana Olona and Luis Castejón
Processes 2025, 13(3), 889; https://doi.org/10.3390/pr13030889 - 18 Mar 2025
Viewed by 471
Abstract
Research on the safety and impact of lithium-ion battery failure has focused on individual cells as lithium-ion batteries began to be used in small devices. However, large and complex battery packs need to be considered, and how the failure of a single cell [...] Read more.
Research on the safety and impact of lithium-ion battery failure has focused on individual cells as lithium-ion batteries began to be used in small devices. However, large and complex battery packs need to be considered, and how the failure of a single cell can affect the system needs to be analyzed. This initial failure at the level of a single cell can lead to thermal runaway of other cells within the pack, resulting in increased risk. This article focuses on tests of mechanical abuse (perforation of cylindrical cells), overcharge (pouch cells), and heating (cylindrical cells with different arrangements and types of connection) to analyse how various parameters influence the mechanism of thermal runaway (TR) propagation. Parameters such as SoC (State of Charge), environment, arrangement, and type of connection are thoroughly evaluated. The tests also analyse the final state of the post-mortem cells and measure the internal resistance of the cells before and after testing. The novelty of this study lies in its analysis of the behavior of different types of cells at room temperature, since the behavior of lithium-ion batteries under adverse circumstances has been extensively studied and is well understood, failures can also occur under normal operating conditions. This study concludes that temperature is a crucial parameter, as overheating of the battery can cause an exothermic reaction and destroy the battery completely. Also, overcharging the cell can compromise its internal structure, which underlines the importance of a well-functioning battery management system (BMS). Full article
Show Figures

Figure 1

11 pages, 1209 KiB  
Article
Association of Escherichia coli O157:H7 Density Change with Hydrogen Peroxide but Not Carbohydrate Concentration in the Leaf Content of Different Lettuce Types and Spinach
by Maria T. Brandl, Sui S. T. Hua and Siov B. L. Sarreal
Foods 2025, 14(4), 709; https://doi.org/10.3390/foods14040709 - 19 Feb 2025
Cited by 1 | Viewed by 621
Abstract
Leafy greens injuries occur from farm to table, causing leakage of cellular contents that promote the multiplication of foodborne pathogens and impose oxidative stress. Fresh beverages made from blended uncooked fruit and vegetables have become a popular food. The effect of cellular contents [...] Read more.
Leafy greens injuries occur from farm to table, causing leakage of cellular contents that promote the multiplication of foodborne pathogens and impose oxidative stress. Fresh beverages made from blended uncooked fruit and vegetables have become a popular food. The effect of cellular contents of different leafy greens on the multiplication of the important pathogen Escherichia coli O157:H7 (EcO157) under temperature abuse was investigated. Leafy greens consisted of spinach and different lettuce types (romaine, iceberg, butterhead, green leaf, and red leaf). Fructose, glucose, and sucrose concentrations in the leaves were quantified by HPLC. H2O2 concentration was measured via a peroxidase-based assay. Young leaves of iceberg, romaine, and green leaf lettuce held significantly greater total amounts of the three carbohydrates than middle-aged leaves. Except for iceberg and red leaf lettuce, all middle-aged leaves contained greater H2O2 than young leaves. EcO157 density change in leaf contents over 5 h incubation related neither to individual nor total carbohydrate concentration but was negatively associated with H2O2 concentration (regression analysis; p < 0.05). Given the common use of antioxidants to maintain the organoleptic aspects of homogenized produce beverages and certain fresh-cut produce, the antimicrobial effect of reactive oxygen species may be important to preserve in ensuring their microbial safety. Full article
Show Figures

