Biochemical and Functional Characterization of E. coli Aminopeptidase N: A New Role as a 6-Monoacetylmorphine Hydrolase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Protein Multiple Sequence Alignment and Phylogenetic Tree Analysis
2.3. Construction of eAPN Plasmid
2.4. Over-Expression and Purification of Recombinant eAPN
2.5. Effect of pH, Thiol Reducer, Metal Ions
2.6. Effect of Temperature and Thermostability of eAPN
2.7. Substrate Specificity of eAPN Toward Aminopeptidase Substrates
2.8. Molecular Modelling
2.9. Catalytic Activity of eAPN Toward 6-MAM and Heroin
3. Results
3.1. Sequence Analysis
3.2. Cloning, Expression, and Purification of Recombinant eAPN
3.3. Effect of pH, Thiol Reducer, Metal Ions
3.4. Effect of Temperature and Thermostability of eAPN
3.5. Substrate Specificity of eAPN Toward Peptidase Substrates
3.6. Catalytic Activity of eAPN Toward 6-MAM and Heroin
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rook, E.J.; Huitema, A.D.; van den Brink, W.; van Ree, J.M.; Beijnen, J.H. Pharmacokinetics and pharmacokinetic variability of heroin and its metabolites: Review of the literature. Curr. Clin. Pharmacol. 2006, 1, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Selley, D.E.; Cao, C.C.; Sexton, T.; Schwegel, J.A.; Martin, T.J.; Childers, S.R. mu Opioid receptor-mediated G-protein activation by heroin metabolites: Evidence for greater efficacy of 6-monoacetylmorphine compared with morphine. Biochem. Pharmacol 2001, 62, 447–455. [Google Scholar] [CrossRef]
- Milella, M.S.; D’Ottavio, G.; De Pirro, S.; Barra, M.; Caprioli, D.; Badiani, A. Heroin and its metabolites: Relevance to heroin use disorder. Transl. Psychiatry 2023, 13, 120. [Google Scholar] [CrossRef]
- Reichle, C.W.; Smith, G.M.; Gravenstein, J.S.; Macris, S.G.; Beecher, H.K. Comparative analgesic potency of heroin and morphine in postoperative patients. J. Pharmacol. Exp. Ther. 1962, 136, 43–46. [Google Scholar] [CrossRef]
- Mella-Raipán, J.; Romero-Parra, J.; Recabarren-Gajardo, G. DARK classics in chemical neuroscience: Heroin and desomorphine. ACS Chem. Neurosci. 2020, 11, 3905–3927. [Google Scholar] [CrossRef] [PubMed]
- Wolff, P.O. Heroin from the international point of view. Lancet 1956, 270, 563–565. [Google Scholar] [CrossRef] [PubMed]
- Boerner, U. The metabolism of morphine and heroin in man. Drug Metab. Rev. 1975, 4, 39–73. [Google Scholar] [CrossRef]
- Dinis-Oliveira, R.J. Metabolism and metabolomics of opiates: A long way of forensic implications to unravel. J. Forensic Leg. Med. 2019, 61, 128–140. [Google Scholar] [CrossRef]
- Williams, F.M. Clinical significance of esterases in man. Clin. Pharmacokinet. 1985, 10, 392–403. [Google Scholar] [CrossRef]
- Pindel, E.V.; Kedishvili, N.Y.; Abraham, T.L.; Brzezinski, M.R.; Zhang, J.; Dean, R.A.; Bosron, W.F. Purification and cloning of a broad substrate specificity human liver carboxylesterase that catalyzes the hydrolysis of cocaine and heroin. J. Biol. Chem. 1997, 272, 14769–14775. [Google Scholar] [CrossRef]