Figure 1

12 pages, 7964 KiB  
Article
Development and Characterization of Hyaluronic Acid Graft-Modified Polydopamine Nanoparticles for Antibacterial Studies
by Shu Li, Jia Li, Jun Xing, Ling Li, Long Wang and Cai Wang
Polymers 2025, 17(2), 162; https://doi.org/10.3390/polym17020162 - 10 Jan 2025
Cited by 1 | Viewed by 1515
Abstract
The problem of antibiotic abuse and drug resistance is becoming increasingly serious. In recent years, polydopamine (PDA) nanoparticles have been recognized as a potential antimicrobial material for photothermal therapy (PTT) due to their excellent photothermal conversion efficiency and unique antimicrobial ability. PDA is [...] Read more.
The problem of antibiotic abuse and drug resistance is becoming increasingly serious. In recent years, polydopamine (PDA) nanoparticles have been recognized as a potential antimicrobial material for photothermal therapy (PTT) due to their excellent photothermal conversion efficiency and unique antimicrobial ability. PDA is capable of rapidly converting light energy into heat energy under near-infrared (NIR) light irradiation to kill bacteria efficiently. In order to solve the problem of PDA’s tendency to aggregate and precipitate, this study improved its stability by grafting hyaluronic acid (HA) onto the surface of PDA. Using dopamine and hyaluronic acid as raw materials, hyaluronic acid (HA) was grafted onto polydopamine (PDA) nanoparticles via self-polymerization and Michael addition reactions under alkaline conditions to obtain PDA-HA-modified nanoparticles. We confirmed the successful grafting of hyaluronic acid via scanning electron microscopy (SEM), Fourier infrared spectroscopy (FTIR), nuclear magnetic hydrogen spectroscopy (¹H NMR), ultraviolet–visible spectroscopy (UV–vis), Raman spectroscopy (Raman), and dynamic light scattering (DLS) methods. Scanning electron microscopy (SEM) was used to observe the surface morphology and nanostructure of the grafted materials, providing information on the morphology and size distribution of the materials. Near-infrared performance experiments showed that the temperature of the PDA-HA solution increased rapidly under near-infrared light irradiation, demonstrating an excellent photothermal conversion performance. Antimicrobial properties were assessed via the colony counting method, and typical Gram-positive bacteria S. aureus and Gram-negative bacteria E. coli were selected as model strains. The experimental groups were tested under dark conditions and near-infrared (NIR) light irradiation. PDA/HA showed significant photothermal properties under NIR light irradiation, resulting in a rapid increase in the surrounding temperature to a level sufficient to kill bacteria. Under NIR light irradiation, PDA/HA exhibited 100% antimicrobial efficacy against both S. aureus and E. coli, while antimicrobial efficacy was limited under dark conditions. This indicates that the antibacterial activity of PDA/HA is highly dependent on NIR light activation. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

15 pages, 3873 KiB  
Article
Optimal Blend Between Fluorinated Esters and Fluorinated Ether for High-Performance Lithium-Ion Cells at High Voltage
by Yong Sheng, Bo Liu, Junjiang He, Maoyong Zhi and Dongxu Ouyang
Materials 2025, 18(2), 274; https://doi.org/10.3390/ma18020274 - 9 Jan 2025
Viewed by 983
Abstract
An experimental investigation is conducted to identify the optimal blend of fluoroethylene carbonate (FEC), 3,3,3-trifluoropropylene carbonate (TFEC), and various fluorinated ethers, including 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether (HFE), 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE), and bis(2,2,2-trifluoroethyl) ether (BTE), to enhance the performances of lithium-ion cells at high voltage. The [...] Read more.
An experimental investigation is conducted to identify the optimal blend of fluoroethylene carbonate (FEC), 3,3,3-trifluoropropylene carbonate (TFEC), and various fluorinated ethers, including 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether (HFE), 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE), and bis(2,2,2-trifluoroethyl) ether (BTE), to enhance the performances of lithium-ion cells at high voltage. The cell incorporating TTE exhibits a significantly superior capacity for retention after long-term cycling at 4.5 V, which might be attributed to the improved kinetics of lithium ions and the generation of a thin, reliable, and inorganic-rich electrode–electrolyte interface. This enhancement facilitates greater lithium ion mobility within the cell, while effectively suppressing active lithium loss and side reactions between the electrodes and electrolytes at elevated voltages. Furthermore, the cell with TTE demonstrates a superior rate capability and high-temperature performance. As a result of the inherent safety characteristics of these all-fluorinated electrolytes, cells using these formulations show excellent safety properties under typical abuse scenarios. Except at elevated temperatures, none of the cells undergo thermal runaway when subjected to mechanical or electrical abuse, and there are minimal differences in safety performance across the different formulations. Considering electrochemical performance, safety, and cost factors, it can be concluded that TTE might be more optimal to cooperate with FEC and TFEC for high-performance high-voltage cells. Full article
(This article belongs to the Special Issue Technology in Lithium-Ion Batteries: Prospects and Challenges)
Show Figures

Figure 1

Back to TopTop