- Qiao, Y.; Han, K.; Zhan, C.G. Reaction pathways and free energy profiles for cholinesterase-catalyzed hydrolysis of 6-monoacetylmorphine. Org. Biomol. Chem. 2014, 12, 2214–2227. [Google Scholar] [CrossRef] [PubMed]
- Baumann, M.H.; Kopajtic, T.A.; Madras, B.K. Pharmacological research as a key component in mitigating the opioid overdose crisis. Trends Pharmacol. Sci. 2018, 39, 995–998. [Google Scholar] [CrossRef] [PubMed]
- Perekopskiy, D.; Kiyatkin, E.A. 6-Monoacetylmorphine (6-MAM), not morphine, is responsible for the rapid neural effects induced by intravenous heroin. ACS Chem. Neurosci. 2019, 10, 3409–3414. [Google Scholar] [CrossRef]
- Zheng, F.; Zhan, C.G. Are pharmacokinetic approaches feasible for treatment of cocaine addiction and overdose? Future Med. Chem. 2012, 4, 125–128. [Google Scholar] [CrossRef]
- Gilgun-Sherki, Y.; Eliaz, R.E.; McCann, D.J.; Loupe, P.S.; Eyal, E.; Blatt, K.; Cohen-Barak, O.; Hallak, H.; Chiang, N.; Gyaw, S. Placebo-controlled evaluation of a bioengineered, cocaine-metabolizing fusion protein, TV-1380 (AlbuBChE), in the treatment of cocaine dependence. Drug Alcohol Depend. 2016, 166, 13–20. [Google Scholar] [CrossRef]
- Nasser, A.F.; Fudala, P.J.; Zheng, B.; Liu, Y.; Heidbreder, C. A randomized, double-blind, placebo-controlled trial of RBP-8000 in cocaine abusers: Pharmacokinetic profile of RBP-8000 and cocaine and effects of RBP-8000 on cocaine-induced physiological effects. J. Addict. Dis. 2014, 33, 289–302. [Google Scholar] [CrossRef]
- Cohen-Barak, O.; Wildeman, J.; van de Wetering, J.; Hettinga, J.; Schuilenga-Hut, P.; Gross, A.; Clark, S.; Bassan, M.; Gilgun-Sherki, Y.; Mendzelevski, B.; et al. Safety, pharmacokinetics, and pharmacodynamics of TV-1380, a novel mutated butyrylcholinesterase treatment for cocaine addiction, after single and multiple intramuscular injections in healthy subjects. J. Clin. Pharmacol. 2015, 55, 573–583. [Google Scholar] [CrossRef]
- Chen, K.; Sun, S.; Wang, J.; Zhang, X.-D. Catalytic nanozymes for central nervous system disease. Coord. Chem. Rev. 2021, 432, 213751. [Google Scholar] [CrossRef]
- Brimijoin, S.; Gao, Y.; Geng, L.; Chen, V.P. Treating cocaine addiction, obesity, and emotional disorders by viral gene transfer of butyrylcholinesterase. Front. Pharmacol. 2018, 9, 112. [Google Scholar] [CrossRef]
- Hatfield, M.J.; Tsurkan, L.; Hyatt, J.L.; Yu, X.; Edwards, C.C.; Hicks, L.D.; Wadkins, R.M.; Potter, P.M. Biochemical and molecular analysis of carboxylesterase-mediated hydrolysis of cocaine and heroin. Br. J. Pharmacol. 2010, 160, 1916–1928. [Google Scholar] [CrossRef]
- Kamendulis, L.M.; Brzezinski, M.R.; Pindel, E.V.; Bosron, W.F.; Dean, R.A. Metabolism of cocaine and heroin is catalyzed by the same human liver carboxylesterases. J. Pharmacol. Exp. Ther. 1996, 279, 713–717. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Yao, J.; Jin, Z.; Zheng, F.; Zhan, C.-G. Kinetic characterization of cholinesterases and a therapeutically valuable cocaine hydrolase for their catalytic activities against heroin and its metabolite 6-monoacetylmorphine. Chem.-Biol. Interact. 2018, 293, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Addlagatta, A.; Gay, L.; Matthews, B.W. Structural basis for the unusual specificity of Escherichia coli aminopeptidase N. Biochemistry 2008, 47, 5303–5311. [Google Scholar] [CrossRef] [PubMed]
- Chandu, D.; Nandi, D. PepN is the major aminopeptidase in Escherichia coli: Insights on substrate specificity and role during sodium-salicylate-induced stress. Microbiology 2003, 149, 3437–3447. [Google Scholar] [CrossRef]
- Golich, F.C.; Han, M.; Crowder, M.W. Over-expression, purification, and characterization of aminopeptidase N from Escherichia coli. Protein Expr. Purif. 2006, 47, 634–639. [Google Scholar] [CrossRef]
- Brünger, A.T.; Karplus, M. Polar hydrogen positions in proteins: Empirical energy placement and neutron diffraction comparison. Proteins 1988, 4, 148–156. [Google Scholar] [CrossRef]
- Jorgensen, W.L. Quantum and statistical mechanical studies of liquids. 10. Transferable intermolecular potential functions for water, alcohols, and ethers—Application to liquid water. J. Am. Chem. Soc. 1981, 103, 335–340. [Google Scholar] [CrossRef]
- Neria, E.; Fischer, S.; Karplus, M. Simulation of activation free energies in molecular systems. J. Chem. Phys. 1996, 105, 1902–1921. [Google Scholar] [CrossRef]
- Gaus, M.; Cui, Q.; Elstner, M. DFTB3: Extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB). J. Chem. Theory Comput. 2011, 7, 931–948. [Google Scholar] [CrossRef]
- MacKerell, A.D.; Bashford, D.; Bellott, M.; Dunbrack, R.L.; Evanseck, J.D.; Field, M.J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 1998, 102, 3586–3616. [Google Scholar] [CrossRef]
- Fournié-Zaluski, M.C.; Poras, H.; Roques, B.P.; Nakajima, Y.; Ito, K.; Yoshimoto, T. Structure of aminopeptidase N from Escherichia coli complexed with the transition-state analogue aminophosphinic inhibitor PL250. Acta Crystallogr. Sect. D Biol. Crystallogr. 2009, 65, 814–822. [Google Scholar] [CrossRef] [PubMed]
- Addlagatta, A.; Gay, L.; Matthews, B.W. Structure of aminopeptidase N from Escherichia coli suggests a compartmentalized, gated active site. Proc. Natl. Acad. Sci. USA 2006, 103, 13339–13344. [Google Scholar] [CrossRef] [PubMed]
- Chappelet-Tordo, D.; Lazdunski, C.; Murgier, M.; Lazdunski, A. Aminopeptidase N from Escherichia coli: Ionizable active-center groups and substrate specificity. Eur. J. Biochem. 1977, 81, 293–305. [Google Scholar] [CrossRef] [PubMed]
- Chandu, D.; Kumar, A.; Nandi, D. PepN, the major Suc-LLVY-AMC-hydrolyzing enzyme in Escherichia coli, displays functional similarity with downstream processing enzymes in Archaea and eukarya. Implications in cytosolic protein degradation. J. Biol. Chem. 2003, 278, 5548–5556. [Google Scholar] [CrossRef]
- Gumpena, R.; Kishor, C.; Ganji, R.J.; Jain, N.; Addlagatta, A. Glu121-Lys319 salt bridge between catalytic and N-terminal domains is pivotal for the activity and stability of Escherichia coli aminopeptidase N. Protein Sci. A Publ. Protein Soc. 2012, 21, 727–736. [Google Scholar] [CrossRef]
- Orning, L.; Gierse, J.K.; Fitzpatrick, F.A. The bifunctional enzyme leukotriene-A4 hydrolase is an arginine aminopeptidase of high efficiency and specificity. J. Biol. Chem. 1994, 269, 11269–11273. [Google Scholar] [CrossRef]
- Lazdunski, C.; Busuttil, J.; Lazdunski, A. Purification and properties of a periplasmic aminoendopeptidase from Escherichia coli. Eur. J. Biochem. 1975, 60, 363–369. [Google Scholar] [CrossRef]
- McCaman, M.T.; Villarejo, M.R. Structured and catalytic properties of peptidase N from Escherichia coli K-12. Arch. Biochem. Biophys. 1982, 213, 384–394. [Google Scholar] [CrossRef]
- Brzezinski, M.R.; Spink, B.J.; Dean, R.A.; Berkman, C.E.; Cashman, J.R.; Bosron, W.F. Human liver carboxylesterase hCE-1: Binding specificity for cocaine, heroin, and their metabolites and analogs. Drug Metab. Dispos. Biol. Fate Chem. 1997, 25, 1089–1096. [Google Scholar]
- Chen, X.; Deng, X.; Zhang, Y.; Wu, Y.; Yang, K.; Li, Q.; Wang, J.; Yao, W.; Tong, J.; Xie, T.; et al. Computational design and crystal structure of a highly efficient benzoylecgonine hydrolase. Angew. Chem. Int. Ed. 2021, 60, 21959–21965. [Google Scholar] [CrossRef]
- Zheng, F.; Xue, L.; Hou, S.; Liu, J.; Zhan, M.; Yang, W.; Zhan, C.G. A highly efficient cocaine-detoxifying enzyme obtained by computational design. Nat. Commun. 2014, 5, 3457. [Google Scholar] [CrossRef] [PubMed]
Enzyme | Substrate | kcat (min−1) | KM (μM) | kcat/KM (M−1min−1) |
---|---|---|---|---|
His-eAPN | L-Ala-p-nitroanilide | 1500.0 | 5914.0 | 0.25 × 106 |
L-Arg-p-nitroanilide | 303.6 | 2745.0 | 0.11 × 106 | |
L-Met-p-nitroanilide | 38.4 | 2315.0 | 0.02 × 106 | |
L-Gly-p-nitroanilide | 40.5 | 2939.0 | 0.01 × 106 | |
L-Leu-p-nitroanilide | 30.2 | 371.7 | 0.08 × 106 | |
L-Pro-p-nitroanilide | >1.0 | >4000 | / | |
eAPN | L-Ala-p-nitroanilide | 5439.0 | 419.4 | 12.97 × 106 |
L-Arg-p-nitroanilide | 663.1 | 88.1 | 7.53 × 106 | |
L-Met-p-nitroanilide | 255.4 | 314.1 | 0.81 × 106 | |
L-Gly-p-nitroanilide | 264.6 | 360.6 | 0.73 × 106 | |
L-Leu-p-nitroanilide | 169.0 | 592.4 | 0.29 × 106 | |
L-Pro-p-nitroanilide | 76.1 | 1616.0 | 0.05 × 106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Li, Y.; Yao, J.; Li, X.; Li, H.; Wu, Z.; Hu, Q.; Xu, N.; Hou, T.; Wang, J.; et al. Biochemical and Functional Characterization of E. coli Aminopeptidase N: A New Role as a 6-Monoacetylmorphine Hydrolase. Biomolecules 2025, 15, 822. https://doi.org/10.3390/biom15060822
Chen X, Li Y, Yao J, Li X, Li H, Wu Z, Hu Q, Xu N, Hou T, Wang J, et al. Biochemical and Functional Characterization of E. coli Aminopeptidase N: A New Role as a 6-Monoacetylmorphine Hydrolase. Biomolecules. 2025; 15(6):822. https://doi.org/10.3390/biom15060822
Chicago/Turabian StyleChen, Xiabin, Yishuang Li, Jianzhuang Yao, Xiaoxuan Li, Hualing Li, Zelin Wu, Qi Hu, Nuo Xu, Tingjun Hou, Jiye Wang, and et al. 2025. "Biochemical and Functional Characterization of E. coli Aminopeptidase N: A New Role as a 6-Monoacetylmorphine Hydrolase" Biomolecules 15, no. 6: 822. https://doi.org/10.3390/biom15060822
APA StyleChen, X., Li, Y., Yao, J., Li, X., Li, H., Wu, Z., Hu, Q., Xu, N., Hou, T., Wang, J., & Hou, S. (2025). Biochemical and Functional Characterization of E. coli Aminopeptidase N: A New Role as a 6-Monoacetylmorphine Hydrolase. Biomolecules, 15(6), 822. https://doi.org/10.3390/biom15060822